- home
- Advanced Search
- Energy Research
- Aurora Universities Network
- European Marine Science
- Energy Research
- Aurora Universities Network
- European Marine Science
description Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Public Library of Science (PLoS) Funded by:EC | KNOWSEASEC| KNOWSEASAlexander, K.A.; Janssen, R.; Arciniegas Lopez, G.A.; O'Higgens, T.G.; Eikelboom, T.; Wilding, T.A.;The rapid development of the offshore renewable energy sector has led to an increased requirement for Marine Spatial Planning (MSP) and, increasingly, this is carried out in the context of the 'ecosystem approach' (EA) to management. We demonstrate a novel method to facilitate implementation of the EA. Using a real-time interactive mapping device (touch-table) and stakeholder workshops we gathered data and facilitated negotiation of spatial trade-offs at a potential site for tidal renewable energy off the Mull of Kintyre (Scotland). Conflicts between the interests of tidal energy developers and commercial and recreational users of the area were identified, and use preferences and concerns of stakeholders were highlighted. Social, cultural and spatial issues associated with conversion of common pool to private resource were also revealed. The method identified important gaps in existing spatial data and helped to fill these through interactive user inputs. The workshops developed a degree of consensus between conflicting users on the best areas for potential development suggesting that this approach should be adopted during MSP.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0030031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 88 citations 88 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0030031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 ItalyPublisher:Oxford University Press (OUP) Publicly fundedFunded by:NSF | Collaborative Research: E..., NSERC, NSF | LTREB: Effects of Warming... +4 projectsNSF| Collaborative Research: EPSCoR RII Track 2 Oklahoma and Kansas: A cyberCommons for Ecological Forecasting ,NSERC ,NSF| LTREB: Effects of Warming and Clipping on Coupling of Carbon and Water Cycles in a Tallgrass Prairie ,EC| GHG EUROPE ,NSF| RCN: Forecasts Of Resource and Environmental Changes: data Assimilation Science and Technology (FORECAST) ,NSF| Data-Model Fusion at AmeriFlux Sites: Towards Predictive Understanding of Seasonal and Interannual Variability in Net Ecosystem Exchange ,NSF| Development of a Data Assimilation Capability Towards Ecological Forecasting in a Data-Rich EraBing Song; Matthias Peichl; Andrej Varlagin; Leonardo Montagnani; Lutz Merbold; Janusz Olejnik; Mats Nilsson; Antonio Raschi; Asko Noormets; Yiqi Luo; Magnus Lund; Georg Wohlfahrt; Gerard Kiely; Beverly E. Law; Guirui Yu; Vincenzo Magliulo; Jiquan Chen; Ruisen Luo; Shuli Niu; Alessandro Cescatti;doi: 10.1093/jpe/rtu014
Aims Recent studies revealed convergent temperature sensitivity of ecosystem respiration (Re) within aquatic ecosystems and between terrestrial and aquatic ecosystems. We do not know yet whether various terrestrial ecosystems have consistent or divergent temperature sensitivity. Here, we synthesized 163 eddy covariance flux sites across the world and examined the global variation of the apparent activation energy (Ea), which characterizes the apparent temperature sensitivity of and its interannual variability (IAV) as well as their controlling factors. Methods We used carbon fluxes and meteorological data across FLUXNET sites to calculate mean annual temperature, temperature range, precipitation, global radiation, potential radiation, gross primary productivity and Re by averaging the daily values over the years in each site. Furthermore, we analyzed the sites with >8 years data to examine the IAV of Ea and calculated the standard deviation of Ea across years at each site to characterize IAV. Important Findings The results showed a widely global variation of Ea, with significantly lower values in the tropical and subtropical areas than in temperate and boreal areas, and significantly higher values in grasslands and wetlands than that in deciduous broadleaf forests and evergreen forests. Globally, spatial variations of Ea were explained by changes in temperature and an index of water availability with differing contribution of each explaining variable among climate zones and biomes. IAV and the corresponding coefficient of variation of Ea decreased with increasing latitude, but increased with radiation and corresponding mean annual temperature. The revealed patterns in the spatial and temporal variations of Ea and its controlling factors indicate divergent temperature sensitivity of R-e, which could help to improve our predictive understanding of R-e in response to climate change.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/jpe/rtu014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 18 citations 18 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/jpe/rtu014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United Kingdom, NetherlandsPublisher:Frontiers Media SA Funded by:EC | CERESEC| CERESMyron A. Peck; John K. Pinnegar; John K. Pinnegar; Sandra Rybicki; Katell G. Hamon; Andrzej Tabeau; Eleni Papathanasopoulou; Giulia Micallef; Cornelia M. Kreiss; Alhambra M. Cubillo;Climate-driven changes in aquatic environments have already started to affect the European aquaculture sector’s most commercially important finfish and shellfish species. In addition to changes in water quality and temperature that can directly influence fish production by altering health status, growth performance and/or feed conversion, the aquaculture sector also faces an uncertain future in terms of production costs and returns. For example, the availability of key ingredients for fish feeds (proteins, omega-3 fatty acids) will not only depend on future changes in climate, but also on social and political factors, thereby influencing feed costs. The future cost of energy, another main expenditure for fish farms, will also depend on various factors. Finally, marketing options and subsidies will have major impacts on future aquaculture profitability. Based on the framework of four socio-political scenarios developed in the EU H2020 project climate change and European aquatic resources (CERES), we defined how these key factors for the aquaculture sector could change in the future. We then apply these scenarios to make projections of how climate change and societal and economic trends influence the mid-century (2050) profitability of European aquaculture. We used an established benchmarking approach to contrast present-day and future economic performance of “typical farms” in selected European production regions under each of the scenarios termed “World Markets,” “National Enterprise,” “Global Sustainability” and “Local Stewardship.” These scenarios were based partly on the IPCC Special Report on Emissions Scenarios framework and their representative concentration pathways (RCPs) and the widely used shared socio-economic pathways (SSPs). Together, these scenarios contrast local versus international emphasis on decision making, more versus less severe environmental change, and different consequences for producers due to future commodity prices, cash returns, and costs. The mid-century profitability of the typical farms was most sensitive to the future development of feed costs, price trends of returns, and marketing options as opposed to the direct effect of climate-driven changes in the environment. These results can inform adaptation planning by the European aquaculture sector. Moreover, applying consistent scenarios including societal and economic dimensions, facilitates regional to global comparisons of adaptation advice both within and across Blue Growth sectors.
University of East A... arrow_drop_down University of East Anglia: UEA Digital RepositoryArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2020.568159&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 2visibility views 2 Powered bymore_vert University of East A... arrow_drop_down University of East Anglia: UEA Digital RepositoryArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2020.568159&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020 United KingdomPublisher:Wiley Paul M. Thompson; Isla M. Graham; Barbara Cheney; Tim R. Barton; Adrian Farcas; Nathan D. Merchant;handle: 2164/15974
Abstract1. Offshore windfarms require construction procedures that minimize impacts on protected marine mammals. Uncertainty over the efficacy of existing guidelines for mitigating near‐field injury when pile‐driving recently resulted in the development of alternative measures, which integrated the routine deployment of acoustic deterrent devices (ADD) into engineering installation procedures without prior monitoring by marine mammal observers.2. We conducted research around the installation of jacket foundations at the UK's first deep‐water offshore windfarm to address data gaps identified by regulators when consenting this new approach. Specifically, we aimed to (a) measure the relationship between noise levels and hammer energy to inform assessments of near‐field injury zones and (b) assess the efficacy of ADDs to disperse harbour porpoises from these zones.3. Distance from piling vessel had the biggest influence on received noise levels but, unexpectedly, received levels at any given distance were highest at low hammer energies. Modelling highlighted that this was because noise from pin pile installations was dominated by the strong negative relationship with pile penetration depth with only a weak positive relationship with hammer energy.4. Acoustic detections of porpoises along a gradient of ADD exposure decreased in the 3‐h following a 15‐min ADD playback, with a 50% probability of response within 21.7 km. The minimum time to the first porpoise detection after playbacks was > 2 h for sites within 1 km of the playback.5. Our data suggest that the current regulatory focus on maximum hammer energies needs review, and future assessments of noise exposure should also consider foundation type. Despite higher piling noise levels than predicted, responses to ADD playback suggest mitigation was sufficiently conservative. Conversely, strong responses of porpoises to ADDs resulted in far‐field disturbance beyond that required to mitigate injury. We recommend that risks to marine mammals can be further minimized by (1) optimizing ADD source signals and/or deployment schedules to minimize broad‐scale disturbance; (2) minimizing initial hammer energies when received noise levels were highest; (3) extending the initial phase of soft start with minimum hammer energies and low blow rates.
Aberdeen University ... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/2164/15974Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Ecological Solutions and EvidenceArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2688-8319.12034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 5visibility views 5 download downloads 18 Powered bymore_vert Aberdeen University ... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/2164/15974Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Ecological Solutions and EvidenceArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2688-8319.12034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 09 Jul 2020 Norway, Australia, Czech Republic, Switzerland, Australia, Australia, Denmark, Australia, Italy, Australia, Czech Republic, Germany, Netherlands, Germany, Australia, Germany, Sweden, Russian Federation, Australia, Australia, Italy, Italy, France, ItalyPublisher:Springer Science and Business Media LLC Publicly fundedFunded by:UKRI | RootDetect: Remote Detect...UKRI| RootDetect: Remote Detection and Precision Management of Root HealthAndreas Ibrom; Bruno De Cinti; Jean Marc Ourcival; Vincenzo Magliulo; Onil Bergeron; M. Altaf Arain; Andrew Feitz; Zulia Mayari Sanchez-Mejia; Christof Ammann; Yann Nouvellon; Siyan Ma; Brian D. Amiro; Kim Pilegaard; Eddy Moors; Michele Tomassucci; Asko Noormets; Shawn Urbanski; Damiano Gianelle; Anatoly A. Gitelson; E. Canfora; You Wei Cheah; Ko van Huissteden; Shicheng Jiang; Hans Peter Schmid; Albin Hammerle; Brent E. Ewers; Virginie Moreaux; Housen Chu; Anne Griebel; Timothy J. Arkebauer; Peter Cale; Barbara Marcolla; Alan G. Barr; Alan G. Barr; Scott D. Miller; Lutz Merbold; Ivan Schroder; Joseph Verfaillie; Stefan K. Arndt; Scott R. Saleska; Nicolas Delpierre; Catharine van Ingen; Christine Moureaux; Annalea Lohila; Annalea Lohila; Gabriela Posse; Bernard Heinesch; Pierpaolo Duce; Raimundo Cosme de Oliveira; Kenneth J. Davis; Markus Hehn; Torben R. Christensen; Tilden P. Meyers; Werner L. Kutsch; Lindsay B. Hutley; Üllar Rannik; W.W.P. Jans; Riccardo Valentini; Myroslava Khomik; Myroslava Khomik; Pierre Cellier; Ayumi Kotani; Xiaoqin Dai; Marta Galvagno; Frans-Jan W. Parmentier; Frans-Jan W. Parmentier; Eric Dufrêne; Marius Schmidt; Birger Ulf Hansen; Alessio Collalti; Alessio Collalti; Ivan Shironya; Christian Brümmer; Russell L. Scott; Serge Rambal; Jonas Ardö; Natalia Restrepo-Coupe; Donatella Zona; Elizabeth A. Walter-Shea; Russell K. Monson; Silvano Fares; Sean P. Burns; Sean P. Burns; Mauro Cavagna; Guoyi Zhou; Suzanne M. Prober; Juha Pekka Tuovinen; Georgia R. Koerber; Yuelin Li; Alexander Knohl; Mikhail Mastepanov; Mikhail Mastepanov; Yanhong Tang; Johan Neirynck; Matthew Northwood; Pauline Buysse; Thomas Grünwald; Sabina Dore; N. Pirk; N. Pirk; Hiroki Ikawa; Craig Macfarlane; Jean-Marc Limousin; Carlos Marcelo Di Bella; Leiming Zhang; Juha Hatakka; Margaret S. Torn; Mika Aurela; Bert Gielen; Jiquan Chen; Regine Maier; Karl Schneider; Christian Wille; Nina Buchmann; Daniel Berveiller; Peter D. Blanken; Wayne S. Meyer; Dennis D. Baldocchi; Benjamin Loubet; Giovanni Manca; Hatim Abdalla M. ElKhidir; James Cleverly; Harry McCaughey; Agnès de Grandcourt; Matthias Peichl; Adam J. Liska; Jonathan E. Thom; Christian Bernhofer; Jean Marc Bonnefond; Alexander Graf; Roser Matamala; M. Goeckede; Marian Pavelka; Hank A. Margolis; Eugénie Paul-Limoges; Andrew S. Kowalski; Taro Nakai; Taro Nakai; Marcelo D. Nosetto; Tomomichi Kato; Ray Leuning; Beniamino Gioli; Marc Aubinet; Tuomas Laurila; Andrej Varlagin; Ignacio Goded; David R. Bowling; Nigel J. Tapper; Ana López-Ballesteros; Denis Loustau; Iris Feigenwinter; Uta Moderow; Edoardo Cremonese; Gianluca Filippa; Domenico Vitale; Abdelrahman Elbashandy; Gilberto Pastorello; Ettore D'Andrea; Gil Bohrer; Thomas L. Powell; Serena Marras; Daniela Famulari; Christopher M. Gough; Enrique P. Sánchez-Cañete; Satoru Takanashi; Michael J. Liddell; Jason Brodeur; Marc Fischer; Zoran Nesic; William J. Massman; Janina Klatt; Samuli Launiainen; Anne De Ligne; Leonardo Montagnani; Sebastian Wolf; Rainer Steinbrecher; Yingnian Li; Donatella Spano; A. Ribeca; Rosvel Bracho; Walter C. Oechel; B.R. Reverter; Jiří Dušek; Sebastian Westermann; Rachhpal S. Jassal; Derek Eamus; Claudia Consalvo; Claudia Consalvo; Marty Humphrey; Timo Vesala; Cristina Poindexter; Jeffrey P. Walker; Humberto Ribeiro da Rocha; Paul V. Bolstad; Elise Pendall; Diego Polidori; Peter S. Curtis; Chad Hanson; Francisco Domingo; Jason Beringer;pmc: PMC7347557
AbstractThe FLUXNET2015 dataset provides ecosystem-scale data on CO2, water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their data to create global datasets. Data were quality controlled and processed using uniform methods, to improve consistency and intercomparability across sites. The dataset is already being used in a number of applications, including ecophysiology studies, remote sensing studies, and development of ecosystem and Earth system models. FLUXNET2015 includes derived-data products, such as gap-filled time series, ecosystem respiration and photosynthetic uptake estimates, estimation of uncertainties, and metadata about the measurements, presented for the first time in this paper. In addition, 206 of these sites are for the first time distributed under a Creative Commons (CC-BY 4.0) license. This paper details this enhanced dataset and the processing methods, now made available as open-source codes, making the dataset more accessible, transparent, and reproducible.
CORE arrow_drop_down GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Full-Text: https://hal.science/hal-03778635Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/10568/108878Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.science/hal-03778635Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2020Full-Text: https://hal.science/hal-03778635Data sources: Bielefeld Academic Search Engine (BASE)Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2020License: CC BYFull-Text: http://urn.nb.no/URN:NBN:no-84551Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2020Full-Text: http://hdl.handle.net/10449/64207Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/11343/244534Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2020Full-Text: https://ro.ecu.edu.au/ecuworkspost2013/9096Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/2440/129213Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2020Full-Text: https://doi.org/10.1038/s41597-020-0534-3Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARepository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesWageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff PublicationsWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff PublicationsUniversity of Western Sydney (UWS): Research DirectArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Università degli studi della Tuscia: Unitus DSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-020-0534-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 791 citations 791 popularity Top 0.01% influence Top 1% impulse Top 0.01% Powered by BIP!
visibility 23visibility views 23 download downloads 33 Powered bymore_vert CORE arrow_drop_down GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Full-Text: https://hal.science/hal-03778635Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/10568/108878Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.science/hal-03778635Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2020Full-Text: https://hal.science/hal-03778635Data sources: Bielefeld Academic Search Engine (BASE)Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2020License: CC BYFull-Text: http://urn.nb.no/URN:NBN:no-84551Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2020Full-Text: http://hdl.handle.net/10449/64207Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/11343/244534Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2020Full-Text: https://ro.ecu.edu.au/ecuworkspost2013/9096Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/2440/129213Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2020Full-Text: https://doi.org/10.1038/s41597-020-0534-3Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARepository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesWageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff PublicationsWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff PublicationsUniversity of Western Sydney (UWS): Research DirectArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Università degli studi della Tuscia: Unitus DSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-020-0534-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 FrancePublisher:Elsevier BV Devriese, Lisa I.; Meulen, Myra D., van Der; Maes, Thomas; Bekaert, Karen; Paul-Pont, Ika; Frère, Laura; Robbens, Johan; Vethaak, A. Dick;This study assessed the capability of Crangon crangon (L.), an ecologically and commercially important crustacean, of consuming plastics as an opportunistic feeder. We therefore determined the microplastic content of shrimp in shallow water habitats of the Channel area and Southern part of the North Sea. Synthetic fibers ranging from 200μm up to 1000μm size were detected in 63% of the assessed shrimp and an average value of 0.68±0.55microplastics/g w. w. (1.23±0.99microplastics/shrimp) was obtained for shrimp in the sampled area. The assessment revealed no spatial patterns in plastic ingestion, but temporal differences were reported. The microplastic uptake was significantly higher in October compared to March. The results suggest that microplastics >20μm are not able to translocate into the tissues.
Hyper Article en Lig... arrow_drop_down Marine Pollution BulletinArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInstitut national des sciences de l'Univers: HAL-INSUArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Université de Bretagne Occidentale: HALArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.marpolbul.2015.06.051&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 557 citations 557 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Marine Pollution BulletinArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInstitut national des sciences de l'Univers: HAL-INSUArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Université de Bretagne Occidentale: HALArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.marpolbul.2015.06.051&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018Embargo end date: 20 Sep 2024 Germany, Australia, Germany, Australia, France, Germany, Netherlands, United KingdomPublisher:Copernicus GmbH Publicly fundedFunded by:EC | CRESCENDO, RCN | Jordsystem-modellering av..., EC | RINGO +10 projectsEC| CRESCENDO ,RCN| Jordsystem-modellering av klimaforandringer i den antroposene tidsalder; Earth system modelling of climate Variations in the Anthropocene ,EC| RINGO ,EC| FIXO3 ,RCN| CICEP-Strategic Challenges in International Climate and Energy Policy ,RCN| Integrated Carbon Observation System (ICOS)-Norway and Ocean Thematic Centre (OTC) ,UKRI| Amazon Integrated Carbon Analysis / AMAZONICA ,EC| GEOCARBON ,NWO| The distribution and evolution of inert and reactant scalars: from the atmospheric boundary layer to continental scales ,EC| QUINCY ,EC| VERIFY ,EC| IMBALANCE-P ,EC| AtlantOSC. Le Quéré; R. M. Andrew; P. Friedlingstein; S. Sitch; J. Hauck; J. Pongratz; J. Pongratz; P. A. Pickers; J. I. Korsbakken; G. P. Peters; J. G. Canadell; A. Arneth; V. K. Arora; L. Barbero; L. Barbero; A. Bastos; L. Bopp; F. Chevallier; L. P. Chini; P. Ciais; S. C. Doney; T. Gkritzalis; D. S. Goll; I. Harris; V. Haverd; F. M. Hoffman; M. Hoppema; R. A. Houghton; G. Hurtt; T. Ilyina; A. K. Jain; T. Johannessen; C. D. Jones; E. Kato; R. F. Keeling; K. K. Goldewijk; K. K. Goldewijk; P. Landschützer; N. Lefèvre; S. Lienert; Z. Liu; Z. Liu; D. Lombardozzi; N. Metzl; D. R. Munro; J. E. M. S. Nabel; S.-I. Nakaoka; C. Neill; C. Neill; A. Olsen; T. Ono; P. Patra; A. Peregon; W. Peters; W. Peters; P. Peylin; B. Pfeil; B. Pfeil; D. Pierrot; D. Pierrot; B. Poulter; G. Rehder; L. Resplandy; E. Robertson; M. Rocher; C. Rödenbeck; U. Schuster; J. Schwinger; R. Séférian; I. Skjelvan; T. Steinhoff; A. Sutton; P. P. Tans; H. Tian; B. Tilbrook; B. Tilbrook; F. N. Tubiello; I. T. van der Laan-Luijkx; G. R. van der Werf; N. Viovy; A. P. Walker; A. J. Wiltshire; R. Wright; R. Wright; S. Zaehle; B. Zheng;Abstract. Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the “global carbon budget” – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (EFF) are based on energy statistics and cement production data, while emissions from land use and land-use change (ELUC), mainly deforestation, are based on land use and land-use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly and its growth rate (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) and terrestrial CO2 sink (SLAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2008–2017), EFF was 9.4±0.5 GtC yr−1, ELUC 1.5±0.7 GtC yr−1, GATM 4.7±0.02 GtC yr−1, SOCEAN 2.4±0.5 GtC yr−1, and SLAND 3.2±0.8 GtC yr−1, with a budget imbalance BIM of 0.5 GtC yr−1 indicating overestimated emissions and/or underestimated sinks. For the year 2017 alone, the growth in EFF was about 1.6 % and emissions increased to 9.9±0.5 GtC yr−1. Also for 2017, ELUC was 1.4±0.7 GtC yr−1, GATM was 4.6±0.2 GtC yr−1, SOCEAN was 2.5±0.5 GtC yr−1, and SLAND was 3.8±0.8 GtC yr−1, with a BIM of 0.3 GtC. The global atmospheric CO2 concentration reached 405.0±0.1 ppm averaged over 2017. For 2018, preliminary data for the first 6–9 months indicate a renewed growth in EFF of +2.7 % (range of 1.8 % to 3.7 %) based on national emission projections for China, the US, the EU, and India and projections of gross domestic product corrected for recent changes in the carbon intensity of the economy for the rest of the world. The analysis presented here shows that the mean and trend in the five components of the global carbon budget are consistently estimated over the period of 1959–2017, but discrepancies of up to 1 GtC yr−1 persist for the representation of semi-decadal variability in CO2 fluxes. A detailed comparison among individual estimates and the introduction of a broad range of observations show (1) no consensus in the mean and trend in land-use change emissions, (2) a persistent low agreement among the different methods on the magnitude of the land CO2 flux in the northern extra-tropics, and (3) an apparent underestimation of the CO2 variability by ocean models, originating outside the tropics. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding the global carbon cycle compared with previous publications of this data set (Le Quéré et al., 2018, 2016, 2015a, b, 2014, 2013). All results presented here can be downloaded from https://doi.org/10.18160/GCP-2018.
OceanRep arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Full-Text: https://hal.science/hal-01951197Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2018Full-Text: https://hal.science/hal-01951197Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Full-Text: https://hal.science/hal-01951197Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Earth System Science Data (ESSD)Article . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefWageningen Staff PublicationsArticle . 2018License: CC BYData sources: Wageningen Staff PublicationsElectronic Publication Information CenterArticle . 2018Data sources: Electronic Publication Information CenterEarth System Science Data (ESSD)Article . 2018 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-10-2141-2018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1K citations 1,204 popularity Top 0.01% influence Top 0.1% impulse Top 0.01% Powered by BIP!
visibility 115visibility views 115 download downloads 1,953 Powered bymore_vert OceanRep arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Full-Text: https://hal.science/hal-01951197Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2018Full-Text: https://hal.science/hal-01951197Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Full-Text: https://hal.science/hal-01951197Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Earth System Science Data (ESSD)Article . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefWageningen Staff PublicationsArticle . 2018License: CC BYData sources: Wageningen Staff PublicationsElectronic Publication Information CenterArticle . 2018Data sources: Electronic Publication Information CenterEarth System Science Data (ESSD)Article . 2018 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-10-2141-2018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Public Library of Science (PLoS) Funded by:EC | KNOWSEASEC| KNOWSEASAlexander, K.A.; Janssen, R.; Arciniegas Lopez, G.A.; O'Higgens, T.G.; Eikelboom, T.; Wilding, T.A.;The rapid development of the offshore renewable energy sector has led to an increased requirement for Marine Spatial Planning (MSP) and, increasingly, this is carried out in the context of the 'ecosystem approach' (EA) to management. We demonstrate a novel method to facilitate implementation of the EA. Using a real-time interactive mapping device (touch-table) and stakeholder workshops we gathered data and facilitated negotiation of spatial trade-offs at a potential site for tidal renewable energy off the Mull of Kintyre (Scotland). Conflicts between the interests of tidal energy developers and commercial and recreational users of the area were identified, and use preferences and concerns of stakeholders were highlighted. Social, cultural and spatial issues associated with conversion of common pool to private resource were also revealed. The method identified important gaps in existing spatial data and helped to fill these through interactive user inputs. The workshops developed a degree of consensus between conflicting users on the best areas for potential development suggesting that this approach should be adopted during MSP.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0030031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 88 citations 88 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0030031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 ItalyPublisher:Oxford University Press (OUP) Publicly fundedFunded by:NSF | Collaborative Research: E..., NSERC, NSF | LTREB: Effects of Warming... +4 projectsNSF| Collaborative Research: EPSCoR RII Track 2 Oklahoma and Kansas: A cyberCommons for Ecological Forecasting ,NSERC ,NSF| LTREB: Effects of Warming and Clipping on Coupling of Carbon and Water Cycles in a Tallgrass Prairie ,EC| GHG EUROPE ,NSF| RCN: Forecasts Of Resource and Environmental Changes: data Assimilation Science and Technology (FORECAST) ,NSF| Data-Model Fusion at AmeriFlux Sites: Towards Predictive Understanding of Seasonal and Interannual Variability in Net Ecosystem Exchange ,NSF| Development of a Data Assimilation Capability Towards Ecological Forecasting in a Data-Rich EraBing Song; Matthias Peichl; Andrej Varlagin; Leonardo Montagnani; Lutz Merbold; Janusz Olejnik; Mats Nilsson; Antonio Raschi; Asko Noormets; Yiqi Luo; Magnus Lund; Georg Wohlfahrt; Gerard Kiely; Beverly E. Law; Guirui Yu; Vincenzo Magliulo; Jiquan Chen; Ruisen Luo; Shuli Niu; Alessandro Cescatti;doi: 10.1093/jpe/rtu014
Aims Recent studies revealed convergent temperature sensitivity of ecosystem respiration (Re) within aquatic ecosystems and between terrestrial and aquatic ecosystems. We do not know yet whether various terrestrial ecosystems have consistent or divergent temperature sensitivity. Here, we synthesized 163 eddy covariance flux sites across the world and examined the global variation of the apparent activation energy (Ea), which characterizes the apparent temperature sensitivity of and its interannual variability (IAV) as well as their controlling factors. Methods We used carbon fluxes and meteorological data across FLUXNET sites to calculate mean annual temperature, temperature range, precipitation, global radiation, potential radiation, gross primary productivity and Re by averaging the daily values over the years in each site. Furthermore, we analyzed the sites with >8 years data to examine the IAV of Ea and calculated the standard deviation of Ea across years at each site to characterize IAV. Important Findings The results showed a widely global variation of Ea, with significantly lower values in the tropical and subtropical areas than in temperate and boreal areas, and significantly higher values in grasslands and wetlands than that in deciduous broadleaf forests and evergreen forests. Globally, spatial variations of Ea were explained by changes in temperature and an index of water availability with differing contribution of each explaining variable among climate zones and biomes. IAV and the corresponding coefficient of variation of Ea decreased with increasing latitude, but increased with radiation and corresponding mean annual temperature. The revealed patterns in the spatial and temporal variations of Ea and its controlling factors indicate divergent temperature sensitivity of R-e, which could help to improve our predictive understanding of R-e in response to climate change.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/jpe/rtu014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 18 citations 18 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/jpe/rtu014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United Kingdom, NetherlandsPublisher:Frontiers Media SA Funded by:EC | CERESEC| CERESMyron A. Peck; John K. Pinnegar; John K. Pinnegar; Sandra Rybicki; Katell G. Hamon; Andrzej Tabeau; Eleni Papathanasopoulou; Giulia Micallef; Cornelia M. Kreiss; Alhambra M. Cubillo;Climate-driven changes in aquatic environments have already started to affect the European aquaculture sector’s most commercially important finfish and shellfish species. In addition to changes in water quality and temperature that can directly influence fish production by altering health status, growth performance and/or feed conversion, the aquaculture sector also faces an uncertain future in terms of production costs and returns. For example, the availability of key ingredients for fish feeds (proteins, omega-3 fatty acids) will not only depend on future changes in climate, but also on social and political factors, thereby influencing feed costs. The future cost of energy, another main expenditure for fish farms, will also depend on various factors. Finally, marketing options and subsidies will have major impacts on future aquaculture profitability. Based on the framework of four socio-political scenarios developed in the EU H2020 project climate change and European aquatic resources (CERES), we defined how these key factors for the aquaculture sector could change in the future. We then apply these scenarios to make projections of how climate change and societal and economic trends influence the mid-century (2050) profitability of European aquaculture. We used an established benchmarking approach to contrast present-day and future economic performance of “typical farms” in selected European production regions under each of the scenarios termed “World Markets,” “National Enterprise,” “Global Sustainability” and “Local Stewardship.” These scenarios were based partly on the IPCC Special Report on Emissions Scenarios framework and their representative concentration pathways (RCPs) and the widely used shared socio-economic pathways (SSPs). Together, these scenarios contrast local versus international emphasis on decision making, more versus less severe environmental change, and different consequences for producers due to future commodity prices, cash returns, and costs. The mid-century profitability of the typical farms was most sensitive to the future development of feed costs, price trends of returns, and marketing options as opposed to the direct effect of climate-driven changes in the environment. These results can inform adaptation planning by the European aquaculture sector. Moreover, applying consistent scenarios including societal and economic dimensions, facilitates regional to global comparisons of adaptation advice both within and across Blue Growth sectors.
University of East A... arrow_drop_down University of East Anglia: UEA Digital RepositoryArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2020.568159&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 2visibility views 2 Powered bymore_vert University of East A... arrow_drop_down University of East Anglia: UEA Digital RepositoryArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2020.568159&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020 United KingdomPublisher:Wiley Paul M. Thompson; Isla M. Graham; Barbara Cheney; Tim R. Barton; Adrian Farcas; Nathan D. Merchant;handle: 2164/15974
Abstract1. Offshore windfarms require construction procedures that minimize impacts on protected marine mammals. Uncertainty over the efficacy of existing guidelines for mitigating near‐field injury when pile‐driving recently resulted in the development of alternative measures, which integrated the routine deployment of acoustic deterrent devices (ADD) into engineering installation procedures without prior monitoring by marine mammal observers.2. We conducted research around the installation of jacket foundations at the UK's first deep‐water offshore windfarm to address data gaps identified by regulators when consenting this new approach. Specifically, we aimed to (a) measure the relationship between noise levels and hammer energy to inform assessments of near‐field injury zones and (b) assess the efficacy of ADDs to disperse harbour porpoises from these zones.3. Distance from piling vessel had the biggest influence on received noise levels but, unexpectedly, received levels at any given distance were highest at low hammer energies. Modelling highlighted that this was because noise from pin pile installations was dominated by the strong negative relationship with pile penetration depth with only a weak positive relationship with hammer energy.4. Acoustic detections of porpoises along a gradient of ADD exposure decreased in the 3‐h following a 15‐min ADD playback, with a 50% probability of response within 21.7 km. The minimum time to the first porpoise detection after playbacks was > 2 h for sites within 1 km of the playback.5. Our data suggest that the current regulatory focus on maximum hammer energies needs review, and future assessments of noise exposure should also consider foundation type. Despite higher piling noise levels than predicted, responses to ADD playback suggest mitigation was sufficiently conservative. Conversely, strong responses of porpoises to ADDs resulted in far‐field disturbance beyond that required to mitigate injury. We recommend that risks to marine mammals can be further minimized by (1) optimizing ADD source signals and/or deployment schedules to minimize broad‐scale disturbance; (2) minimizing initial hammer energies when received noise levels were highest; (3) extending the initial phase of soft start with minimum hammer energies and low blow rates.
Aberdeen University ... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/2164/15974Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Ecological Solutions and EvidenceArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2688-8319.12034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 5visibility views 5 download downloads 18 Powered bymore_vert Aberdeen University ... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/2164/15974Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Ecological Solutions and EvidenceArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2688-8319.12034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 09 Jul 2020 Norway, Australia, Czech Republic, Switzerland, Australia, Australia, Denmark, Australia, Italy, Australia, Czech Republic, Germany, Netherlands, Germany, Australia, Germany, Sweden, Russian Federation, Australia, Australia, Italy, Italy, France, ItalyPublisher:Springer Science and Business Media LLC Publicly fundedFunded by:UKRI | RootDetect: Remote Detect...UKRI| RootDetect: Remote Detection and Precision Management of Root HealthAndreas Ibrom; Bruno De Cinti; Jean Marc Ourcival; Vincenzo Magliulo; Onil Bergeron; M. Altaf Arain; Andrew Feitz; Zulia Mayari Sanchez-Mejia; Christof Ammann; Yann Nouvellon; Siyan Ma; Brian D. Amiro; Kim Pilegaard; Eddy Moors; Michele Tomassucci; Asko Noormets; Shawn Urbanski; Damiano Gianelle; Anatoly A. Gitelson; E. Canfora; You Wei Cheah; Ko van Huissteden; Shicheng Jiang; Hans Peter Schmid; Albin Hammerle; Brent E. Ewers; Virginie Moreaux; Housen Chu; Anne Griebel; Timothy J. Arkebauer; Peter Cale; Barbara Marcolla; Alan G. Barr; Alan G. Barr; Scott D. Miller; Lutz Merbold; Ivan Schroder; Joseph Verfaillie; Stefan K. Arndt; Scott R. Saleska; Nicolas Delpierre; Catharine van Ingen; Christine Moureaux; Annalea Lohila; Annalea Lohila; Gabriela Posse; Bernard Heinesch; Pierpaolo Duce; Raimundo Cosme de Oliveira; Kenneth J. Davis; Markus Hehn; Torben R. Christensen; Tilden P. Meyers; Werner L. Kutsch; Lindsay B. Hutley; Üllar Rannik; W.W.P. Jans; Riccardo Valentini; Myroslava Khomik; Myroslava Khomik; Pierre Cellier; Ayumi Kotani; Xiaoqin Dai; Marta Galvagno; Frans-Jan W. Parmentier; Frans-Jan W. Parmentier; Eric Dufrêne; Marius Schmidt; Birger Ulf Hansen; Alessio Collalti; Alessio Collalti; Ivan Shironya; Christian Brümmer; Russell L. Scott; Serge Rambal; Jonas Ardö; Natalia Restrepo-Coupe; Donatella Zona; Elizabeth A. Walter-Shea; Russell K. Monson; Silvano Fares; Sean P. Burns; Sean P. Burns; Mauro Cavagna; Guoyi Zhou; Suzanne M. Prober; Juha Pekka Tuovinen; Georgia R. Koerber; Yuelin Li; Alexander Knohl; Mikhail Mastepanov; Mikhail Mastepanov; Yanhong Tang; Johan Neirynck; Matthew Northwood; Pauline Buysse; Thomas Grünwald; Sabina Dore; N. Pirk; N. Pirk; Hiroki Ikawa; Craig Macfarlane; Jean-Marc Limousin; Carlos Marcelo Di Bella; Leiming Zhang; Juha Hatakka; Margaret S. Torn; Mika Aurela; Bert Gielen; Jiquan Chen; Regine Maier; Karl Schneider; Christian Wille; Nina Buchmann; Daniel Berveiller; Peter D. Blanken; Wayne S. Meyer; Dennis D. Baldocchi; Benjamin Loubet; Giovanni Manca; Hatim Abdalla M. ElKhidir; James Cleverly; Harry McCaughey; Agnès de Grandcourt; Matthias Peichl; Adam J. Liska; Jonathan E. Thom; Christian Bernhofer; Jean Marc Bonnefond; Alexander Graf; Roser Matamala; M. Goeckede; Marian Pavelka; Hank A. Margolis; Eugénie Paul-Limoges; Andrew S. Kowalski; Taro Nakai; Taro Nakai; Marcelo D. Nosetto; Tomomichi Kato; Ray Leuning; Beniamino Gioli; Marc Aubinet; Tuomas Laurila; Andrej Varlagin; Ignacio Goded; David R. Bowling; Nigel J. Tapper; Ana López-Ballesteros; Denis Loustau; Iris Feigenwinter; Uta Moderow; Edoardo Cremonese; Gianluca Filippa; Domenico Vitale; Abdelrahman Elbashandy; Gilberto Pastorello; Ettore D'Andrea; Gil Bohrer; Thomas L. Powell; Serena Marras; Daniela Famulari; Christopher M. Gough; Enrique P. Sánchez-Cañete; Satoru Takanashi; Michael J. Liddell; Jason Brodeur; Marc Fischer; Zoran Nesic; William J. Massman; Janina Klatt; Samuli Launiainen; Anne De Ligne; Leonardo Montagnani; Sebastian Wolf; Rainer Steinbrecher; Yingnian Li; Donatella Spano; A. Ribeca; Rosvel Bracho; Walter C. Oechel; B.R. Reverter; Jiří Dušek; Sebastian Westermann; Rachhpal S. Jassal; Derek Eamus; Claudia Consalvo; Claudia Consalvo; Marty Humphrey; Timo Vesala; Cristina Poindexter; Jeffrey P. Walker; Humberto Ribeiro da Rocha; Paul V. Bolstad; Elise Pendall; Diego Polidori; Peter S. Curtis; Chad Hanson; Francisco Domingo; Jason Beringer;pmc: PMC7347557
AbstractThe FLUXNET2015 dataset provides ecosystem-scale data on CO2, water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their data to create global datasets. Data were quality controlled and processed using uniform methods, to improve consistency and intercomparability across sites. The dataset is already being used in a number of applications, including ecophysiology studies, remote sensing studies, and development of ecosystem and Earth system models. FLUXNET2015 includes derived-data products, such as gap-filled time series, ecosystem respiration and photosynthetic uptake estimates, estimation of uncertainties, and metadata about the measurements, presented for the first time in this paper. In addition, 206 of these sites are for the first time distributed under a Creative Commons (CC-BY 4.0) license. This paper details this enhanced dataset and the processing methods, now made available as open-source codes, making the dataset more accessible, transparent, and reproducible.
CORE arrow_drop_down GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Full-Text: https://hal.science/hal-03778635Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/10568/108878Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.science/hal-03778635Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2020Full-Text: https://hal.science/hal-03778635Data sources: Bielefeld Academic Search Engine (BASE)Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2020License: CC BYFull-Text: http://urn.nb.no/URN:NBN:no-84551Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2020Full-Text: http://hdl.handle.net/10449/64207Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/11343/244534Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2020Full-Text: https://ro.ecu.edu.au/ecuworkspost2013/9096Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/2440/129213Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2020Full-Text: https://doi.org/10.1038/s41597-020-0534-3Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARepository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesWageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff PublicationsWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff PublicationsUniversity of Western Sydney (UWS): Research DirectArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Università degli studi della Tuscia: Unitus DSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-020-0534-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 791 citations 791 popularity Top 0.01% influence Top 1% impulse Top 0.01% Powered by BIP!
visibility 23visibility views 23 download downloads 33 Powered bymore_vert CORE arrow_drop_down GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Full-Text: https://hal.science/hal-03778635Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/10568/108878Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.science/hal-03778635Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2020Full-Text: https://hal.science/hal-03778635Data sources: Bielefeld Academic Search Engine (BASE)Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2020License: CC BYFull-Text: http://urn.nb.no/URN:NBN:no-84551Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2020Full-Text: http://hdl.handle.net/10449/64207Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/11343/244534Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2020Full-Text: https://ro.ecu.edu.au/ecuworkspost2013/9096Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/2440/129213Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2020Full-Text: https://doi.org/10.1038/s41597-020-0534-3Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARepository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesWageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff PublicationsWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff PublicationsUniversity of Western Sydney (UWS): Research DirectArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Università degli studi della Tuscia: Unitus DSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-020-0534-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 FrancePublisher:Elsevier BV Devriese, Lisa I.; Meulen, Myra D., van Der; Maes, Thomas; Bekaert, Karen; Paul-Pont, Ika; Frère, Laura; Robbens, Johan; Vethaak, A. Dick;This study assessed the capability of Crangon crangon (L.), an ecologically and commercially important crustacean, of consuming plastics as an opportunistic feeder. We therefore determined the microplastic content of shrimp in shallow water habitats of the Channel area and Southern part of the North Sea. Synthetic fibers ranging from 200μm up to 1000μm size were detected in 63% of the assessed shrimp and an average value of 0.68±0.55microplastics/g w. w. (1.23±0.99microplastics/shrimp) was obtained for shrimp in the sampled area. The assessment revealed no spatial patterns in plastic ingestion, but temporal differences were reported. The microplastic uptake was significantly higher in October compared to March. The results suggest that microplastics >20μm are not able to translocate into the tissues.
Hyper Article en Lig... arrow_drop_down Marine Pollution BulletinArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInstitut national des sciences de l'Univers: HAL-INSUArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Université de Bretagne Occidentale: HALArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.marpolbul.2015.06.051&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 557 citations 557 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Marine Pollution BulletinArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInstitut national des sciences de l'Univers: HAL-INSUArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Université de Bretagne Occidentale: HALArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.marpolbul.2015.06.051&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018Embargo end date: 20 Sep 2024 Germany, Australia, Germany, Australia, France, Germany, Netherlands, United KingdomPublisher:Copernicus GmbH Publicly fundedFunded by:EC | CRESCENDO, RCN | Jordsystem-modellering av..., EC | RINGO +10 projectsEC| CRESCENDO ,RCN| Jordsystem-modellering av klimaforandringer i den antroposene tidsalder; Earth system modelling of climate Variations in the Anthropocene ,EC| RINGO ,EC| FIXO3 ,RCN| CICEP-Strategic Challenges in International Climate and Energy Policy ,RCN| Integrated Carbon Observation System (ICOS)-Norway and Ocean Thematic Centre (OTC) ,UKRI| Amazon Integrated Carbon Analysis / AMAZONICA ,EC| GEOCARBON ,NWO| The distribution and evolution of inert and reactant scalars: from the atmospheric boundary layer to continental scales ,EC| QUINCY ,EC| VERIFY ,EC| IMBALANCE-P ,EC| AtlantOSC. Le Quéré; R. M. Andrew; P. Friedlingstein; S. Sitch; J. Hauck; J. Pongratz; J. Pongratz; P. A. Pickers; J. I. Korsbakken; G. P. Peters; J. G. Canadell; A. Arneth; V. K. Arora; L. Barbero; L. Barbero; A. Bastos; L. Bopp; F. Chevallier; L. P. Chini; P. Ciais; S. C. Doney; T. Gkritzalis; D. S. Goll; I. Harris; V. Haverd; F. M. Hoffman; M. Hoppema; R. A. Houghton; G. Hurtt; T. Ilyina; A. K. Jain; T. Johannessen; C. D. Jones; E. Kato; R. F. Keeling; K. K. Goldewijk; K. K. Goldewijk; P. Landschützer; N. Lefèvre; S. Lienert; Z. Liu; Z. Liu; D. Lombardozzi; N. Metzl; D. R. Munro; J. E. M. S. Nabel; S.-I. Nakaoka; C. Neill; C. Neill; A. Olsen; T. Ono; P. Patra; A. Peregon; W. Peters; W. Peters; P. Peylin; B. Pfeil; B. Pfeil; D. Pierrot; D. Pierrot; B. Poulter; G. Rehder; L. Resplandy; E. Robertson; M. Rocher; C. Rödenbeck; U. Schuster; J. Schwinger; R. Séférian; I. Skjelvan; T. Steinhoff; A. Sutton; P. P. Tans; H. Tian; B. Tilbrook; B. Tilbrook; F. N. Tubiello; I. T. van der Laan-Luijkx; G. R. van der Werf; N. Viovy; A. P. Walker; A. J. Wiltshire; R. Wright; R. Wright; S. Zaehle; B. Zheng;Abstract. Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the “global carbon budget” – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (EFF) are based on energy statistics and cement production data, while emissions from land use and land-use change (ELUC), mainly deforestation, are based on land use and land-use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly and its growth rate (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) and terrestrial CO2 sink (SLAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2008–2017), EFF was 9.4±0.5 GtC yr−1, ELUC 1.5±0.7 GtC yr−1, GATM 4.7±0.02 GtC yr−1, SOCEAN 2.4±0.5 GtC yr−1, and SLAND 3.2±0.8 GtC yr−1, with a budget imbalance BIM of 0.5 GtC yr−1 indicating overestimated emissions and/or underestimated sinks. For the year 2017 alone, the growth in EFF was about 1.6 % and emissions increased to 9.9±0.5 GtC yr−1. Also for 2017, ELUC was 1.4±0.7 GtC yr−1, GATM was 4.6±0.2 GtC yr−1, SOCEAN was 2.5±0.5 GtC yr−1, and SLAND was 3.8±0.8 GtC yr−1, with a BIM of 0.3 GtC. The global atmospheric CO2 concentration reached 405.0±0.1 ppm averaged over 2017. For 2018, preliminary data for the first 6–9 months indicate a renewed growth in EFF of +2.7 % (range of 1.8 % to 3.7 %) based on national emission projections for China, the US, the EU, and India and projections of gross domestic product corrected for recent changes in the carbon intensity of the economy for the rest of the world. The analysis presented here shows that the mean and trend in the five components of the global carbon budget are consistently estimated over the period of 1959–2017, but discrepancies of up to 1 GtC yr−1 persist for the representation of semi-decadal variability in CO2 fluxes. A detailed comparison among individual estimates and the introduction of a broad range of observations show (1) no consensus in the mean and trend in land-use change emissions, (2) a persistent low agreement among the different methods on the magnitude of the land CO2 flux in the northern extra-tropics, and (3) an apparent underestimation of the CO2 variability by ocean models, originating outside the tropics. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding the global carbon cycle compared with previous publications of this data set (Le Quéré et al., 2018, 2016, 2015a, b, 2014, 2013). All results presented here can be downloaded from https://doi.org/10.18160/GCP-2018.
OceanRep arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Full-Text: https://hal.science/hal-01951197Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2018Full-Text: https://hal.science/hal-01951197Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Full-Text: https://hal.science/hal-01951197Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Earth System Science Data (ESSD)Article . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefWageningen Staff PublicationsArticle . 2018License: CC BYData sources: Wageningen Staff PublicationsElectronic Publication Information CenterArticle . 2018Data sources: Electronic Publication Information CenterEarth System Science Data (ESSD)Article . 2018 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-10-2141-2018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1K citations 1,204 popularity Top 0.01% influence Top 0.1% impulse Top 0.01% Powered by BIP!
visibility 115visibility views 115 download downloads 1,953 Powered bymore_vert OceanRep arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Full-Text: https://hal.science/hal-01951197Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2018Full-Text: https://hal.science/hal-01951197Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Full-Text: https://hal.science/hal-01951197Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Earth System Science Data (ESSD)Article . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefWageningen Staff PublicationsArticle . 2018License: CC BYData sources: Wageningen Staff PublicationsElectronic Publication Information CenterArticle . 2018Data sources: Electronic Publication Information CenterEarth System Science Data (ESSD)Article . 2018 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-10-2141-2018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu