- home
- Advanced Search
- Energy Research
- medical and health sciences
- CH
- CN
- Aurora Universities Network
- Energy Research
- medical and health sciences
- CH
- CN
- Aurora Universities Network
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2006 NetherlandsPublisher:Wiley Authors: Patino, R.; Janssen, M.G.J.; von Stockar, U.;AbstractCalorimetry and other on‐line techniques are used for the first time as complement to the traditional off‐line methods in order to follow the growth of the green Chlorella vulgaris microalgae. A 2‐L photo‐bio‐reactor was adapted from a commercial calorimeter used previously to study heterotrophic microbial growth. An external source of light was added to favor the photosynthesis of the autotrophic cells. Heterotrophic growth was also tested with external glucose in the broth. A third mode, mixotrophic, allowed faster autotrophic plus heterotrophic growth. Calorimetric measurements were performed considering the corresponding calibrations in order to consider only the energy involved during the microalgal growth. The three different modes of Chlorella cultures were energetically characterized. Besides calorimetry, the weight of diluted nitric acid added to maintain the pH of the culture was correlated with the cellular growth and the nitrogen composition of the algae. Additionally, the on‐line infrared spectroscopy proved to be an efficient technique to follow the composition of the broth in glucose, nitrates, and phosphates. These results were compared and complemented with some classic off‐line techniques used to track this kind of cultures. Biotechnol. Bioeng. 2007;96:757–767. © 2006 Wiley Periodicals, Inc.
DSpace at VU arrow_drop_down Biotechnology and BioengineeringArticle . 2007Data sources: DANS (Data Archiving and Networked Services)Biotechnology and BioengineeringArticle . 2006 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefBiotechnology and BioengineeringArticle . 2007Data sources: DANS (Data Archiving and Networked Services)Biotechnology and BioengineeringArticle . 2007add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bit.21182&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert DSpace at VU arrow_drop_down Biotechnology and BioengineeringArticle . 2007Data sources: DANS (Data Archiving and Networked Services)Biotechnology and BioengineeringArticle . 2006 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefBiotechnology and BioengineeringArticle . 2007Data sources: DANS (Data Archiving and Networked Services)Biotechnology and BioengineeringArticle . 2007add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bit.21182&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Article , Preprint , Journal , Other literature type 2010Embargo end date: 01 Jan 2010 France, Australia, Netherlands, China (People's Republic of), United States, Italy, Italy, United States, France, Netherlands, Italy, Italy, Italy, France, France, Greece, Germany, France, Italy, France, Spain, Germany, Netherlands, Switzerland, Italy, France, France, Italy, Turkey, Australia, Italy, Netherlands, Belgium, Italy, Spain, China (People's Republic of), France, Italy, France, United States, United Kingdom, Germany, United States, United Kingdom, Germany, United Kingdom, France, Denmark, Italy, Netherlands, France, France, China (People's Republic of)Publisher:Springer Berlin Heidelberg Funded by:GSRI, FCT | LA 1, UKRI | SemenRate Canada/UK: Tran... +1 projectsGSRI ,FCT| LA 1 ,UKRI| SemenRate Canada/UK: Transforming Germplasm and Genetic Quality to Drive Livestock Productivity ,UKRI| RootDetect: Remote Detection and Precision Management of Root HealthG. AAD; E. ABAT; B. ABBOTT; J. ABDALLAH; A. A. ABDELALIM; A. ABDESSELAM; O. ABDINOV; B. ABI; M. ABOLINS; H. ABRAMOWICZ; H. ABREU; E. ACERBI; B. S. ACHARYA; M. ACKERS; D. L. ADAMS; T. N. ADDY; J. ADELMAN; M. ADERHOLZ; C. ADORISIO; P. ADRAGNA; T. ADYE; S. AEFSKY; J. A. AGUILAR SAAVEDRA; M. AHARROUCHE; S. P. AHLEN; F. AHLES; A. AHMAD; H. AHMED; M. AHSAN; G. AIELLI; T. AKDOGAN; P. F. AKESSON; T. P. A. AKESSON; G. AKIMOTO; A. V. AKIMOV; A. AKTAS; M. S. ALAM; M. A. ALAM; J. ALBERT; S. ALBRAND; M. ALEKSA; I. N. ALEKSANDROV; M. ALEPPO; F. ALESSANDRIA; C. ALEXA; G. ALEXANDER; G. ALEXANDRE; T. ALEXOPOULOS; M. ALHROOB; M. ALIEV; G. ALIMONTI; J. ALISON; M. ALIYEV; P. P. ALLPORT; S. E. ALLWOOD SPIERS; J. ALMOND; A. ALOISIO; R. ALON; A. ALONSO; J. ALONSO; M. G. ALVIGGI; K. AMAKO; P. AMARAL; G. AMBROSINI; G. AMBROSIO; C. AMELUNG; V. V. AMMOSOV; A. AMORIM; G. AMOROS; N. AMRAM; C. ANASTOPOULOS; T. ANDEEN; C. F. ANDERS; K. J. ANDERSON; A. ANDREAZZA; V. ANDREI; M. L. ANDRIEUX; X. S. ANDUAGA; A. ANGERAMI; F. ANGHINOLFI; N. ANJOS; A. ANNOVI; A. ANTONAKI; M. ANTONELLI; S. ANTONELLI; J. ANTOS; B. ANTUNOVIC; F. ANULLI; S. AOUN; G. ARABIDZE; I. ARACENA; Y. ARAI; A. T. H. ARCE; J. P. ARCHAMBAULT; S. ARFAOUI; J. F. ARGUIN; T. ARGYROPOULOS; E. ARIK; M. ARIK; A. J. ARMBRUSTER; K. E. ARMS; S. R. ARMSTRONG; O. ARNAEZ; C. ARNAULT; A. ARTAMONOV; D. ARUTINOV; M. ASAI; S. ASAI; R. ASFANDIYAROV; S. ASK; B. ASMAN; D. ASNER; L. ASQUITH; K. ASSAMAGAN; A. ASTBURY; A. ASTVATSATOUROV; B. ATHAR; G. ATOIAN; B. AUBERT; B. AUERBACH; E. AUGE; K. AUGSTEN; M. AUROUSSEAU; N. AUSTIN; G. AVOLIO; R. AVRAMIDOU; D. AXEN; C. AY; G. AZUELOS; Y. AZUMA; M. A. BAAK; G. BACCAGLIONI; C. BACCI; A. M. BACH; H. BACHACOU; K. BACHAS; G. BACHY; M. BACKES; E. BADESCU; P. BAGNAIA; Y. BAI; D. C. BAILEY; T. BAIN; J. T. BAINES; O. K. BAKER; M. D. BAKER; S. BAKER; F. BALTASAR DOS SANTOS PEDROSA; E. BANAS; P. BANERJEE; S. BANERJEE; D. BANFI; A. BANGERT; V. BANSAL; S. P. BARANOV; S. BARANOV; A. BARASHKOU; T. BARBER; E. L. BARBERIO; D. BARBERIS; M. BARBERO; D. Y. BARDIN; T. BARILLARI; M. BARISONZI; T. BARKLOW; N. BARLOW; B. M. BARNETT; R. M. BARNETT; A. BARONCELLI; M. BARONE; A. J. BARR; F. BARREIRO; J. BARREIRO GUIMARAES DA COSTA; P. BARRILLON; V. BARTHELD; H. BARTKO; R. BARTOLDUS; D. BARTSCH; R. L. BATES; S. BATHE; L. BATKOVA; J. R. BATLEY; A. BATTAGLIA; M. BATTISTIN; G. BATTISTONI; F. BAUER; H. S. BAWA; M. BAZALOVA; B. BEARE; T. BEAU; P. H. BEAUCHEMIN; R. BECCHERLE; N. BECERICI; P. BECHTLE; G. A. BECK; H. P. BECK; M. BECKINGHAM; K. H. BECKS; A. J. BEDDALL; A. BEDDALL;arXiv: 1004.5293 , http://arxiv.org/abs/1004.5293
handle: 2066/83974 , 11245/1.333190 , https://repository.ubn.ru.nl/handle/2066/83974 , 10261/378091 , 2434/149370 , 2078.1/138150 , 20.500.11770/156635 , 11390/884357 , 2108/15258 , 11590/131913 , 11573/357211 , 11567/295714 , 11568/136991 , 11587/345051 , 11585/95160 , 11571/279505 , 20.500.12575/69680 , 1721.1/116463 , 2440/112846
arXiv: 1004.5293 , http://arxiv.org/abs/1004.5293
handle: 2066/83974 , 11245/1.333190 , https://repository.ubn.ru.nl/handle/2066/83974 , 10261/378091 , 2434/149370 , 2078.1/138150 , 20.500.11770/156635 , 11390/884357 , 2108/15258 , 11590/131913 , 11573/357211 , 11567/295714 , 11568/136991 , 11587/345051 , 11585/95160 , 11571/279505 , 20.500.12575/69680 , 1721.1/116463 , 2440/112846
The ATLAS Inner Detector is a composite tracking system consisting of silicon pixels, silicon strips and straw tubes in a 2 T magnetic field. Its installation was completed in August 2008 and the detector took part in data- taking with single LHC beams and cosmic rays. The initial detector operation, hardware commissioning and in-situ calibrations are described. Tracking performance has been measured with 7.6 million cosmic-ray events, collected using a tracking trigger and reconstructed with modular pattern-recognition and fitting software. The intrinsic hit efficiency and tracking trigger efficiencies are close to 100%. Lorentz angle measurements for both electrons and holes, specific energy-loss calibration and transition radiation turn-on measurements have been performed. Different alignment techniques have been used to reconstruct the detector geometry. After the initial alignment, a transverse impact parameter resolution of 22.1+/-0.9 ��m and a relative momentum resolution ��p/p = (4.83+/-0.16) \times 10-4 GeV-1 \times pT have been measured for high momentum tracks. 34 pages, 25 figures
Archivio della Ricer... arrow_drop_down Archivio della Ricerca - Università di PisaArticle . 2010License: CC BY NCData sources: Archivio della Ricerca - Università di PisaUniversity of California: eScholarshipArticle . 2010License: CC BYFull-Text: https://escholarship.org/uc/item/2nr9956hData sources: Bielefeld Academic Search Engine (BASE)Ankara University Open Archive SystemArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)DSpace@MIT (Massachusetts Institute of Technology)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2010License: CC BY NCFull-Text: http://hdl.handle.net/2440/112846Data sources: Bielefeld Academic Search Engine (BASE)https://publications.goettinge...Part of book or chapter of bookLicense: CC BYData sources: UnpayWallEuropean Physical Journal C: Particles and FieldsArticle . 2010 . Peer-reviewedData sources: CrossrefEuropean Physical Journal C: Particles and FieldsArticle . 2010Data sources: DANS (Data Archiving and Networked Services)European Physical Journal C: Particles and FieldsArticle . 2010Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2010Data sources: Recolector de Ciencia Abierta, RECOLECTAEuropean Physical Journal C: Particles and FieldsArticle . 2010Data sources: Universiteit van Amsterdam Digital Academic RepositoryEuropean Physical Journal C: Particles and FieldsArticle . 2010Data sources: Oxford University Research ArchivePublikationenserver der Georg-August-Universität GöttingenArticle . 2010 . Peer-reviewedINRIA a CCSD electronic archive serverArticle . 2010Data sources: INRIA a CCSD electronic archive serverUniversiteit van Amsterdam Digital Academic RepositoryArticle . 2010Data sources: Universiteit van Amsterdam Digital Academic RepositoryeScholarship - University of CaliforniaArticle . 2010Data sources: eScholarship - University of CaliforniaUniversiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2010Data sources: Bielefeld Academic Search Engine (BASE)Archivio Istituzionale dell'Università della CalabriaArticle . 2010Data sources: Archivio Istituzionale dell'Università della CalabriaArchivio della Ricerca - Università di Roma Tor vergataArticle . 2010Data sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della Ricerca - Università degli Studi Roma TreArticle . 2010Data sources: Archivio della Ricerca - Università degli Studi Roma TreArchivio della ricerca- Università di Roma La SapienzaArticle . 2010Data sources: Archivio della ricerca- Università di Roma La SapienzaThe University of Manchester - Institutional RepositoryArticle . 2010Data sources: The University of Manchester - Institutional RepositoryUniversity of Copenhagen: ResearchArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2011 . Peer-reviewedData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2010License: arXiv Non-Exclusive DistributionData sources: DatacitePublikationenserver der Georg-August-Universität GöttingenArticle . 2019Göttingen Research Online PublicationsArticle . 2019Data sources: Göttingen Research Online PublicationsArchivio della Ricerca - Università di Roma Tor vergataArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2010Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)Archive de l'Observatoire de Paris (HAL)Article . 2010Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-642-22116-3_2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 97 citations 97 popularity Top 10% influence Top 1% impulse Top 10% Powered by BIP!
visibility 12visibility views 12 download downloads 21 Powered bymore_vert Archivio della Ricer... arrow_drop_down Archivio della Ricerca - Università di PisaArticle . 2010License: CC BY NCData sources: Archivio della Ricerca - Università di PisaUniversity of California: eScholarshipArticle . 2010License: CC BYFull-Text: https://escholarship.org/uc/item/2nr9956hData sources: Bielefeld Academic Search Engine (BASE)Ankara University Open Archive SystemArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)DSpace@MIT (Massachusetts Institute of Technology)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2010License: CC BY NCFull-Text: http://hdl.handle.net/2440/112846Data sources: Bielefeld Academic Search Engine (BASE)https://publications.goettinge...Part of book or chapter of bookLicense: CC BYData sources: UnpayWallEuropean Physical Journal C: Particles and FieldsArticle . 2010 . Peer-reviewedData sources: CrossrefEuropean Physical Journal C: Particles and FieldsArticle . 2010Data sources: DANS (Data Archiving and Networked Services)European Physical Journal C: Particles and FieldsArticle . 2010Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2010Data sources: Recolector de Ciencia Abierta, RECOLECTAEuropean Physical Journal C: Particles and FieldsArticle . 2010Data sources: Universiteit van Amsterdam Digital Academic RepositoryEuropean Physical Journal C: Particles and FieldsArticle . 2010Data sources: Oxford University Research ArchivePublikationenserver der Georg-August-Universität GöttingenArticle . 2010 . Peer-reviewedINRIA a CCSD electronic archive serverArticle . 2010Data sources: INRIA a CCSD electronic archive serverUniversiteit van Amsterdam Digital Academic RepositoryArticle . 2010Data sources: Universiteit van Amsterdam Digital Academic RepositoryeScholarship - University of CaliforniaArticle . 2010Data sources: eScholarship - University of CaliforniaUniversiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2010Data sources: Bielefeld Academic Search Engine (BASE)Archivio Istituzionale dell'Università della CalabriaArticle . 2010Data sources: Archivio Istituzionale dell'Università della CalabriaArchivio della Ricerca - Università di Roma Tor vergataArticle . 2010Data sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della Ricerca - Università degli Studi Roma TreArticle . 2010Data sources: Archivio della Ricerca - Università degli Studi Roma TreArchivio della ricerca- Università di Roma La SapienzaArticle . 2010Data sources: Archivio della ricerca- Università di Roma La SapienzaThe University of Manchester - Institutional RepositoryArticle . 2010Data sources: The University of Manchester - Institutional RepositoryUniversity of Copenhagen: ResearchArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2011 . Peer-reviewedData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2010License: arXiv Non-Exclusive DistributionData sources: DatacitePublikationenserver der Georg-August-Universität GöttingenArticle . 2019Göttingen Research Online PublicationsArticle . 2019Data sources: Göttingen Research Online PublicationsArchivio della Ricerca - Università di Roma Tor vergataArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2010Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)Archive de l'Observatoire de Paris (HAL)Article . 2010Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-642-22116-3_2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2018 Finland, France, United Kingdom, FrancePublisher:Wiley Funded by:UKRI | Impacts of habitat fragme..., UKRI | Impacts of global warming...UKRI| Impacts of habitat fragmentation in a warming world ,UKRI| Impacts of global warming in sentinel systems: from genes to ecosystemsOrla McLaughlin; Sinikka I. Robinson; Sinikka I. Robinson; Eoin J. O'Gorman; Bryndís Marteinsdóttir; Bryndís Marteinsdóttir;Abstract Global warming is predicted to significantly alter species physiology, biotic interactions and thus ecosystem functioning, as a consequence of coexisting species exhibiting a wide range of thermal sensitivities. There is, however, a dearth of research examining warming impacts on natural communities. Here, we used a natural warming experiment in Iceland to investigate the changes in above‐ground terrestrial plant and invertebrate communities along a soil temperature gradient (10°C–30°C). The α‐diversity of plants and invertebrates decreased with increasing soil temperature, driven by decreasing plant species richness and increasing dominance of certain invertebrate species in warmer habitats. There was also greater species turnover in both plant and invertebrate communities with increasing pairwise temperature difference between sites. There was no effect of temperature on percentage cover of vegetation at the community level, driven by contrasting effects at the population level. There was a reduction in the mean body mass and an increase in the total abundance of the invertebrate community, resulting in no overall change in community biomass. There were contrasting effects of temperature on the population abundance of various invertebrate species, which could be explained by differential thermal tolerances and metabolic requirements, or may have been mediated by changes in plant community composition. Our study provides an important baseline from which the effect of changing environmental conditions on terrestrial communities can be tracked. It also contributes to our understanding of why community‐level studies of warming impacts are imperative if we are to disentangle the contrasting thermal responses of individual populations.
Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2018License: CC BYFull-Text: https://hal.inrae.fr/hal-02625664/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2018License: CC BYFull-Text: https://hal.inrae.fr/hal-02625664/documentImperial College London: SpiralArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10044/1/56395Data sources: Bielefeld Academic Search Engine (BASE)University of Essex Research RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2018Data sources: Spiral - Imperial College Digital RepositoryHELDA - Digital Repository of the University of HelsinkiArticle . 2018 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)HAL - Université de Bourgogne (HAL-uB)Other literature type . 2018Data sources: HAL - Université de Bourgogne (HAL-uB)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2656.12798&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 55 citations 55 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2018License: CC BYFull-Text: https://hal.inrae.fr/hal-02625664/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2018License: CC BYFull-Text: https://hal.inrae.fr/hal-02625664/documentImperial College London: SpiralArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10044/1/56395Data sources: Bielefeld Academic Search Engine (BASE)University of Essex Research RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2018Data sources: Spiral - Imperial College Digital RepositoryHELDA - Digital Repository of the University of HelsinkiArticle . 2018 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)HAL - Université de Bourgogne (HAL-uB)Other literature type . 2018Data sources: HAL - Université de Bourgogne (HAL-uB)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2656.12798&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type , Preprint 2018 France, France, France, Netherlands, France, France, FrancePublisher:Cold Spring Harbor Laboratory Dakos, Vasilis; Matthews, Blake; Hendry, Andrew; Levine, Jonathan; Loeuille, Nicolas; Norberg, Jon; Nosil, Patrik; Scheffer, Marten; de Meester, Luc;pmid: 30778190
AbstractThere is growing concern over tipping points arising in ecosystems due to the crossing of environmental thresholds. Tipping points lead to strong and possibly irreversible shifts between alternative ecosystem states incurring high societal costs. Traits are central to the feedbacks that maintain alternative ecosystem states, as they govern the responses of populations to environmental change that could stabilize or destabilize ecosystem states. However, we know little about how evolutionary changes in trait distributions over time affect the occurrence of tipping points, and even less about how big scale ecological shifts reciprocally interact with trait dynamics. We argue that interactions between ecological and evolutionary processes should be taken into account for understanding the balance of feedbacks governing tipping points in nature.
Hyper Article en Lig... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2019Full-Text: https://hal.science/hal-02194979Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Nature Ecology & EvolutionArticle . 2019 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/447227&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 278 citations 278 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2019Full-Text: https://hal.science/hal-02194979Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Nature Ecology & EvolutionArticle . 2019 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/447227&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2013 ItalyPublisher:Oxford University Press (OUP) Funded by:EC | PARTNEREC| PARTNERTinganelli, Walter; Ma, Ning-Yi; von Neubeck, Cläre; Maier, Andreas; Schicker, Corinna; Kraft-Weyrather, Wilma; Durante, Marco; Ma, N.-Y.;To measure the effect of acute oxygen depletion on cell survival for different types of radiation, experiments have been performed using Chinese hamster ovary (CHO) cells and RAT-1 rat prostate cancer cells. A special chamber has been developed to perform irradiations under different levels of oxygenation. The oxygen concentrations used were normoxia (air), hypoxia (94.5% N2, 5% CO2, 0.5% O2) and anoxia (95% N2, 5% CO2). Cells were exposed to X-rays and to C-, N- or O-ions with linear energy transfer (LET) values ranging from 100-160 keV/µm. The oxygen enhancement ratio (OER) and relative biological effectiveness (RBE) values have been calculated from the measured clonogenic survival curves. For both cell lines, the X-ray OER depended on the survival level. For particle irradiation, OER was not dependent on the survival level but decreased with increasing LET. The RBE of CHO cells under oxic conditions reached a plateau for LET values above 100 keV/µm, while it was still increasing under anoxia. In conclusion, the results demonstrated that our chamber could be used to measure radiosensitivity under intermediate hypoxia. Measurements suggest that ions heavier than carbon could be of additional advantage in the irradiation, especially of radioresistant hypoxic tumor regions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/jrr/rrt065&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 52 citations 52 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/jrr/rrt065&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 United KingdomPublisher:Elsevier BV Funded by:SNSF | Flow driven endovascular ..., NIH | Building sustainable and ..., SNSF | Knowledge Conversations +19 projectsSNSF| Flow driven endovascular electroencephalography (endoEEG) probes for epilepsy treatment ,NIH| Building sustainable and innovative research in Cancer and Cardiovascular disease: Planning the design and development of the South American Center of Research Excellence to Counter NCDs (SACREN) ,SNSF| Knowledge Conversations ,SNSF| Addressing the double burden of disease: improving health systems for Noncommunicable and Neglected Tropical Diseases ,SNSF| Theorizing teaching: Current status and open issues ,CIHR ,UKRI| Towards an Integrated Global Transport and Health Assessment Tool (TIGTHAT) ,UKRI| Chronic Kidney Disease of unknown cause (CKDu) in disadvantaged communities in low-and-middle income countries (LMICs) ,WT| Risk-based Prevention of Heart Disease and Stroke in Latin America and the Caribbean: A Pooled Analysis of Prospective Cohorts and Population-Based Surveys ,NIH| Implementation of foot thermometry and SMS to prevent diabetic foot ulcer ,WT| What makes cities healthy, equitable, and environmentally sustainable? Lessons from Latin America ,WT| Does household food biodiversity protect adults against malnutrition and favour the resilience of Shawi Indigenous households to climate change related events? ,UKRI| Implementation of COPD Case Finding and Self-Management Action Plans in Low and Middle Income Countries ,WT| REDEEM trial: The effect of individual and mixed REwards in DiabEtEs Management, a randomised controlled trial ,NIH| Planning to Establish a Regional Center of NCD Research Training in Peru ,NIH| Latin America Treatment & Innovation Network in Mental Health (LATIN-MH) ,WT| Field test of two alternative methods for diabetes: A pilot study to expand screening at the population level. ,UKRI| REDEEM trial: The effect of individual and mixed REwards in DiabEtEs Management, a randomised controlled trial ,NIH| Household Air Pollution and Health: A Multi-Country LPG Intervention Trial ,SNSF| Diversity of higher education systems, differentiation processes and policy mixes ,WT| The effect on cardiovascular risk factors of migration from rural to urban areas in Lima, Peru. ,NIH| Launching a salt substitute to reduce blood pressure at the population level-PeruZavaleta-Cortijo C.; Ford J.D.; Arotoma-Rojas I.; Lwasa S.; Lancha-Rucoba G.; García P.J.; Miranda J.J.; Namanya D.B.; New M.; Wright C.J.; Berrang-Ford L.; Carcamo C.; Edge V.; Harper S.L.; Indigenous Health Adaptation to Climate Change Research Team;Les populations autochtones sont particulièrement exposées au risque de COVID-19 en raison de facteurs tels que la discrimination, l'exclusion sociale, la dépossession de terres et une forte prévalence des formes de malnutrition.1Anderson I Robson B Connolly M et al. La santé des peuples autochtones et tribaux (The Lancet-Lowitja Institute Global Collaboration) : une étude démographique. 2016 ; 388: 131-157Sommaire Texte intégral Texte intégral PDF PubMed Scopus (592) Google Scholar Le changement climatique aggrave bon nombre de ces causes d'inégalités en matière de santé, sapant les mécanismes d'adaptation qui sont traditionnellement utilisés pour gérer des événements extrêmes tels que les pandémies et perturbant les systèmes alimentaires et les régimes alimentaires locaux.2Ford JD King N Galappaththi EK Pearce T McDowell G Harper SL La résilience des peuples autochtones aux changements environnementaux.Une Terre. 2020 ; 2: 532-543Summary Full Text Full Text PDF Scopus (122) Google Scholar Addressing underlying structural inequities and strengthening Indigenous knowledge systems offer opportunities for building resilience to compound socioecological shock, including climate effects and pandemics. Le changement climatique affecte les systèmes alimentaires autochtones, ce qui rend les populations autochtones vulnérables à l'insécurité alimentaire et nutritionnelle.3Rapport spécial du Groupe d'experts intergouvernemental sur l'évolution du climat : réchauffement climatique de 1,5°C.https ://www.ipcc.ch/sr15/Date : 2018Date d'accès : 24 juillet 2020Google Scholar La nature et l'étendue des effets de la COVID-19 sur les systèmes alimentaires autochtones sont encore largement inconnues, mais les résultats directs comprennent la mortalité due à une maladie grave, un accès réduit à la nourriture, des changements dans l'alimentation locale et des pertes économiques résultant des confinements. Ces résultats présentent des obstacles au rétablissement des populations déjà confrontées à d'importants défis nutritionnels. Les effets des pandémies précédentes sur les systèmes alimentaires autochtones ont affecté les enfants en particulier, lorsque les adultes sont tombés malades et que l'accès à la nourriture des ménages a été réduit.4Mamelund S-E Sattenspiel L Dimka J Mortalité associée à l'influenza pendant la pandémie de grippe de 1918–1919 en Alaska et au Labrador : une comparaison.Soc Sci Hist. 2013 ; 37: 177-229Google Scholar Prestation de services de santé inadéquate pour les populations autochtones, y compris un accès limité à desservices culturellement sûrs ,5Brascoupé S Waters C Sécurité culturelle explorant l'applicabilité du concept de sécurité culturelle à la santé autochtone et au bien-être communautaire.Int J Indigen Health. 2006 ; 5: 6-41Google Scholar ajoute une autre couche de complexité face à la pandémie de COVID-19. Les effets du changement climatique compromettent la sécurité alimentaire des Autochtones, ce qui compromet la résilience des populations autochtones aux pandémies. Dans le même temps, les perturbations de la sécurité alimentaire et nutritionnelle et les implications sanitaires qui en résultent pour les populations autochtones pendant les pandémies exacerbent leur vulnérabilité au changement climatique. Dans ce contexte, la compréhension, le renforcement et la protection des systèmes alimentaires autochtones dans le contexte du changement climatique doivent être une pierre angulaire de la reprise post-pandémique. En Amazonie péruvienne, certaines communautés autochtones Shawi ont choisi de s'isoler dans la forêt pendant la pandémie de COVID-19.6Zavaleta C COVID-19 : examiner les données des peuples autochtones.Nature. 2020 ; 580: 185Crossref PubMed Scopus (19) Google Scholar Ces communautés s'appuient sur les régimes alimentaires traditionnels et les connaissances autochtones des systèmes alimentaires locaux, et elles ont peu de disponibilité et d'accessibilité aux programmes d'aide alimentaire externes et gouvernementaux. Au cours de cette auto-isolement, la dépendance aux systèmes alimentaires autochtones est inextricablement liée aux connaissances autochtones sur la terre, les rivières et la biodiversité, qui comprennent la connaissance des techniques locales de conservation et de préparation des aliments.7 Zavaleta C Berrang-Ford L et al. De multiples facteurs non climatiques d'insécurité alimentaire renforcent les trajectoires de mauvaise adaptation au changement climatique chez les Shawi autochtones péruviens en Amazonie.PLoS One. 2018 ; 13e0205714Crossref PubMed Scopus (28) Google Scholar Cependant, la nourriture de la forêt est affectée par la perte de biodiversité et de végétation : les vagues de chaleur, les variations de précipitations et les phénomènes météorologiques extrêmes plus fréquents et intenses sont tous liés à la déforestation et au changement climatique et sont aggravés par un affaiblissement des compétences traditionnelles de chasse et de pêche en raison des changements climatiques et sociétaux.6 Zavaleta C COVID-19 : examiner les données des peuples autochtones.Nature. 2020 ; 580: 185Crossref PubMed Scopus (19) Google Scholar, 8Marengo JA Souza Jr, CM Thonicke K et al.Changements du climat et de l'utilisation des terres dans la région amazonienne : variabilité et tendances actuelles et futures.Front Earth Sci. 2018 ; 6: 228Crossref Scopus (219) Google Scholar, 9Harper SL Berrang-Ford L Carcamo C et al. The Indigenous climate–food–health nexus.in : Mason LR Rigg J People and climate change : vulnerability, adaptation, and social justice. Oxford Scholarship Online, Oxford2019: 184Crossref Google Scholar In the Arctic, Inuit are witnessing some of the most rapid rates of warming worldwide.3Intergovernmental Panel on Climate ChangeSpecial report : global warming of 1,5°C .https ://www.ipcc.ch/sr15/Date : 2018Date d'accès : 24 juillet 2020Google Scholar L'éloignement de la région et les restrictions de voyage ont contribué à freiner la propagation de la COVID-19 ; cependant, les perturbations des réseaux d'approvisionnement ont eu des effets sur la disponibilité alimentaire dans les communautés qui dépendent de la nourriture au détail acheminée par avion depuis les régions du sud. Pour gérer ces perturbations, récolter et partager des aliments locaux, ce qui est largement pratiqué dans de nombreuses régionsarctiques9, Harper SL Berrang-Ford L Carcamo C et al. The Indigenous climate-food-health nexus.in : Mason LR Rigg J People and climate change : vulnerability, adaptation, and social justice. Oxford Scholarship Online, Oxford2019: 184Crossref Google Scholar a aidé à maintenir la sécurité alimentaire et nutritionnelle. Simultanément, cependant, ces systèmes alimentaires autochtones locaux ont été compromis par des extrêmes climatiques, notamment des températures record, la sécheresse et les incendies de forêt. En Ouganda, certaines populations autochtones (par exemple, Batwa) ont adhéré aux mesures COVID-19, notamment la distanciation physique, le maintien à la maison et l'évitement des centres commerciaux en raison de la foule, qui compromet la sécurité alimentaire et nutritionnelle en limitant l'accès aux marchés. En outre, l'aide alimentaire gouvernementale en temps opportun n'a pas atteint de manière adéquate les populations autochtones. Le confinement prolongé en Ouganda, en particulier dans les districts frontaliers où vivent de nombreuses populations autochtones, a entravé leur mobilité pour accéder aux zones forestières pour la recherche de nourriture, l'accès aux communautés voisines pour offrir de la main-d' œuvre pour l'échange de nourriture et l'accès aux champs agricoles pour la production alimentaire. Ces défis sont exacerbés par les effets climatiques existants, 9Harper SL Berrang-Ford L Carcamo C et al. The Indigenous climate-food-health nexus.in : Mason LR Rigg J People and climate change : vulnerability, adaptation, and social justice. Oxford Scholarship Online, Oxford2019: 184Crossref Google Scholar, y compris les récentes inondations en 2019 qui ont endommagé les cultures, compromis la productionalimentaire ,10Chang' a LB Kijazi AL Mafuru KB et al. Évaluation de l'évolution et des impacts socio-économiques des précipitations extrêmes en octobre 2019 sur l'Afrique de l'Est. Atmos Clim Sci. 2020 ; 10: 319-338Google Scholar et a réduit la résilience des populations autochtones lorsque la pandémie de COVID-19 a frappé. Le changement climatique remet en question la résilience des systèmes alimentaires autochtones avec des répercussions directes et immédiates sur la santé et la nutrition des populations autochtones.2Ford JD King N Galappaththi EK Pearce T McDowell G Harper SL La résilience des peuples autochtones aux changements environnementaux.Une Terre. 2020 ; 2: 532-543Résumé Texte intégral PDF Scopus (122) Google Scholar Dans notre monde hautement connecté, la pandémie de COVID-19 a facilement voyagé à travers les continents, atteignant des zones géographiques éloignées et des communautés autochtones en moins de 6 mois. Il existe une fenêtre d'opportunité vitale pour soutenir les populations autochtones qui font face au double fardeau syndémique des risques socioécologiques composés et en cascade, tels que le changement climatique et les pandémies, en donnant la priorité à la protection des principales sources alimentaires autochtones (par exemple, les forêts tropicales, les écosystèmes arctiques), en renforçant et en soutenant l'importance des systèmes de connaissances autochtones, en améliorant l'accès à des ressources sanitaires culturellement sûres et en sauvegardant l'accès et les droits à la terre et aux ressources naturelles des populations autochtones. Le moment est venu de veiller à ce que les décisions et les trajectoires de développement actuelles ne compromettent pas davantage la résilience des systèmes alimentaires autochtones, qui jouent un rôle essentiel dans la réponse des populations autochtones aux pandémies et aux changements climatiques actuels et futurs. Cette publication en ligne a été corrigée. La version corrigée est apparue pour la première fois sur thelancet.com/planetary-health le 9 septembre 2020. Cette publication en ligne a été corrigée. La version corrigée est apparue pour la première fois sur thelancet.com/planetary-health le 9 septembre 2020. Nous ne déclarons aucun intérêt concurrent. CZ-C a été soutenu par le National Institute for Health Research (NIHR), en utilisant le financement de l'aide publique au développement du Royaume-Uni, et par Wellcome (218743/Z/19/Z) dans le cadre du partenariat NIHR–Wellcome pour la recherche en santé mondiale. CZ-C est membre du Groupe de recherche sur la santé autochtone et l'adaptation au changement climatique. IA-R, JDF, SL, PJG, DBN, MN, CJW, LB-F et SLH sont financés par les Instituts de recherche en santé du Canada dans le cadre du programme Indigenous Health Adaptation to Climate Change. JJM reconnaît le soutien de l'Alliance for Health Policy and Systems Research (HQHSR1206660), des Bernard Lown Scholars in Cardiovascular Health Program de Harvard T H Chan School of Public Health (BLSCHP-1902), Bloomberg Philanthropies (via University of North Carolina at Chapel Hill School of Public Health), Fondecyt (National Fund for Scientific, Technological Development and Technological Innovation) via Cienciactiva at Concytec (Consejo Nacional de Ciencia Tecnología e Innovacíon Tecnologica), British Council, British Embassy and the Newton-Paulet Fund (223-2018, 224-2018), Department for International Development, Medical Research Council (MRC) et Wellcome Global Health Trials (MR/M007405/1), Fogarty International Center (R21TW009982, D71TW010877), Grands Défis Canada (0335-04), Centre de recherches pour le développement international Canada (CRDI 106887, 108167), Institut interaméricain de recherche sur le changement global (IAI CRN3036), MRC (MR/P008984/1, MR/P024408/1, MR/P02386X/1), Institut national du cancer (1P20CA217231), Institut national du cœur, des poumons et du sang (HHSN268200900033C, 5U01HL114180, 1UM1HL134590), Institut national de la santé mentale (1U19MH098780), Fonds national suisse pour la science (40P740-160366), Bienvenu (074833/Z/04/Z, 093541/Z/10/Z, 103994/Z/14/Z, 107435/Z/15/Z, 205177/Z/16/Z, 214185/Z/18/Z, 218743/Z/19/Z), et la World Diabetes Foundation (WDF15-1224). Les opinions exprimées sont celles des auteurs et pas nécessairement celles de Wellcome, du NIHR ou du ministère de la Santé et des Affaires sociales. Les sources de financement n'ont joué aucun rôle dans la préparation de ce commentaire ou dans la décision de soumettre pour publication. Nous reconnaissons la contribution de Matthew King. Télécharger .pdf (.12 Mo) Aide avec les fichiers pdf Annexe supplémentaire Correction à Lancet Planet Health 2020 ; 4 : e381-82Zavaleta-Cortijo C, Ford JD, Arotoma-Rojas I, et al. Changement climatique et COVID-19 : renforcer les systèmes alimentaires autochtones. Lancet Planet Health 2020 ; 4 : e381-82 - Dans ce commentaire, le nom du septième auteur devrait être « J Jaime Miranda ». Cette correction a été apportée en date du 9 septembre 2020. Texte intégral PDF Open AccessSupport Indigenous food system biocultural diversityLe commentaire de Carol Zavaleta-Cortijo et de ses collègues1 était opportun pour souligner les défis auxquels sont confrontés les peuples autochtones en raison des effets combinés du changement climatique, de la COVID-19 et des inégalités de longue date. Bien que la pression sur les moyens de subsistance autochtones ne soit pas nouvelle, les effets actuels sont extrêmes, à la fois en termes de décès dus au virus et de perturbations des modes de vie, y compris les systèmes alimentaires autochtones. Texte intégral PDF en libre accès Las poblaciones indígenas corren un riesgo especialmente alto de COVID-19 debido a factores como la discriminación, la exclusión social, el despojo de tierras y una alta prevalencia de formas de malnutrición.1Anderson I Robson B Connolly M et al.Ind Indigenous and tribal peoples 'health (The Lancet-Lowitja Institute Global Collaboration): a population study.Lancet. 2016; 388: 131-157Resumen Texto completo PDF PubMed Scopus (592) Google Scholar El cambio climático está agravando muchas de estas causas de desigualdades en la salud, socavando los mecanismos de afrontamiento que tradicionalmente se utilizan para gestionar eventos extremos como pandemias e interrumpiendo los sistemas alimentarios y las dietas locales.2Ford JD King N Galappaththi EK Pearce T McDowell G Harper SL La resiliencia de los pueblos indígenas al cambio ambiental. Una sola Tierra. 2020; 2: 532-543Resumen Texto completo Texto completo PDF Scopus (122) Google Scholar Abordar las desigualdades estructurales subyacentes y fortalecer los sistemas de conocimiento indígenas ofrece oportunidades para desarrollar la resiliencia a los choques socioecológicos compuestos, incluidos los efectos climáticos y las pandemias. El cambio climático está afectando a los sistemas alimentarios indígenas, lo que hace que las poblaciones indígenas sean vulnerables a la inseguridad alimentaria y nutricional.3Informe especial del Panel Intergubernamental sobre el Cambio Climático: calentamiento global de 1·5°C.https://www.ipcc.ch/sr15/Date: 2018Fecha de acceso: 24 de julio de 2020Google Scholar La naturaleza y el alcance de los efectos de COVID-19 en los sistemas alimentarios indígenas aún se desconocen en gran medida, pero los resultados directos incluyen la mortalidad por enfermedades graves, la reducción del acceso a los alimentos, los cambios en la dieta local y las pérdidas económicas derivadas de los confinamientos. Estos resultados presentan impedimentos para la recuperación de las poblaciones que ya enfrentan desafíos nutricionales sustanciales. Los efectos de pandemias anteriores en los sistemas alimentarios indígenas afectaron a los niños en particular, cuando los adultos se enfermaron y se redujo el acceso a los alimentos en el hogar.4Mamelund S-E Sattenspiel L Dimka J La mortalidad asociada a la influenza durante la pandemia de influenza de 1918–1919 en Alaska y Labrador: una comparación.Soc Sci Hist. 2013; 37: 177-229Google Scholar Prestación inadecuada de servicios de salud para las poblaciones indígenas, incluido el escaso acceso a servicios culturalmente seguros ,5Brascoupé S Waters C Seguridad cultural explorando la aplicabilidad del concepto de seguridad cultural a la salud aborigen y el bienestar de la comunidad. Int J Indigen Health. 2006; 5: 6-41Google Scholar añade otra capa de complejidad ante la pandemia de COVID-19. Los efectos del cambio climático socavan la seguridad alimentaria indígena, lo que a su vez compromete la resiliencia de las poblaciones indígenas a las pandemias. Al mismo tiempo, las interrupciones en la seguridad alimentaria y nutricional y las consiguientes implicaciones para la salud de las poblaciones indígenas durante las pandemias exacerban su vulnerabilidad al cambio climático. En este contexto, comprender, reforzar y proteger los sistemas alimentarios indígenas en el contexto de un clima cambiante debe ser una piedra angular de la recuperación posterior a la pandemia. En la Amazonía peruana, algunas comunidades indígenas shawi han optado por aislarse en el bosque durante la pandemia de COVID-19.6Zavaleta C COVID-19: revisar los datos de los pueblos indígenas. Naturaleza. 2020; 580: 185Crossref PubMed Scopus (19) Google Scholar Estas comunidades confían en las dietas tradicionales y el conocimiento indígena de los sistemas alimentarios locales, y tienen poca disponibilidad y accesibilidad a los alimentos externos y a los programas gubernamentales de ayuda alimentaria. Durante este autoaislamiento, la dependencia de los sistemas alimentarios indígenas está inextricablemente vinculada al conocimiento indígena sobre la tierra, los ríos y la biodiversidad, que incluye el conocimiento de las técnicas locales para preservar y preparar alimentos.7Zavaleta C Berrang-Ford L et al. Múltiples impulsores no climáticos de la inseguridad alimentaria refuerzan las trayectorias de mala adaptación al cambio climático entre los indígenas Shawi peruanos en la Amazonía.PLoS One. 2018; 13e0205714Crossref PubMed Scopus (28) Google Scholar Sin embargo, los alimentos del bosque se ven afectados por la biodiversidad y la pérdida de vegetación: las olas de calor, la variación de las precipitaciones y los eventos climáticos extremos más frecuentes e intensos están relacionados con la deforestación y el cambio climático y se ven agravados por un debilitamiento de las habilidades tradicionales de caza y pesca como resultado de los cambios climáticos y sociales.6Zavaleta C COVID-19: revisar los datos de los pueblos indígenas. Naturaleza. 2020; 580: 185Crossref PubMed Scopus (19) Google Scholar, 8Marengo JA Souza Jr, CM Thonicke K et al. Cambios en el clima y el uso de la tierra en la región amazónica: variabilidad y tendencias actuales y futuras. Front Earth Sci. 2018; 6: 228Crossref Scopus (219) Google Scholar, 9Harper SL Berrang-Ford L Carcamo C et al.The Indigenous climate–food–health nexus.in: Mason LR Rigg J People and climate change: vulnerability, adaptation, and social justice. Oxford Scholarship Online, Oxford2019: 184Crossref Google Scholar En el Ártico, los inuit son testigos de algunas de las tasas de calentamiento más rápidas a nivel mundial.3Informe especial del Panel Intergubernamental sobre el Cambio Climático: calentamiento global de 1·5°C.https://www.ipcc.ch/sr15/Date: 2018Fecha de acceso: 24 de julio de 2020Google Scholar La lejanía de la región y las restricciones de viaje han ayudado a reducir la propagación de COVID-19; sin embargo, las interrupciones en las redes de suministro han tenido efectos en la disponibilidad de alimentos en las comunidades que dependen de los alimentos minoristas que llegan desde las regiones del sur. Para gestionar estas interrupciones, cosechar y compartir alimentos locales, que se practica ampliamente en muchas regiones árticas ,9HarperSL Berrang-Ford L Carcamo C et al. The Indigenous climate-food-health nexus.in: Mason LR Rigg J People and climate change: vulnerability, adaptation, and social justice. Oxford Scholarship Online, Oxford2019: 184Crossref Google Scholar ha ayudado a mantener la seguridad alimentaria y nutricional. Al mismo tiempo, sin embargo, estos sistemas alimentarios indígenas locales se han visto comprometidos por los extremos climáticos, incluidas las temperaturas récord, la sequía y los incendios forestales. En Uganda, algunas poblaciones indígenas (por ejemplo, Batwa) se han adherido a las medidas de COVID-19, incluido el distanciamiento físico, quedarse en casa y evitar los centros comerciales debido a las multitudes, que desafían la seguridad alimentaria y nutricional al restringir el acceso a los mercados. Además, la ayuda alimentaria gubernamental oportuna no ha llegado adecuadamente a las poblaciones indígenas. El confinamiento prolongado en Uganda, particularmente para los distritos fronterizos donde viven muchas poblaciones indígenas, ha obstaculizado su movilidad para acceder a las áreas boscosas para alimentarse, el acceso a las comunidades cercanas para ofrecer mano de obra para el intercambio de alimentos y el acceso a los campos agrícolas para la producción de alimentos. Estos desafíos se ven exacerbados por los efectos climáticos existentes ,9Harper SL Berrang-Ford L Carcamo C et al. The Indigenous climate-food-health nexus.in: Mason LR Rigg J People and climate change: vulnerability, adaptation, and social justice. Oxford Scholarship Online, Oxford2019: 184Crossref Google Scholar, incluidas las recientes inundaciones en 2019 que dañaron los cultivos, comprometieron la producción de alimentos ,10Chang 'a LB Kijazi AL Mafuru KB et al. Evaluación de la evolución y los impactos socioeconómicos de las precipitaciones extremas en octubre de 2019 en el este de África. Atmos Clim Sci. 2020; 10: 319-338Google Scholar y redujo la resiliencia de las poblaciones indígenas cuando llegó la pandemia de COVID-19. El cambio climático desafía la resiliencia de los sistemas alimentarios indígenas con repercusiones directas e inmediatas para la salud y la nutrición de las poblaciones indígenas.2Ford JD King N Galappaththi EK Pearce T McDowell G Harper SL The resilience of Indigenous Peoples to environmental change. One Earth. 2020; 2: 532-543Resumen Texto completo Texto completo PDF Scopus (122) Google Académico En nuestro mundo altamente conectado, la pandemia de COVID-19 ha viajado fácilmente a través de continentes, llegando a ubicaciones geográficas remotas y comunidades indígenas en menos de 6 meses. Existe una ventana de oportunidad vital para apoyar a las poblaciones indígenas que enfrentan la carga doble y sindémica de los peligros socioecológicos compuestos y en cascada, como el cambio climático y las pandemias, priorizando la protección de las fuentes clave de alimentos indígenas (por ejemplo, los bosques tropicales, los ecosistemas árticos), reforzando y apoyando la importancia de los sistemas de conocimiento indígenas, mejorando el acceso a recursos de salud culturalmente seguros y salvaguardando el acceso y los derechos a la tierra y los recursos naturales de las poblaciones indígenas. Este es el momento de garantizar que las decisiones actuales y las trayectorias de desarrollo no pongan en peligro aún más la resiliencia de los sistemas alimentarios indígenas, que tienen un papel integral en la respuesta de las poblaciones indígenas a las pandemias y los cambios climáticos actuales y futuros. Esta publicación en línea ha sido corregida. La versión corregida apareció por primera vez en thelancet.com/planetary-health el 9 de septiembre de 2020. Esta publicación en línea ha sido corregida. La versión corregida apareció por primera vez en thelancet.com/planetary-health el 9 de septiembre de 2020. Declaramos que no hay intereses en competencia. CZ-C recibió el apoyo del Instituto Nacional de Investigación en Salud (NIHR), utilizando los fondos de la Asistencia Oficial para el Desarrollo del Reino Unido, y de Wellcome (218743/Z/19/Z) en el marco de la Asociación NIHR–Wellcome para la Investigación en Salud Global. CZ-C es miembro del Grupo de Investigación de Salud y Adaptación Indígena al Cambio Climático. IA-R, JDF, SL, PJG, DBN, MN, CJW, LB-F y SLH están financiados por los Institutos Canadienses de Investigación en Salud a través del programa de Adaptación de la Salud Indígena al Cambio Climático. JJM reconoce el apoyo de Alliance for Health Policy and Systems Research (HQHSR1206660), Bernard Lown Scholars in Cardiovascular Health Program en Harvard T H Chan School of Public Health (BLSCHP-1902), Bloomberg Philanthropies (a través de la Escuela de Salud Pública de la Universidad de Carolina del Norte en Chapel Hill), Fondecyt (Fondo Nacional para el Desarrollo Científico, Tecnológico y la Innovación Tecnológica) a través de Cienciactiva en Concytec (Consejo Nacional de Ciencia Tecnología e Innovación Tecnológica), British Council, Embajada Británica y el Fondo Newton-Paulet (223-2018, 224-2018), Departamento de Desarrollo Internacional, Consejo de Investigación Médica (MRC) y Wellcome Global Health Trials (MR/M007405/1), Fogarty International Center (R21TW009982, D71TW010877), Grand Challenges Canada (0335-04), International Development Research Center Canada (IDRC 106887, 108167), Inter-American Institute for Global Change Research (IAI CRN3036), MRC (MR/P008984/1, MR/P024408/1, MR/P02386X/1), National Cancer Institute (1P20CA217231), National Heart, Lung and Blood Institute (HHSN268200900033C, 5U01HL114180, 1UM1HL134590), National Institute of Mental Health (1U19MH098780), Swiss National Science Foundation (40P740-160366), Wellcome (074833/Z/04/Z, 093541/Z/10/Z, 103994/Z/14/Z, 107435/Z/15/Z, 205177/Z/16/Z, 214185/Z/18/Z, 218743/Z/19/Z), y la World Diabetes Foundation (WDF15-1224). Las opiniones expresadas son las de los autores y no necesariamente las de Wellcome, el NIHR o el Departamento de Salud y Asistencia Social. Las fuentes de financiación no tuvieron ningún papel en la preparación de este Comentario o en la decisión de enviarlo para su publicación. Reconocemos la contribución de Matthew King. Download .pdf (.12 MB) Help with pdf files Supplementary appendix Correction to Lancet Planet Health 2020; 4: e381–82Zavaleta-Cortijo C, Ford JD, Arotoma-Rojas I, et al. Cambio climático y COVID-19: reforzando los sistemas alimentarios indígenas. Lancet Planet Health 2020; 4: e381-82-En este Comentario, el nombre del séptimo autor debe ser "J Jaime Miranda". Esta corrección se ha realizado a partir del 9 de septiembre de 2020. PDF de texto completo Acceso abiertoApoyar la diversidad biocultural del sistema alimentario indígenaEl comentario de Carol Zavaleta-Cortijo y sus colegas1 fue oportuno al enfatizar los desafíos que enfrentan los pueblos indígenas debido a los efectos combinados del cambio climático, COVID-19 y las desigualdades de larga data. Aunque la presión sobre los medios de vida indígenas no es nada nuevo, los efectos actuales son extremos, tanto en términos de muertes debido al virus como de interrupciones en las formas de vida, incluidos los sistemas alimentarios indígenas. Acceso abierto en PDF de texto completo Indigenous populations are at especially high risk from COVID-19 because of factors such discrimination, social exclusion, land dispossession, and a high prevalence of forms of malnutrition.1Anderson I Robson B Connolly M et al.Indigenous and tribal peoples' health (The Lancet–Lowitja Institute Global Collaboration): a population study.Lancet. 2016; 388: 131-157Summary Full Text Full Text PDF PubMed Scopus (592) Google Scholar Climate change is compounding many of these causes of health inequities, undermining coping mechanisms that are traditionally used to manage extreme events such as pandemics, and disrupting food systems and local diets.2Ford JD King N Galappaththi EK Pearce T McDowell G Harper SL The resilience of Indigenous Peoples to environmental change.One Earth. 2020; 2: 532-543Summary Full Text Full Text PDF Scopus (122) Google Scholar Addressing underlying structural inequities and strengthening Indigenous knowledge systems offer opportunities for building resilience to compound socioecological shocks, including climate effects and pandemics. Climate change is affecting Indigenous food systems, making Indigenous populations vulnerable to food and nutritional insecurity.3Intergovernmental Panel on Climate ChangeSpecial report: global warming of 1·5°C.https://www.ipcc.ch/sr15/Date: 2018Date accessed: July 24, 2020Google Scholar The nature and extent of the effects of COVID-19 on Indigenous food systems are still largely unknown, but the direct results include mortality from severe illness, reduced access to food, changes in local diet, and economic losses resulting from lockdowns. These outcomes present impediments to the recovery of populations already facing substantial nutritional challenges. The effects of previous pandemics on Indigenous food systems affected children in particular, when adults became ill and household food access was reduced.4Mamelund S-E Sattenspiel L Dimka J Influenza-associated mortality during the 1918–1919 influenza pandemic in Alaska and Labrador: a comparison.Soc Sci Hist. 2013; 37: 177-229Google Scholar Inadequate health service provision for Indigenous populations, including scant access to culturally safe services,5Brascoupé S Waters C Cultural safety exploring the applicability of the concept of cultural safety to aboriginal health and community wellness.Int J Indigen Health. 2006; 5: 6-41Google Scholar adds another layer of complexity in the face of the COVID-19 pandemic. Effects of climate change undermine Indigenous food security, in turn compromising the resilience of Indigenous populations to pandemics. At the same time, disruptions to food and nutrition security and the resulting health implications for Indigenous populations during pandemics exacerbate their vulnerability to climate change. In this context, understanding, reinforcing, and protecting Indigenous food systems in the context of a changing climate must be a cornerstone of post-pandemic recovery. In the Peruvian Amazon, some Shawi Indigenous communities have chosen to self-isolate in the forest during the COVID-19 pandemic.6Zavaleta C COVID-19: review Indigenous peoples' data.Nature. 2020; 580: 185Crossref PubMed Scopus (19) Google Scholar These communities are relying on traditional diets and Indigenous knowledge of local food systems, and they have little availability and accessibility to external food and government food-aid programmes. During this self-isolation, reliance on Indigenous food systems is inextricably linked to Indigenous knowledge about the land, rivers, and biodiversity, which includes knowledge of local techniques to preserve and prepare food.7Zavaleta C Berrang-Ford L et al.Multiple non-climatic drivers of food insecurity reinforce climate change maladaptation trajectories among Peruvian Indigenous Shawi in the Amazon.PLoS One. 2018; 13e0205714Crossref PubMed Scopus (28) Google Scholar However, food from the forest is being affected by biodiversity and vegetation loss: heatwaves, precipitation variation, and more frequent and intense extreme weather events are all related to deforestation and climate change and are compounded by a weakening of traditional hunting and fishing skills as a result of climatic and societal changes.6Zavaleta C COVID-19: review Indigenous peoples' data.Nature. 2020; 580: 185Crossref PubMed Scopus (19) Google Scholar, 8Marengo JA Souza Jr, CM Thonicke K et al.Changes in climate and land use over the Amazon region: current and future variability and trends.Front Earth Sci. 2018; 6: 228Crossref Scopus (219) Google Scholar, 9Harper SL Berrang-Ford L Carcamo C et al.The Indigenous climate–food–health nexus.in: Mason LR Rigg J People and climate change: vulnerability, adaptation, and social justice. Oxford Scholarship Online, Oxford2019: 184Crossref Google Scholar In the Arctic, Inuit are witnessing some of the most rapid rates of warming globally.3Intergovernmental Panel on Climate ChangeSpecial report: global warming of 1·5°C.https://www.ipcc.ch/sr15/Date: 2018Date accessed: July 24, 2020Google Scholar The remoteness of the region and travel restrictions have helped curtail the spread of COVID-19; however, disruptions to supply networks have had effects on food availability in communities that rely on retail food flown in from southern regions. To manage these disruptions, harvesting and sharing local foods, which is widely practiced in many Arctic regions,9Harper SL Berrang-Ford L Carcamo C et al.The Indigenous climate–food–health nexus.in: Mason LR Rigg J People and climate change: vulnerability, adaptation, and social justice. Oxford Scholarship Online, Oxford2019: 184Crossref Google Scholar has helped maintain food and nutrition security. Simultaneously, however, these local Indigenous food systems have been compromised by climatic extremes, including record-breaking temperatures, drought, and wildfires. In Uganda, some Indigenous populations (eg, Batwa) have adhered to COVID-19 measures, including physical distancing, staying home, and avoiding trading centres because of crowds, which challenge food and nutrition security by restricting access to markets. Furthermore, timely government food aid has not adequately reached Indigenous populations. The extended lockdown in Uganda, particularly for border districts where many Indigenous populations live, has hampered their mobility to access forested areas for foraging, access to nearby communities to offer labour for food exchange, and access to agricultural fields for food production. These challenges are exacerbated by existing climate effects,9Harper SL Berrang-Ford L Carcamo C et al.The Indigenous climate–food–health nexus.in: Mason LR Rigg J People and climate change: vulnerability, adaptation, and social justice. Oxford Scholarship Online, Oxford2019: 184Crossref Google Scholar including recent flooding in 2019 that damaged crops, compromised food production,10Chang'a LB Kijazi AL Mafuru KB et al.Assessment of the evolution and socio-economic impacts of extreme rainfall events in October 2019 over the east Africa.Atmos Clim Sci. 2020; 10: 319-338Google Scholar and reduced the resilience of Indigenous populations when the COVID-19 pandemic hit. Climate change challenges the resilience of Indigenous food systems with direct and immediate repercussions for the health and nutrition of Indigenous populations.2Ford JD King N Galappaththi EK Pearce T McDowell G Harper SL The resilience of Indigenous Peoples to environmental change.One Earth. 2020; 2: 532-543Summary Full Text Full Text PDF Scopus (122) Google Scholar In our highly connected world, the COVID-19 pandemic has easily travelled across continents, reaching remote geographical locations and Indigenous communities in less than 6 months. There is a vital window of opportunity to support Indigenous populations who face the double and syndemic burden of compound and cascading socioecological hazards, such as climate change and pandemics, by prioritising the protection of key Indigenous food sources (eg, tropical forests, Arctic ecosystems), by reinforcing and supporting the importance of Indigenous knowledge systems, by improving access to culturally safe health resources, and by and safeguarding access and rights to land and natural resources of Indigenous populations. This is the time to ensure that current decisions and development trajectories do not further jeopardise the resilience of Indigenous food systems, which have integral roles in the response of Indigenous populations to current and future pandemics and climatic changes. This online publication has been corrected. The corrected version first appeared at thelancet.com/planetary-health on September 9, 2020 This online publication has been corrected. The corrected version first appeared at thelancet.com/planetary-health on September 9, 2020 We declare no competing interests. CZ-C was supported by the National Institute for Health Research (NIHR), using the UK's Official Development Assistance funding, and by Wellcome (218743/Z/19/Z) under the NIHR–Wellcome Partnership for Global Health Research. CZ-C is member of the Indigenous Health and Adaptation to Climate Change Research Group. IA-R, JDF, SL, PJG, DBN, MN, CJW, LB-F, and SLH are funded by the Canadian Institutes for Health Research through the Indigenous Health Adaptation to Climate Change programme. JJM acknowledges support from the Alliance for Health Policy and Systems Research (HQHSR1206660), the Bernard Lown Scholars in Cardiovascular Health Program at Harvard T H Chan School of Public Health (BLSCHP-1902), Bloomberg Philanthropies (via University of North Carolina at Chapel Hill School of Public Health), Fondecyt (National Fund for Scientific, Technological Development and Technological Innovation) via Cienciactiva at Concytec (Consejo Nacional de Ciencia Tecnología e Innovacíon Tecnologica), British Council, British Embassy and the Newton-Paulet Fund (223-2018, 224-2018), Department for International Development, Medical Research Council (MRC), and Wellcome Global Health Trials (MR/M007405/1), Fogarty International Center (R21TW009982, D71TW010877), Grand Challenges Canada (0335-04), International Development Research Center Canada (IDRC 106887, 108167), Inter-American Institute for Global Change Research (IAI CRN3036), MRC (MR/P008984/1, MR/P024408/1, MR/P02386X/1), National Cancer Institute (1P20CA217231), National Heart, Lung and Blood Institute (HHSN268200900033C, 5U01HL114180, 1UM1HL134590), National Institute of Mental Health (1U19MH098780), Swiss National Science Foundation (40P740-160366), Wellcome (074833/Z/04/Z, 093541/Z/10/Z, 103994/Z/14/Z, 107435/Z/15/Z, 205177/Z/16/Z, 214185/Z/18/Z, 218743/Z/19/Z), and the World Diabetes Foundation (WDF15-1224). The views expressed are those of the authors and not necessarily those of Wellcome, the NIHR or the Department of Health and Social Care. The funding sources had no role in the preparation of this Comment or in the decision to submit for publication. We acknowledge the contribution of Matthew King. Download .pdf (.12 MB) Help with pdf files Supplementary appendix Correction to Lancet Planet Health 2020; 4: e381–82Zavaleta-Cortijo C, Ford JD, Arotoma-Rojas I, et al. Climate change and COVID-19: reinforcing Indigenous food systems. Lancet Planet Health 2020; 4: e381–82—In this Comment, the seventh author's name should be "J Jaime Miranda". This correction has been made as of Sept 9, 2020. Full-Text PDF Open AccessSupport Indigenous food system biocultural diversityThe Comment by Carol Zavaleta-Cortijo and colleagues1 was timely in emphasising the challenges faced by Indigenous peoples due to the combined effects of climate change, COVID-19, and longstanding inequities. Although pressure on Indigenous livelihoods is nothing new, current effects are extreme, both in terms of deaths due to the virus and disruptions to lifeways, including Indigenous food systems. Full-Text PDF Open Access السكان الأصليون معرضون بشكل خاص لخطر الإصابة بـ COVID -19 بسبب عوامل مثل التمييز والاستبعاد الاجتماعي ومصادرة الأراضي والانتشار العالي لأشكال سوء التغذية .1 أندرسون أنا روبسون ب كونولي م وآخرون. صحة الشعوب الأصلية والقبلية (التعاون العالمي لمعهد لانسيت- لويتجا): دراسة سكانية. 2016 ؛ 388: 131-157 ملخص النص الكامل الكامل PDF PubMed Scopus (592) يضاعف الباحث العلمي من Google تغير المناخ العديد من هذه الأسباب لعدم المساواة الصحية، مما يقوض آليات التكيف التي تستخدم تقليديًا لإدارة الأحداث المتطرفة مثل الأوبئة، وتعطيل النظم الغذائية والوجبات الغذائية المحلية.2Ford JD King N Galappaththi EK Pearce T McDowell G Harper SL مرونة الشعوب الأصلية في مواجهة التغير البيئي. 2020 ؛ 2: 532-543 ملخص النص الكامل للنص الكامل PDF Scopus (122) الباحث العلمي من Google معالجة أوجه عدم المساواة الهيكلية الكامنة وتعزيز أنظمة المعرفة الأصلية توفر فرصًا لبناء القدرة على الصمود أمام الصدمات الاجتماعية البيئية المعقدة، بما في ذلك الآثار المناخية والأوبئة. يؤثر تغير المناخ على النظم الغذائية للسكان الأصليين، مما يجعل السكان الأصليين عرضة لانعدام الأمن الغذائي والتغذوي .3 الفريق الحكومي الدولي المعني بتغير المناخ تقرير خاص: الاحترار العالمي بمقدار 1·5 درجات مئوية .https://www.ipcc.ch/sr15/Date:2018Date accessed: July 24, 2020 الباحث من Google لا تزال طبيعة ومدى آثار COVID -19 على النظم الغذائية للسكان الأصليين غير معروفة إلى حد كبير، ولكن النتائج المباشرة تشمل الوفيات الناجمة عن الأمراض الشديدة، وانخفاض الوصول إلى الغذاء، والتغيرات في النظام الغذائي المحلي، والخسائر الاقتصادية الناتجة عن عمليات الإغلاق. وتمثل هذه النتائج عوائق أمام تعافي السكان الذين يواجهون بالفعل تحديات غذائية كبيرة. أثرت آثار الأوبئة السابقة على النظم الغذائية للسكان الأصليين على الأطفال على وجه الخصوص، عندما أصبح البالغون مرضى وانخفض الوصول إلى الغذاء المنزلي .4 Mamelund S - E Sattenspiel L Dimka J الوفيات المرتبطة بالأنفلونزا خلال جائحة الأنفلونزا 1918–1919 في ألاسكا ولابرادور: مقارنة .Soc Sci Hist. 2013 ؛ 37: 177-229 الباحث العلمي من Google عدم كفاية تقديم الخدمات الصحية للسكان الأصليين، بما في ذلك الوصول الضئيل إلى الخدمات الآمنة ثقافيًا، 5 السلامة الثقافية في براسكوبي إس ووترز سي التي تستكشف إمكانية تطبيق مفهوم السلامة الثقافية على صحة السكان الأصليين وصحة المجتمع. Int J Indigen Health. 2006 ؛ 5: 6-41 يضيف الباحث العلمي من Google طبقة أخرى من التعقيد في مواجهة جائحة كوفيد-19. تقوض آثار تغير المناخ الأمن الغذائي للسكان الأصليين، مما يؤدي بدوره إلى تقويض قدرة السكان الأصليين على مواجهة الأوبئة. وفي الوقت نفسه، تؤدي الاضطرابات في الأمن الغذائي والتغذوي وما ينتج عنها من آثار صحية على السكان الأصليين أثناء الأوبئة إلى تفاقم تعرضهم لتغير المناخ. وفي هذا السياق، يجب أن يكون فهم النظم الغذائية للسكان الأصليين وتعزيزها وحمايتها في سياق تغير المناخ حجر الزاوية في التعافي بعد الجائحة. في منطقة الأمازون في بيرو، اختارت بعض مجتمعات السكان الأصليين الشاوي العزل الذاتي في الغابة خلال جائحة كوفيد-19 .6 Zavaleta C COVID -19: مراجعة بيانات الشعوب الأصلية .الطبيعة. 2020 ؛ 580: 185 Crossref PubMed Scopus (19) الباحث العلمي من Google تعتمد هذه المجتمعات على النظم الغذائية التقليدية ومعرفة السكان الأصليين بالنظم الغذائية المحلية، ولديهم القليل من التوافر وإمكانية الوصول إلى الغذاء الخارجي وبرامج المساعدات الغذائية الحكومية. خلال هذا العزلة الذاتية، يرتبط الاعتماد على النظم الغذائية للسكان الأصليين ارتباطًا وثيقًا بمعارف السكان الأصليين حول الأرض والأنهار والتنوع البيولوجي، والتي تشمل معرفة التقنيات المحلية للحفاظ على الطعام وإعداده .7 وتعزز الدوافع غير المناخية المتعددة لانعدام الأمن الغذائي مسارات سوء التكيف مع تغير المناخ بين السكان الأصليين في بيرو شاوي في الأمازون .PLoS One. 2018; 13e0205714Crossref PubMed Scopus (28) الباحث من Google ومع ذلك، يتأثر الغذاء من الغابة بالتنوع البيولوجي وفقدان الغطاء النباتي: ترتبط موجات الحر وتباين هطول الأمطار والظواهر الجوية المتطرفة الأكثر تكرارًا وشدة بإزالة الغابات وتغير المناخ وتتفاقم بسبب ضعف مهارات الصيد وصيد الأسماك التقليدية نتيجة للتغيرات المناخية والمجتمعية .6 Zavaleta C -1919: مراجعة بيانات الشعوب الأصلية .الطبيعة. 2020 ؛ 580: 185Crossref PubMed Scopus (19) Google Scholar، 8Marengo JA Souza Jr، CM Thonicke K et al. التغيرات في المناخ واستخدام الأراضي في منطقة الأمازون: التقلبات والاتجاهات الحالية والمستقبلية. 2018 ؛ 6: 228 Crossref Scopus (219) الباحث العلمي من Google، 9Harper SL Berrang - Ford L Carcamo C et al.The Indigenous climate - food - health nexus.in: Mason LR Rigg J الناس وتغير المناخ: الضعف والتكيف والعدالة الاجتماعية. منحة أكسفورد عبر الإنترنت، أكسفورد2019: 184 الباحث العلمي من Google في القطب الشمالي، يشهد الإنويت بعضًا من أسرع معدلات الاحترار على مستوى العالم .3 الفريق الحكومي الدولي المعني بتغير المناخ تقرير خاص: الاحترار العالمي بمقدار 1·5 درجات مئوية .https://www.ipcc.ch/sr15/Date:2018Date accessed: July 24, 2020 الباحث العلمي من Google ساعد بعد المنطقة وقيود السفر في الحد من انتشار COVID -19 ؛ ومع ذلك، كان لاضطرابات شبكات الإمداد آثار على توافر الغذاء في المجتمعات التي تعتمد على الغذاء بالتجزئة الذي يتم نقله من المناطق الجنوبية. لإدارة هذه الاضطرابات، وحصاد ومشاركة الأطعمة المحلية، والتي تمارس على نطاق واسع في العديد من مناطق القطب الشمالي، 9 Harper SL Berrang - Ford L Carcamo C et al.The Indigenous climate - food - health nexus.in: Mason LR Rigg J الناس وتغير المناخ: الضعف والتكيف والعدالة الاجتماعية. منحة أكسفورد عبر الإنترنت، أكسفورد2019: 184 ساعد الباحث العلمي من Google في الحفاظ على الأمن الغذائي والتغذوي. ومع ذلك، في الوقت نفسه، تعرضت هذه النظم الغذائية المحلية للسكان الأصليين للخطر بسبب الظواهر المناخية المتطرفة، بما في ذلك درجات الحرارة القياسية والجفاف وحرائق الغابات. في أوغندا، التزم بعض السكان الأصليين (على سبيل المثال، باتوا) بتدابير COVID -19، بما في ذلك التباعد الجسدي، والبقاء في المنزل، وتجنب المراكز التجارية بسبب الحشود، التي تتحدى الأمن الغذائي والتغذوي من خلال تقييد الوصول إلى الأسواق. علاوة على ذلك، لم تصل المساعدات الغذائية الحكومية في الوقت المناسب إلى السكان الأصليين بشكل كافٍ. أدى الإغلاق الموسع في أوغندا، لا سيما بالنسبة للمناطق الحدودية حيث يعيش العديد من السكان الأصليين، إلى إعاقة حركتهم للوصول إلى مناطق الغابات للبحث عن الطعام، والوصول إلى المجتمعات المجاورة لتقديم العمالة مقابل تبادل الغذاء، والوصول إلى الحقول الزراعية لإنتاج الغذاء. تتفاقم هذه التحديات بسبب التأثيرات المناخية الحالية، 9 Harper SL Berrang - Ford L Carcamo C et al.The Indigenous climate - food - health nexus.in: Mason LR Rigg J People and climate change: vulnerability, adaptation, and social justice. Oxford Scholarship Online، Oxford2019: 184Crossref Google Scholar بما في ذلك الفيضانات الأخيرة في عام 2019 التي ألحقت الضرر بالمحاصيل، وأضرت بإنتاج الغذاء، 10Chang 'a LB Kijazi Al Mafuru KB et al. تقييم التطور والآثار الاجتماعية والاقتصادية لأحداث هطول الأمطار الشديدة في أكتوبر 2019 فوق شرق إفريقيا. Atmos Clim Sci. 2020 ؛ 10: 319-338 الباحث العلمي من Google وقلل من قدرة السكان الأصليين على الصمود عندما ضربت جائحة COVID -19. يتحدى تغير المناخ مرونة النظم الغذائية للسكان الأصليين مع تداعيات مباشرة وفورية على صحة وتغذية السكان الأصليين.2Ford JD King N Galappaththi EK Pearce T McDowell G Harper SL قدرة السكان الأصليين على التكيف مع التغير البيئي. أرض واحدة. 2020 ؛ 2: 532-543 ملخص النص الكامل النص الكامل PDF Scopus (122) الباحث العلمي من Google في عالمنا المترابط للغاية، انتقلت جائحة COVID -19 بسهولة عبر القارات، ووصلت إلى المواقع الجغرافية النائية ومجتمعات السكان الأصليين في أقل من 6 أشهر. هناك فرصة حيوية لدعم السكان الأصليين الذين يواجهون العبء المزدوج والمتفشي للمخاطر الاجتماعية والبيئية المركبة والمتتالية، مثل تغير المناخ والأوبئة، من خلال إعطاء الأولوية لحماية المصادر الغذائية الرئيسية للسكان الأصليين (مثل الغابات الاستوائية والنظم الإيكولوجية في القطب الشمالي)، من خلال تعزيز ودعم أهمية نظم معارف السكان الأصليين، من خلال تحسين الوصول إلى الموارد الصحية الآمنة ثقافيًا، ومن خلال حماية الوصول إلى الأراضي والموارد الطبيعية للسكان الأصليين وحقوقهم فيها. لقد حان الوقت لضمان ألا تؤدي القرارات ومسارات التنمية الحالية إلى زيادة تعريض مرونة النظم الغذائية للسكان الأصليين للخطر، والتي لها أدوار أساسية في استجابة السكان الأصليين للأوبئة الحالية والمستقبلية والتغيرات المناخية. تم تصحيح هذا المنشور عبر الإنترنت. ظهرت النسخة المصححة لأول مرة على thelancet.com/planetary-health في 9 سبتمبر 2020 تم تصحيح هذا المنشور عبر الإنترنت. ظهرت النسخة المصححة لأول مرة على thelancet.com/planetary-health في 9 سبتمبر 2020 نعلن عدم وجود مصالح متنافسة. تم دعم CZ - C من قبل المعهد الوطني للبحوث الصحية (NIHR)، باستخدام تمويل المساعدة الإنمائية الرسمية في المملكة المتحدة، ومن قبل ويلكوم (218743/Z/19/Z) في إطار الشراكة بين المؤسسة الوطنية لحقوق الإنسان ويلكوم لبحوث الصحة العالمية. CZ - C عضو في مجموعة أبحاث صحة السكان الأصليين والتكيف مع تغير المناخ. يتم تمويل IA - R و JDF و SL و PJG و DBN و MN و CJW و LB - F و SLH من قبل المعاهد الكندية للبحوث الصحية من خلال برنامج تكيف صحة السكان الأصليين مع تغير المناخ. تقر JJM بالدعم المقدم من التحالف من أجل أبحاث السياسات والنظم الصحية (HQHSR1206660)، وبرنامج برنارد لوين في برنامج صحة القلب والأوعية الدموية في كلية هارفارد تي إتش تشان للصحة العامة (BLSCHP -1902)، و Bloomberg Philanthropies (عبر جامعة نورث كارولينا في مدرسة تشابل هيل للصحة العامة)، و Fondecyt (الصندوق الوطني للتنمية العلمية والتكنولوجية والابتكار التكنولوجي) عبر Cienciactiva at Concytec (Consejo Nacional de Ciencia Tecnología e Innovacíon Tecnologica)، والمجلس البريطاني، والسفارة البريطانية وصندوق Newton - Paulet (223-2018، 224-2018)، وإدارة التنمية الدولية، ومجلس البحوث الطبية (MRC)، و Wellcome Global Health Trials (MR/M007405/1)، مركز Fogarty الدولي (R21TW009982، D71T010877)، التحديات الكبرى كندا (0335-04)، المركز الدولي لبحوث التنمية كندا (IDRC 106887، 108167)، معهد البلدان الأمريكية لبحوث التغيير العالمي (IAI CRN3036)، MRC (MR/P008984/1، MR/P024408/1، MR/P02386X/1)، المعهد الوطني للسرطان (1P20CA217231)، المعهد الوطني للقلب والرئة والدم (HHSN268200900033C، 5U01HL114180، 1UM1HL134590)، المعهد الوطني للصحة العقلية (1U19MH098780)، المؤسسة الوطنية السويسرية للعلوم (40P740 -160366)، ويلكوم (074833/Z/04/Z، 093541/Z/10/Z، 103994/Z/14/Z، 107435/Z/15/Z، 205177/Z/16/Z، 214185/Z/18/Z، 218743/Z/19/Z)، والمؤسسة العالمية للسكري (WDF15 -1224). الآراء المعبر عنها هي آراء المؤلفين وليست بالضرورة آراء ويلكوم أو المؤسسة الوطنية لحقوق الإنسان أو وزارة الصحة والرعاية الاجتماعية. لم يكن لمصادر التمويل أي دور في إعداد هذا التعليق أو في قرار التقديم للنشر. نحن نعترف بمساهمة ماثيو كينغ. Download .pdf (.12 MB) Help with pdf files Supplementary appendix Correction to Lancet Planet Health 2020; 4: e381 -82Zavaleta - Cortijo C, Ford JD, Arotoma - Rojas I, et al. تغير المناخ وكوفيد-19: تعزيز النظم الغذائية للسكان الأصليين. لانسيت بلانيت هيلث 2020 ؛ 4: e381 -82 - في هذا التعليق، يجب أن يكون اسم المؤلف السابع "جايمي ميراندا". تم إجراء هذا التصحيح اعتبارًا من 9 سبتمبر 2020. النص الكامل PDF الوصول المفتوحدعم التنوع البيولوجي الثقافي للنظام الغذائي للسكان الأصليينتعليق كارول زافاليتا- كورتيجو وزملائها1 جاء في الوقت المناسب للتأكيد على التحديات التي تواجهها الشعوب الأصلية بسبب الآثار المشتركة لتغير المناخ، وكوفيد-19، وأوجه عدم المساواة الطويلة الأمد. على الرغم من أن الضغط على سبل عيش السكان الأصليين ليس بالأمر الجديد، إلا أن الآثار الحالية شديدة، سواء من حيث الوفيات الناجمة عن الفيروس أو الاضطرابات في طرق الحياة، بما في ذلك النظم الغذائية للسكان الأصليين. الوصول المفتوح للنص الكامل PDF
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2020 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The Lancet Planetary HealthArticle . 2020License: Elsevier TDMData sources: WHO Global literature on coronavirus diseaseadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s2542-5196(20)30173-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 44 citations 44 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2020 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The Lancet Planetary HealthArticle . 2020License: Elsevier TDMData sources: WHO Global literature on coronavirus diseaseadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s2542-5196(20)30173-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 Norway, Norway, Belgium, Russian Federation, Switzerland, France, Netherlands, United States, Netherlands, AustriaPublisher:Oxford University Press (OUP) Funded by:NSF | RoL: FELS: RAISE: Collab..., RSF | Smart technologies to mon..., EC | IMBALANCE-P +4 projectsNSF| RoL: FELS: RAISE: Collaborative Research: Watershed Rules of Life ,RSF| Smart technologies to monitor, model and evaluate ecosystem services provided by urban green infrastructure and soils to support decision making in sustainable city development under global changes ,EC| IMBALANCE-P ,ANR| L-IPSL ,NSF| Collaborative Research: RUI: The Pulse-Shunt Concept: A Conceptual Framework for Quantifying and Forecasting Watershed DOM Fluxes and Transformations at the MacroSystem Scale ,RCN| The Global Carbon Budget and Carbon Atlas ,EC| COCOSAnna Peregon; Anna Peregon; Peter A. Raymond; Grégoire Broquet; Wei Li; Rong Wang; Alessandro Baccini; Jens Hartmann; Julia Pongratz; Julia Pongratz; Alexandra G. Konings; Chunjing Qiu; Ana Bastos; Jinfeng Chang; Anatoly Shvidenko; Fabienne Maignan; Chao Yue; Chao Yue; Yi Yin; Vanessa Haverd; Pierre Regnier; Hui Yang; Ashley-P Ballantyne; Yi Liu; Riccardo Valentini; Shushi Peng; Philippe Ciais; Philippe Ciais; Anthony W. King; Jakob Zscheischler; Thomas Gasser; Bertrand Guenet; Ronny Lauerwald; Ronny Lauerwald; Prabir K. Patra; Prabir K. Patra; Yitong Yao; Yilong Wang; Goulven Gildas Laruelle; Dan Zhu; Sebastiaan Luyssaert; Benjamin Poulter; Daniel S. Goll; Glen P. Peters; Josep G. Canadell; Rob J Andres; A. Johannes Dolman;pmid: 34691569
pmc: PMC8288404
Abstract Resolving regional carbon budgets is critical for informing land-based mitigation policy. For nine regions covering nearly the whole globe, we collected inventory estimates of carbon-stock changes complemented by satellite estimates of biomass changes where inventory data are missing. The net land–atmospheric carbon exchange (NEE) was calculated by taking the sum of the carbon-stock change and lateral carbon fluxes from crop and wood trade, and riverine-carbon export to the ocean. Summing up NEE from all regions, we obtained a global ‘bottom-up’ NEE for net land anthropogenic CO2 uptake of –2.2 ± 0.6 PgC yr−1 consistent with the independent top-down NEE from the global atmospheric carbon budget during 2000–2009. This estimate is so far the most comprehensive global bottom-up carbon budget accounting, which set up an important milestone for global carbon-cycle studies. By decomposing NEE into component fluxes, we found that global soil heterotrophic respiration amounts to a source of CO2 of 39 PgC yr−1 with an interquartile of 33–46 PgC yr−1—a much smaller portion of net primary productivity than previously reported.
Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2020 . Peer-reviewedFull-Text: https://boris.unibe.ch/148814/1/nwaa145.pdfData sources: Bern Open Repository and Information System (BORIS)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03004921Data sources: Bielefeld Academic Search Engine (BASE)Caltech Authors (California Institute of Technology)Article . 2021Full-Text: https://doi.org/10.1093/nsr/nwaa145Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03004921Data sources: Bielefeld Academic Search Engine (BASE)National Science ReviewArticle . 2021add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/nsr/nwaa145&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 94 citations 94 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2020 . Peer-reviewedFull-Text: https://boris.unibe.ch/148814/1/nwaa145.pdfData sources: Bern Open Repository and Information System (BORIS)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03004921Data sources: Bielefeld Academic Search Engine (BASE)Caltech Authors (California Institute of Technology)Article . 2021Full-Text: https://doi.org/10.1093/nsr/nwaa145Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03004921Data sources: Bielefeld Academic Search Engine (BASE)National Science ReviewArticle . 2021add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/nsr/nwaa145&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2016Publisher:Springer Science and Business Media LLC Funded by:RSF | Genetic markers for potat..., NSERCRSF| Genetic markers for potato breeding ,NSERCPrzemysław Kopeć; Katarzyna Juzoń; Sabina Malaga; Monika Krzewska; Ewa Surówka; Ewa Dubas; Gabriela Gołębiowska-Pikania; I. Zur; Anna Nowicka;According to predicted changes in climate, waterlogging events may occur more frequently in the future during autumn and winter at high latitudes of the Northern Hemisphere. If excess soil water coincides with the process of cold acclimation for plants, winter survival may potentially be affected. The effects of waterlogging during cold acclimation on stomatal aperture, relative water content, photochemical activity of photosystem II, freezing tolerance and plant regrowth after freezing were compared for two prehardened overwintering forage grasses, Lolium perenne and Festuca pratensis. The experiment was performed to test the hypothesis that changes in photochemical activity initiated by waterlogging-triggered modifications in the stomatal aperture contribute to changes in freezing tolerance. Principal component analysis showed that waterlogging activated different adaptive strategies in the two species studied. The increased freezing tolerance of F. pratensis was associated with increased photochemical activity connected with stomatal opening, whereas freezing tolerance of L. perenne was associated with a decrease in stomatal aperture. In conclusion, waterlogging-triggered stomatal behavior contributed to the efficiency of the cold acclimation process in L. perenne and F. pratensis.
Acta Physiologiae Pl... arrow_drop_down Acta Physiologiae PlantarumArticle . 2018 . Peer-reviewedLicense: Springer TDMData sources: CrossrefPlant Physiology and BiochemistryArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11738-018-2757-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Acta Physiologiae Pl... arrow_drop_down Acta Physiologiae PlantarumArticle . 2018 . Peer-reviewedLicense: Springer TDMData sources: CrossrefPlant Physiology and BiochemistryArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11738-018-2757-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Switzerland, Austria, Italy, Denmark, United Kingdom, Italy, AustriaPublisher:Springer Science and Business Media LLC Funded by:NSF | PostDoctoral Research Fel..., NSF | Timing is everything: sea..., NSERC +8 projectsNSF| PostDoctoral Research Fellowship ,NSF| Timing is everything: seasonality and phenological dynamics linking species, communities, and trophic feedbacks in the Low- vs. High Arctic ,NSERC ,NSF| Arctic Observing Networks: Collaborative Research: Sustaining and amplifying the ITEX AON through automation and increased interdisciplinarity of observations ,NSF| The Bonanza Creek (BNZ) LTER: Regional Consequences of Changing Climate-Disturbance Interactions for the Resilience of Alaska's Boreal Forest ,NSF| Arctic Plant Phenology - Learning through Engaged Science ,UKRI| Climate as a driver of shrub expansion and tundra greening ,RCN| The effect of snow depth and snow melt timing on arctic terrestrial ecosystems. ,NSF| Collaborative Research: Linking belowground phenology and ecosystem function in a warming Arctic ,NSF| Collaborative Research: Sustaining and amplifying the ITEX AON through automation and increased interdisciplinarity of observations. ,NSF| Warming and drying effects on tundra carbon balanceChristian Rixen; Robert D. Hollister; Isla H. Myers-Smith; Nadja Rüger; Christopher W. Kopp; Isabel W. Ashton; Anne D. Bjorkman; Philipp R. Semenchuk; Tiffany G. Troxler; Bo Elberling; Kari Klanderud; Sarah C. Elmendorf; Ørjan Totland; Marguerite Mauritz; Susanna Venn; Gregory H. R. Henry; Edward A. G. Schuur; Karin Clark; Jeffrey M. Welker; Jeffrey M. Welker; Sonja Wipf; Ulf Molau; Eric Post; Esther Lévesque; Ingibjörg S. Jónsdóttir; Ingibjörg S. Jónsdóttir; Sabine B. Rumpf; Jane G. Smith; Nicoletta Cannone; Chelsea Chisholm; Janet S. Prevéy; Elisabeth J. Cooper; Steven F. Oberbauer; Toke T. Høye; Susan M. Natali; Carl-Henrik Wahren; Katharine N. Suding; Niels Martin Schmidt; Zoe A. Panchen; Anna Maria Fosaa;Advancing phenology is one of the most visible effects of climate change on plant communities, and has been especially pronounced in temperature-limited tundra ecosystems. However, phenological responses have been shown to differ greatly between species, with some species shifting phenology more than others. We analysed a database of 42,689 tundra plant phenological observations to show that warmer temperatures are leading to a contraction of community-level flowering seasons in tundra ecosystems due to a greater advancement in the flowering times of late-flowering species than early-flowering species. Shorter flowering seasons with a changing climate have the potential to alter trophic interactions in tundra ecosystems. Interestingly, these findings differ from those of warmer ecosystems, where early-flowering species have been found to be more sensitive to temperature change, suggesting that community-level phenological responses to warming can vary greatly between biomes.
Nature Ecology & Evo... arrow_drop_down Copenhagen University Research Information SystemArticle . 2019Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Nature Ecology & EvolutionArticle . 2018 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-018-0745-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 90 citations 90 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Nature Ecology & Evo... arrow_drop_down Copenhagen University Research Information SystemArticle . 2019Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Nature Ecology & EvolutionArticle . 2018 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-018-0745-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 GermanyPublisher:Wiley Funded by:FCT | SFRH/BPD/91527/2012, SNSF | Host-parasite interaction...FCT| SFRH/BPD/91527/2012 ,SNSF| Host-parasite interactions on the move - mechanisms and cascading consequences of malaria infections in migratory birdsSilke Bauer; Martins Briedis; Jaroslav Koleček; Simeon Lisovski; Petr Procházka; Steffen Hahn; Miloš Krist; Lars Gustafsson; José A. Alves; José A. Alves; Joana Costa; Peter Adamík; Christoph M. Meier; Tamara Emmenegger; Felix Liechti;AbstractAimKnowledge of broad‐scale biogeographical patterns of animal migration is important for understanding ecological drivers of migratory behaviours. Here, we present a flyway‐scale assessment of the spatial structure and seasonal dynamics of the Afro‐Palaearctic bird migration system and explore how phenology of the environment guides long‐distance migration.LocationEurope and Africa.Time period2009–2017.Major taxa studiedBirds.MethodsWe compiled an individual‐based dataset comprising 23 passerine and near‐passerine species of 55 European breeding populations, in which a total of 564 individuals were tracked during migration between Europe and sub‐Saharan Africa. In addition, we used remotely sensed primary productivity data (the normalized difference vegetation index) to estimate the timing of vegetation green‐up in spring and senescence in autumn across Europe. First, we described how individual breeding and non‐breeding sites and the migratory flyways link geographically. Second, we examined how the timing of migration along the two major Afro‐Palaearctic flyways is tuned with vegetation phenology at the breeding sites.ResultsWe found the longitudes of individual breeding and non‐breeding sites to be related in a strongly positive manner, whereas the latitudes of breeding and non‐breeding sites were related negatively. In autumn, migration commenced ahead of vegetation senescence, and the timing of migration was 5–7 days earlier along the Western flyway compared with the Eastern flyway. In spring, the time of arrival at breeding sites was c. 1.5 days later for each degree northwards and 6–7 days later along the Eastern compared with the Western flyway, reflecting the later spring green‐up at higher latitudes and more eastern longitudes.Main conclusionsMigration of the Afro‐Palaearctic landbirds follows a longitudinally parallel leapfrog migration pattern, whereby migrants track vegetation green‐up in spring but depart before vegetation senescence in autumn. The degree of continentality along migration routes and at the breeding sites of the birds influences the timing of migration on a broad scale.
Global Ecology and B... arrow_drop_down Electronic Publication Information CenterArticle . 2020Data sources: Electronic Publication Information CenterGlobal Ecology and BiogeographyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.13063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 64 citations 64 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 6visibility views 6 download downloads 16 Powered bymore_vert Global Ecology and B... arrow_drop_down Electronic Publication Information CenterArticle . 2020Data sources: Electronic Publication Information CenterGlobal Ecology and BiogeographyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.13063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2006 NetherlandsPublisher:Wiley Authors: Patino, R.; Janssen, M.G.J.; von Stockar, U.;AbstractCalorimetry and other on‐line techniques are used for the first time as complement to the traditional off‐line methods in order to follow the growth of the green Chlorella vulgaris microalgae. A 2‐L photo‐bio‐reactor was adapted from a commercial calorimeter used previously to study heterotrophic microbial growth. An external source of light was added to favor the photosynthesis of the autotrophic cells. Heterotrophic growth was also tested with external glucose in the broth. A third mode, mixotrophic, allowed faster autotrophic plus heterotrophic growth. Calorimetric measurements were performed considering the corresponding calibrations in order to consider only the energy involved during the microalgal growth. The three different modes of Chlorella cultures were energetically characterized. Besides calorimetry, the weight of diluted nitric acid added to maintain the pH of the culture was correlated with the cellular growth and the nitrogen composition of the algae. Additionally, the on‐line infrared spectroscopy proved to be an efficient technique to follow the composition of the broth in glucose, nitrates, and phosphates. These results were compared and complemented with some classic off‐line techniques used to track this kind of cultures. Biotechnol. Bioeng. 2007;96:757–767. © 2006 Wiley Periodicals, Inc.
DSpace at VU arrow_drop_down Biotechnology and BioengineeringArticle . 2007Data sources: DANS (Data Archiving and Networked Services)Biotechnology and BioengineeringArticle . 2006 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefBiotechnology and BioengineeringArticle . 2007Data sources: DANS (Data Archiving and Networked Services)Biotechnology and BioengineeringArticle . 2007add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bit.21182&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert DSpace at VU arrow_drop_down Biotechnology and BioengineeringArticle . 2007Data sources: DANS (Data Archiving and Networked Services)Biotechnology and BioengineeringArticle . 2006 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefBiotechnology and BioengineeringArticle . 2007Data sources: DANS (Data Archiving and Networked Services)Biotechnology and BioengineeringArticle . 2007add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bit.21182&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Article , Preprint , Journal , Other literature type 2010Embargo end date: 01 Jan 2010 France, Australia, Netherlands, China (People's Republic of), United States, Italy, Italy, United States, France, Netherlands, Italy, Italy, Italy, France, France, Greece, Germany, France, Italy, France, Spain, Germany, Netherlands, Switzerland, Italy, France, France, Italy, Turkey, Australia, Italy, Netherlands, Belgium, Italy, Spain, China (People's Republic of), France, Italy, France, United States, United Kingdom, Germany, United States, United Kingdom, Germany, United Kingdom, France, Denmark, Italy, Netherlands, France, France, China (People's Republic of)Publisher:Springer Berlin Heidelberg Funded by:GSRI, FCT | LA 1, UKRI | SemenRate Canada/UK: Tran... +1 projectsGSRI ,FCT| LA 1 ,UKRI| SemenRate Canada/UK: Transforming Germplasm and Genetic Quality to Drive Livestock Productivity ,UKRI| RootDetect: Remote Detection and Precision Management of Root HealthG. AAD; E. ABAT; B. ABBOTT; J. ABDALLAH; A. A. ABDELALIM; A. ABDESSELAM; O. ABDINOV; B. ABI; M. ABOLINS; H. ABRAMOWICZ; H. ABREU; E. ACERBI; B. S. ACHARYA; M. ACKERS; D. L. ADAMS; T. N. ADDY; J. ADELMAN; M. ADERHOLZ; C. ADORISIO; P. ADRAGNA; T. ADYE; S. AEFSKY; J. A. AGUILAR SAAVEDRA; M. AHARROUCHE; S. P. AHLEN; F. AHLES; A. AHMAD; H. AHMED; M. AHSAN; G. AIELLI; T. AKDOGAN; P. F. AKESSON; T. P. A. AKESSON; G. AKIMOTO; A. V. AKIMOV; A. AKTAS; M. S. ALAM; M. A. ALAM; J. ALBERT; S. ALBRAND; M. ALEKSA; I. N. ALEKSANDROV; M. ALEPPO; F. ALESSANDRIA; C. ALEXA; G. ALEXANDER; G. ALEXANDRE; T. ALEXOPOULOS; M. ALHROOB; M. ALIEV; G. ALIMONTI; J. ALISON; M. ALIYEV; P. P. ALLPORT; S. E. ALLWOOD SPIERS; J. ALMOND; A. ALOISIO; R. ALON; A. ALONSO; J. ALONSO; M. G. ALVIGGI; K. AMAKO; P. AMARAL; G. AMBROSINI; G. AMBROSIO; C. AMELUNG; V. V. AMMOSOV; A. AMORIM; G. AMOROS; N. AMRAM; C. ANASTOPOULOS; T. ANDEEN; C. F. ANDERS; K. J. ANDERSON; A. ANDREAZZA; V. ANDREI; M. L. ANDRIEUX; X. S. ANDUAGA; A. ANGERAMI; F. ANGHINOLFI; N. ANJOS; A. ANNOVI; A. ANTONAKI; M. ANTONELLI; S. ANTONELLI; J. ANTOS; B. ANTUNOVIC; F. ANULLI; S. AOUN; G. ARABIDZE; I. ARACENA; Y. ARAI; A. T. H. ARCE; J. P. ARCHAMBAULT; S. ARFAOUI; J. F. ARGUIN; T. ARGYROPOULOS; E. ARIK; M. ARIK; A. J. ARMBRUSTER; K. E. ARMS; S. R. ARMSTRONG; O. ARNAEZ; C. ARNAULT; A. ARTAMONOV; D. ARUTINOV; M. ASAI; S. ASAI; R. ASFANDIYAROV; S. ASK; B. ASMAN; D. ASNER; L. ASQUITH; K. ASSAMAGAN; A. ASTBURY; A. ASTVATSATOUROV; B. ATHAR; G. ATOIAN; B. AUBERT; B. AUERBACH; E. AUGE; K. AUGSTEN; M. AUROUSSEAU; N. AUSTIN; G. AVOLIO; R. AVRAMIDOU; D. AXEN; C. AY; G. AZUELOS; Y. AZUMA; M. A. BAAK; G. BACCAGLIONI; C. BACCI; A. M. BACH; H. BACHACOU; K. BACHAS; G. BACHY; M. BACKES; E. BADESCU; P. BAGNAIA; Y. BAI; D. C. BAILEY; T. BAIN; J. T. BAINES; O. K. BAKER; M. D. BAKER; S. BAKER; F. BALTASAR DOS SANTOS PEDROSA; E. BANAS; P. BANERJEE; S. BANERJEE; D. BANFI; A. BANGERT; V. BANSAL; S. P. BARANOV; S. BARANOV; A. BARASHKOU; T. BARBER; E. L. BARBERIO; D. BARBERIS; M. BARBERO; D. Y. BARDIN; T. BARILLARI; M. BARISONZI; T. BARKLOW; N. BARLOW; B. M. BARNETT; R. M. BARNETT; A. BARONCELLI; M. BARONE; A. J. BARR; F. BARREIRO; J. BARREIRO GUIMARAES DA COSTA; P. BARRILLON; V. BARTHELD; H. BARTKO; R. BARTOLDUS; D. BARTSCH; R. L. BATES; S. BATHE; L. BATKOVA; J. R. BATLEY; A. BATTAGLIA; M. BATTISTIN; G. BATTISTONI; F. BAUER; H. S. BAWA; M. BAZALOVA; B. BEARE; T. BEAU; P. H. BEAUCHEMIN; R. BECCHERLE; N. BECERICI; P. BECHTLE; G. A. BECK; H. P. BECK; M. BECKINGHAM; K. H. BECKS; A. J. BEDDALL; A. BEDDALL;arXiv: 1004.5293 , http://arxiv.org/abs/1004.5293
handle: 2066/83974 , 11245/1.333190 , https://repository.ubn.ru.nl/handle/2066/83974 , 10261/378091 , 2434/149370 , 2078.1/138150 , 20.500.11770/156635 , 11390/884357 , 2108/15258 , 11590/131913 , 11573/357211 , 11567/295714 , 11568/136991 , 11587/345051 , 11585/95160 , 11571/279505 , 20.500.12575/69680 , 1721.1/116463 , 2440/112846
arXiv: 1004.5293 , http://arxiv.org/abs/1004.5293
handle: 2066/83974 , 11245/1.333190 , https://repository.ubn.ru.nl/handle/2066/83974 , 10261/378091 , 2434/149370 , 2078.1/138150 , 20.500.11770/156635 , 11390/884357 , 2108/15258 , 11590/131913 , 11573/357211 , 11567/295714 , 11568/136991 , 11587/345051 , 11585/95160 , 11571/279505 , 20.500.12575/69680 , 1721.1/116463 , 2440/112846
The ATLAS Inner Detector is a composite tracking system consisting of silicon pixels, silicon strips and straw tubes in a 2 T magnetic field. Its installation was completed in August 2008 and the detector took part in data- taking with single LHC beams and cosmic rays. The initial detector operation, hardware commissioning and in-situ calibrations are described. Tracking performance has been measured with 7.6 million cosmic-ray events, collected using a tracking trigger and reconstructed with modular pattern-recognition and fitting software. The intrinsic hit efficiency and tracking trigger efficiencies are close to 100%. Lorentz angle measurements for both electrons and holes, specific energy-loss calibration and transition radiation turn-on measurements have been performed. Different alignment techniques have been used to reconstruct the detector geometry. After the initial alignment, a transverse impact parameter resolution of 22.1+/-0.9 ��m and a relative momentum resolution ��p/p = (4.83+/-0.16) \times 10-4 GeV-1 \times pT have been measured for high momentum tracks. 34 pages, 25 figures
Archivio della Ricer... arrow_drop_down Archivio della Ricerca - Università di PisaArticle . 2010License: CC BY NCData sources: Archivio della Ricerca - Università di PisaUniversity of California: eScholarshipArticle . 2010License: CC BYFull-Text: https://escholarship.org/uc/item/2nr9956hData sources: Bielefeld Academic Search Engine (BASE)Ankara University Open Archive SystemArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)DSpace@MIT (Massachusetts Institute of Technology)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2010License: CC BY NCFull-Text: http://hdl.handle.net/2440/112846Data sources: Bielefeld Academic Search Engine (BASE)https://publications.goettinge...Part of book or chapter of bookLicense: CC BYData sources: UnpayWallEuropean Physical Journal C: Particles and FieldsArticle . 2010 . Peer-reviewedData sources: CrossrefEuropean Physical Journal C: Particles and FieldsArticle . 2010Data sources: DANS (Data Archiving and Networked Services)European Physical Journal C: Particles and FieldsArticle . 2010Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2010Data sources: Recolector de Ciencia Abierta, RECOLECTAEuropean Physical Journal C: Particles and FieldsArticle . 2010Data sources: Universiteit van Amsterdam Digital Academic RepositoryEuropean Physical Journal C: Particles and FieldsArticle . 2010Data sources: Oxford University Research ArchivePublikationenserver der Georg-August-Universität GöttingenArticle . 2010 . Peer-reviewedINRIA a CCSD electronic archive serverArticle . 2010Data sources: INRIA a CCSD electronic archive serverUniversiteit van Amsterdam Digital Academic RepositoryArticle . 2010Data sources: Universiteit van Amsterdam Digital Academic RepositoryeScholarship - University of CaliforniaArticle . 2010Data sources: eScholarship - University of CaliforniaUniversiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2010Data sources: Bielefeld Academic Search Engine (BASE)Archivio Istituzionale dell'Università della CalabriaArticle . 2010Data sources: Archivio Istituzionale dell'Università della CalabriaArchivio della Ricerca - Università di Roma Tor vergataArticle . 2010Data sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della Ricerca - Università degli Studi Roma TreArticle . 2010Data sources: Archivio della Ricerca - Università degli Studi Roma TreArchivio della ricerca- Università di Roma La SapienzaArticle . 2010Data sources: Archivio della ricerca- Università di Roma La SapienzaThe University of Manchester - Institutional RepositoryArticle . 2010Data sources: The University of Manchester - Institutional RepositoryUniversity of Copenhagen: ResearchArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2011 . Peer-reviewedData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2010License: arXiv Non-Exclusive DistributionData sources: DatacitePublikationenserver der Georg-August-Universität GöttingenArticle . 2019Göttingen Research Online PublicationsArticle . 2019Data sources: Göttingen Research Online PublicationsArchivio della Ricerca - Università di Roma Tor vergataArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2010Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)Archive de l'Observatoire de Paris (HAL)Article . 2010Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-642-22116-3_2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 97 citations 97 popularity Top 10% influence Top 1% impulse Top 10% Powered by BIP!
visibility 12visibility views 12 download downloads 21 Powered bymore_vert Archivio della Ricer... arrow_drop_down Archivio della Ricerca - Università di PisaArticle . 2010License: CC BY NCData sources: Archivio della Ricerca - Università di PisaUniversity of California: eScholarshipArticle . 2010License: CC BYFull-Text: https://escholarship.org/uc/item/2nr9956hData sources: Bielefeld Academic Search Engine (BASE)Ankara University Open Archive SystemArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)DSpace@MIT (Massachusetts Institute of Technology)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2010License: CC BY NCFull-Text: http://hdl.handle.net/2440/112846Data sources: Bielefeld Academic Search Engine (BASE)https://publications.goettinge...Part of book or chapter of bookLicense: CC BYData sources: UnpayWallEuropean Physical Journal C: Particles and FieldsArticle . 2010 . Peer-reviewedData sources: CrossrefEuropean Physical Journal C: Particles and FieldsArticle . 2010Data sources: DANS (Data Archiving and Networked Services)European Physical Journal C: Particles and FieldsArticle . 2010Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2010Data sources: Recolector de Ciencia Abierta, RECOLECTAEuropean Physical Journal C: Particles and FieldsArticle . 2010Data sources: Universiteit van Amsterdam Digital Academic RepositoryEuropean Physical Journal C: Particles and FieldsArticle . 2010Data sources: Oxford University Research ArchivePublikationenserver der Georg-August-Universität GöttingenArticle . 2010 . Peer-reviewedINRIA a CCSD electronic archive serverArticle . 2010Data sources: INRIA a CCSD electronic archive serverUniversiteit van Amsterdam Digital Academic RepositoryArticle . 2010Data sources: Universiteit van Amsterdam Digital Academic RepositoryeScholarship - University of CaliforniaArticle . 2010Data sources: eScholarship - University of CaliforniaUniversiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2010Data sources: Bielefeld Academic Search Engine (BASE)Archivio Istituzionale dell'Università della CalabriaArticle . 2010Data sources: Archivio Istituzionale dell'Università della CalabriaArchivio della Ricerca - Università di Roma Tor vergataArticle . 2010Data sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della Ricerca - Università degli Studi Roma TreArticle . 2010Data sources: Archivio della Ricerca - Università degli Studi Roma TreArchivio della ricerca- Università di Roma La SapienzaArticle . 2010Data sources: Archivio della ricerca- Università di Roma La SapienzaThe University of Manchester - Institutional RepositoryArticle . 2010Data sources: The University of Manchester - Institutional RepositoryUniversity of Copenhagen: ResearchArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2011 . Peer-reviewedData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2010License: arXiv Non-Exclusive DistributionData sources: DatacitePublikationenserver der Georg-August-Universität GöttingenArticle . 2019Göttingen Research Online PublicationsArticle . 2019Data sources: Göttingen Research Online PublicationsArchivio della Ricerca - Università di Roma Tor vergataArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2010Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)Archive de l'Observatoire de Paris (HAL)Article . 2010Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-642-22116-3_2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2018 Finland, France, United Kingdom, FrancePublisher:Wiley Funded by:UKRI | Impacts of habitat fragme..., UKRI | Impacts of global warming...UKRI| Impacts of habitat fragmentation in a warming world ,UKRI| Impacts of global warming in sentinel systems: from genes to ecosystemsOrla McLaughlin; Sinikka I. Robinson; Sinikka I. Robinson; Eoin J. O'Gorman; Bryndís Marteinsdóttir; Bryndís Marteinsdóttir;Abstract Global warming is predicted to significantly alter species physiology, biotic interactions and thus ecosystem functioning, as a consequence of coexisting species exhibiting a wide range of thermal sensitivities. There is, however, a dearth of research examining warming impacts on natural communities. Here, we used a natural warming experiment in Iceland to investigate the changes in above‐ground terrestrial plant and invertebrate communities along a soil temperature gradient (10°C–30°C). The α‐diversity of plants and invertebrates decreased with increasing soil temperature, driven by decreasing plant species richness and increasing dominance of certain invertebrate species in warmer habitats. There was also greater species turnover in both plant and invertebrate communities with increasing pairwise temperature difference between sites. There was no effect of temperature on percentage cover of vegetation at the community level, driven by contrasting effects at the population level. There was a reduction in the mean body mass and an increase in the total abundance of the invertebrate community, resulting in no overall change in community biomass. There were contrasting effects of temperature on the population abundance of various invertebrate species, which could be explained by differential thermal tolerances and metabolic requirements, or may have been mediated by changes in plant community composition. Our study provides an important baseline from which the effect of changing environmental conditions on terrestrial communities can be tracked. It also contributes to our understanding of why community‐level studies of warming impacts are imperative if we are to disentangle the contrasting thermal responses of individual populations.
Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2018License: CC BYFull-Text: https://hal.inrae.fr/hal-02625664/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2018License: CC BYFull-Text: https://hal.inrae.fr/hal-02625664/documentImperial College London: SpiralArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10044/1/56395Data sources: Bielefeld Academic Search Engine (BASE)University of Essex Research RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2018Data sources: Spiral - Imperial College Digital RepositoryHELDA - Digital Repository of the University of HelsinkiArticle . 2018 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)HAL - Université de Bourgogne (HAL-uB)Other literature type . 2018Data sources: HAL - Université de Bourgogne (HAL-uB)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2656.12798&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 55 citations 55 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2018License: CC BYFull-Text: https://hal.inrae.fr/hal-02625664/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2018License: CC BYFull-Text: https://hal.inrae.fr/hal-02625664/documentImperial College London: SpiralArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10044/1/56395Data sources: Bielefeld Academic Search Engine (BASE)University of Essex Research RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2018Data sources: Spiral - Imperial College Digital RepositoryHELDA - Digital Repository of the University of HelsinkiArticle . 2018 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)HAL - Université de Bourgogne (HAL-uB)Other literature type . 2018Data sources: HAL - Université de Bourgogne (HAL-uB)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2656.12798&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type , Preprint 2018 France, France, France, Netherlands, France, France, FrancePublisher:Cold Spring Harbor Laboratory Dakos, Vasilis; Matthews, Blake; Hendry, Andrew; Levine, Jonathan; Loeuille, Nicolas; Norberg, Jon; Nosil, Patrik; Scheffer, Marten; de Meester, Luc;pmid: 30778190
AbstractThere is growing concern over tipping points arising in ecosystems due to the crossing of environmental thresholds. Tipping points lead to strong and possibly irreversible shifts between alternative ecosystem states incurring high societal costs. Traits are central to the feedbacks that maintain alternative ecosystem states, as they govern the responses of populations to environmental change that could stabilize or destabilize ecosystem states. However, we know little about how evolutionary changes in trait distributions over time affect the occurrence of tipping points, and even less about how big scale ecological shifts reciprocally interact with trait dynamics. We argue that interactions between ecological and evolutionary processes should be taken into account for understanding the balance of feedbacks governing tipping points in nature.
Hyper Article en Lig... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2019Full-Text: https://hal.science/hal-02194979Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Nature Ecology & EvolutionArticle . 2019 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/447227&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 278 citations 278 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2019Full-Text: https://hal.science/hal-02194979Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Nature Ecology & EvolutionArticle . 2019 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/447227&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2013 ItalyPublisher:Oxford University Press (OUP) Funded by:EC | PARTNEREC| PARTNERTinganelli, Walter; Ma, Ning-Yi; von Neubeck, Cläre; Maier, Andreas; Schicker, Corinna; Kraft-Weyrather, Wilma; Durante, Marco; Ma, N.-Y.;To measure the effect of acute oxygen depletion on cell survival for different types of radiation, experiments have been performed using Chinese hamster ovary (CHO) cells and RAT-1 rat prostate cancer cells. A special chamber has been developed to perform irradiations under different levels of oxygenation. The oxygen concentrations used were normoxia (air), hypoxia (94.5% N2, 5% CO2, 0.5% O2) and anoxia (95% N2, 5% CO2). Cells were exposed to X-rays and to C-, N- or O-ions with linear energy transfer (LET) values ranging from 100-160 keV/µm. The oxygen enhancement ratio (OER) and relative biological effectiveness (RBE) values have been calculated from the measured clonogenic survival curves. For both cell lines, the X-ray OER depended on the survival level. For particle irradiation, OER was not dependent on the survival level but decreased with increasing LET. The RBE of CHO cells under oxic conditions reached a plateau for LET values above 100 keV/µm, while it was still increasing under anoxia. In conclusion, the results demonstrated that our chamber could be used to measure radiosensitivity under intermediate hypoxia. Measurements suggest that ions heavier than carbon could be of additional advantage in the irradiation, especially of radioresistant hypoxic tumor regions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/jrr/rrt065&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 52 citations 52 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/jrr/rrt065&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 United KingdomPublisher:Elsevier BV Funded by:SNSF | Flow driven endovascular ..., NIH | Building sustainable and ..., SNSF | Knowledge Conversations +19 projectsSNSF| Flow driven endovascular electroencephalography (endoEEG) probes for epilepsy treatment ,NIH| Building sustainable and innovative research in Cancer and Cardiovascular disease: Planning the design and development of the South American Center of Research Excellence to Counter NCDs (SACREN) ,SNSF| Knowledge Conversations ,SNSF| Addressing the double burden of disease: improving health systems for Noncommunicable and Neglected Tropical Diseases ,SNSF| Theorizing teaching: Current status and open issues ,CIHR ,UKRI| Towards an Integrated Global Transport and Health Assessment Tool (TIGTHAT) ,UKRI| Chronic Kidney Disease of unknown cause (CKDu) in disadvantaged communities in low-and-middle income countries (LMICs) ,WT| Risk-based Prevention of Heart Disease and Stroke in Latin America and the Caribbean: A Pooled Analysis of Prospective Cohorts and Population-Based Surveys ,NIH| Implementation of foot thermometry and SMS to prevent diabetic foot ulcer ,WT| What makes cities healthy, equitable, and environmentally sustainable? Lessons from Latin America ,WT| Does household food biodiversity protect adults against malnutrition and favour the resilience of Shawi Indigenous households to climate change related events? ,UKRI| Implementation of COPD Case Finding and Self-Management Action Plans in Low and Middle Income Countries ,WT| REDEEM trial: The effect of individual and mixed REwards in DiabEtEs Management, a randomised controlled trial ,NIH| Planning to Establish a Regional Center of NCD Research Training in Peru ,NIH| Latin America Treatment & Innovation Network in Mental Health (LATIN-MH) ,WT| Field test of two alternative methods for diabetes: A pilot study to expand screening at the population level. ,UKRI| REDEEM trial: The effect of individual and mixed REwards in DiabEtEs Management, a randomised controlled trial ,NIH| Household Air Pollution and Health: A Multi-Country LPG Intervention Trial ,SNSF| Diversity of higher education systems, differentiation processes and policy mixes ,WT| The effect on cardiovascular risk factors of migration from rural to urban areas in Lima, Peru. ,NIH| Launching a salt substitute to reduce blood pressure at the population level-PeruZavaleta-Cortijo C.; Ford J.D.; Arotoma-Rojas I.; Lwasa S.; Lancha-Rucoba G.; García P.J.; Miranda J.J.; Namanya D.B.; New M.; Wright C.J.; Berrang-Ford L.; Carcamo C.; Edge V.; Harper S.L.; Indigenous Health Adaptation to Climate Change Research Team;Les populations autochtones sont particulièrement exposées au risque de COVID-19 en raison de facteurs tels que la discrimination, l'exclusion sociale, la dépossession de terres et une forte prévalence des formes de malnutrition.1Anderson I Robson B Connolly M et al. La santé des peuples autochtones et tribaux (The Lancet-Lowitja Institute Global Collaboration) : une étude démographique. 2016 ; 388: 131-157Sommaire Texte intégral Texte intégral PDF PubMed Scopus (592) Google Scholar Le changement climatique aggrave bon nombre de ces causes d'inégalités en matière de santé, sapant les mécanismes d'adaptation qui sont traditionnellement utilisés pour gérer des événements extrêmes tels que les pandémies et perturbant les systèmes alimentaires et les régimes alimentaires locaux.2Ford JD King N Galappaththi EK Pearce T McDowell G Harper SL La résilience des peuples autochtones aux changements environnementaux.Une Terre. 2020 ; 2: 532-543Summary Full Text Full Text PDF Scopus (122) Google Scholar Addressing underlying structural inequities and strengthening Indigenous knowledge systems offer opportunities for building resilience to compound socioecological shock, including climate effects and pandemics. Le changement climatique affecte les systèmes alimentaires autochtones, ce qui rend les populations autochtones vulnérables à l'insécurité alimentaire et nutritionnelle.3Rapport spécial du Groupe d'experts intergouvernemental sur l'évolution du climat : réchauffement climatique de 1,5°C.https ://www.ipcc.ch/sr15/Date : 2018Date d'accès : 24 juillet 2020Google Scholar La nature et l'étendue des effets de la COVID-19 sur les systèmes alimentaires autochtones sont encore largement inconnues, mais les résultats directs comprennent la mortalité due à une maladie grave, un accès réduit à la nourriture, des changements dans l'alimentation locale et des pertes économiques résultant des confinements. Ces résultats présentent des obstacles au rétablissement des populations déjà confrontées à d'importants défis nutritionnels. Les effets des pandémies précédentes sur les systèmes alimentaires autochtones ont affecté les enfants en particulier, lorsque les adultes sont tombés malades et que l'accès à la nourriture des ménages a été réduit.4Mamelund S-E Sattenspiel L Dimka J Mortalité associée à l'influenza pendant la pandémie de grippe de 1918–1919 en Alaska et au Labrador : une comparaison.Soc Sci Hist. 2013 ; 37: 177-229Google Scholar Prestation de services de santé inadéquate pour les populations autochtones, y compris un accès limité à desservices culturellement sûrs ,5Brascoupé S Waters C Sécurité culturelle explorant l'applicabilité du concept de sécurité culturelle à la santé autochtone et au bien-être communautaire.Int J Indigen Health. 2006 ; 5: 6-41Google Scholar ajoute une autre couche de complexité face à la pandémie de COVID-19. Les effets du changement climatique compromettent la sécurité alimentaire des Autochtones, ce qui compromet la résilience des populations autochtones aux pandémies. Dans le même temps, les perturbations de la sécurité alimentaire et nutritionnelle et les implications sanitaires qui en résultent pour les populations autochtones pendant les pandémies exacerbent leur vulnérabilité au changement climatique. Dans ce contexte, la compréhension, le renforcement et la protection des systèmes alimentaires autochtones dans le contexte du changement climatique doivent être une pierre angulaire de la reprise post-pandémique. En Amazonie péruvienne, certaines communautés autochtones Shawi ont choisi de s'isoler dans la forêt pendant la pandémie de COVID-19.6Zavaleta C COVID-19 : examiner les données des peuples autochtones.Nature. 2020 ; 580: 185Crossref PubMed Scopus (19) Google Scholar Ces communautés s'appuient sur les régimes alimentaires traditionnels et les connaissances autochtones des systèmes alimentaires locaux, et elles ont peu de disponibilité et d'accessibilité aux programmes d'aide alimentaire externes et gouvernementaux. Au cours de cette auto-isolement, la dépendance aux systèmes alimentaires autochtones est inextricablement liée aux connaissances autochtones sur la terre, les rivières et la biodiversité, qui comprennent la connaissance des techniques locales de conservation et de préparation des aliments.7 Zavaleta C Berrang-Ford L et al. De multiples facteurs non climatiques d'insécurité alimentaire renforcent les trajectoires de mauvaise adaptation au changement climatique chez les Shawi autochtones péruviens en Amazonie.PLoS One. 2018 ; 13e0205714Crossref PubMed Scopus (28) Google Scholar Cependant, la nourriture de la forêt est affectée par la perte de biodiversité et de végétation : les vagues de chaleur, les variations de précipitations et les phénomènes météorologiques extrêmes plus fréquents et intenses sont tous liés à la déforestation et au changement climatique et sont aggravés par un affaiblissement des compétences traditionnelles de chasse et de pêche en raison des changements climatiques et sociétaux.6 Zavaleta C COVID-19 : examiner les données des peuples autochtones.Nature. 2020 ; 580: 185Crossref PubMed Scopus (19) Google Scholar, 8Marengo JA Souza Jr, CM Thonicke K et al.Changements du climat et de l'utilisation des terres dans la région amazonienne : variabilité et tendances actuelles et futures.Front Earth Sci. 2018 ; 6: 228Crossref Scopus (219) Google Scholar, 9Harper SL Berrang-Ford L Carcamo C et al. The Indigenous climate–food–health nexus.in : Mason LR Rigg J People and climate change : vulnerability, adaptation, and social justice. Oxford Scholarship Online, Oxford2019: 184Crossref Google Scholar In the Arctic, Inuit are witnessing some of the most rapid rates of warming worldwide.3Intergovernmental Panel on Climate ChangeSpecial report : global warming of 1,5°C .https ://www.ipcc.ch/sr15/Date : 2018Date d'accès : 24 juillet 2020Google Scholar L'éloignement de la région et les restrictions de voyage ont contribué à freiner la propagation de la COVID-19 ; cependant, les perturbations des réseaux d'approvisionnement ont eu des effets sur la disponibilité alimentaire dans les communautés qui dépendent de la nourriture au détail acheminée par avion depuis les régions du sud. Pour gérer ces perturbations, récolter et partager des aliments locaux, ce qui est largement pratiqué dans de nombreuses régionsarctiques9, Harper SL Berrang-Ford L Carcamo C et al. The Indigenous climate-food-health nexus.in : Mason LR Rigg J People and climate change : vulnerability, adaptation, and social justice. Oxford Scholarship Online, Oxford2019: 184Crossref Google Scholar a aidé à maintenir la sécurité alimentaire et nutritionnelle. Simultanément, cependant, ces systèmes alimentaires autochtones locaux ont été compromis par des extrêmes climatiques, notamment des températures record, la sécheresse et les incendies de forêt. En Ouganda, certaines populations autochtones (par exemple, Batwa) ont adhéré aux mesures COVID-19, notamment la distanciation physique, le maintien à la maison et l'évitement des centres commerciaux en raison de la foule, qui compromet la sécurité alimentaire et nutritionnelle en limitant l'accès aux marchés. En outre, l'aide alimentaire gouvernementale en temps opportun n'a pas atteint de manière adéquate les populations autochtones. Le confinement prolongé en Ouganda, en particulier dans les districts frontaliers où vivent de nombreuses populations autochtones, a entravé leur mobilité pour accéder aux zones forestières pour la recherche de nourriture, l'accès aux communautés voisines pour offrir de la main-d' œuvre pour l'échange de nourriture et l'accès aux champs agricoles pour la production alimentaire. Ces défis sont exacerbés par les effets climatiques existants, 9Harper SL Berrang-Ford L Carcamo C et al. The Indigenous climate-food-health nexus.in : Mason LR Rigg J People and climate change : vulnerability, adaptation, and social justice. Oxford Scholarship Online, Oxford2019: 184Crossref Google Scholar, y compris les récentes inondations en 2019 qui ont endommagé les cultures, compromis la productionalimentaire ,10Chang' a LB Kijazi AL Mafuru KB et al. Évaluation de l'évolution et des impacts socio-économiques des précipitations extrêmes en octobre 2019 sur l'Afrique de l'Est. Atmos Clim Sci. 2020 ; 10: 319-338Google Scholar et a réduit la résilience des populations autochtones lorsque la pandémie de COVID-19 a frappé. Le changement climatique remet en question la résilience des systèmes alimentaires autochtones avec des répercussions directes et immédiates sur la santé et la nutrition des populations autochtones.2Ford JD King N Galappaththi EK Pearce T McDowell G Harper SL La résilience des peuples autochtones aux changements environnementaux.Une Terre. 2020 ; 2: 532-543Résumé Texte intégral PDF Scopus (122) Google Scholar Dans notre monde hautement connecté, la pandémie de COVID-19 a facilement voyagé à travers les continents, atteignant des zones géographiques éloignées et des communautés autochtones en moins de 6 mois. Il existe une fenêtre d'opportunité vitale pour soutenir les populations autochtones qui font face au double fardeau syndémique des risques socioécologiques composés et en cascade, tels que le changement climatique et les pandémies, en donnant la priorité à la protection des principales sources alimentaires autochtones (par exemple, les forêts tropicales, les écosystèmes arctiques), en renforçant et en soutenant l'importance des systèmes de connaissances autochtones, en améliorant l'accès à des ressources sanitaires culturellement sûres et en sauvegardant l'accès et les droits à la terre et aux ressources naturelles des populations autochtones. Le moment est venu de veiller à ce que les décisions et les trajectoires de développement actuelles ne compromettent pas davantage la résilience des systèmes alimentaires autochtones, qui jouent un rôle essentiel dans la réponse des populations autochtones aux pandémies et aux changements climatiques actuels et futurs. Cette publication en ligne a été corrigée. La version corrigée est apparue pour la première fois sur thelancet.com/planetary-health le 9 septembre 2020. Cette publication en ligne a été corrigée. La version corrigée est apparue pour la première fois sur thelancet.com/planetary-health le 9 septembre 2020. Nous ne déclarons aucun intérêt concurrent. CZ-C a été soutenu par le National Institute for Health Research (NIHR), en utilisant le financement de l'aide publique au développement du Royaume-Uni, et par Wellcome (218743/Z/19/Z) dans le cadre du partenariat NIHR–Wellcome pour la recherche en santé mondiale. CZ-C est membre du Groupe de recherche sur la santé autochtone et l'adaptation au changement climatique. IA-R, JDF, SL, PJG, DBN, MN, CJW, LB-F et SLH sont financés par les Instituts de recherche en santé du Canada dans le cadre du programme Indigenous Health Adaptation to Climate Change. JJM reconnaît le soutien de l'Alliance for Health Policy and Systems Research (HQHSR1206660), des Bernard Lown Scholars in Cardiovascular Health Program de Harvard T H Chan School of Public Health (BLSCHP-1902), Bloomberg Philanthropies (via University of North Carolina at Chapel Hill School of Public Health), Fondecyt (National Fund for Scientific, Technological Development and Technological Innovation) via Cienciactiva at Concytec (Consejo Nacional de Ciencia Tecnología e Innovacíon Tecnologica), British Council, British Embassy and the Newton-Paulet Fund (223-2018, 224-2018), Department for International Development, Medical Research Council (MRC) et Wellcome Global Health Trials (MR/M007405/1), Fogarty International Center (R21TW009982, D71TW010877), Grands Défis Canada (0335-04), Centre de recherches pour le développement international Canada (CRDI 106887, 108167), Institut interaméricain de recherche sur le changement global (IAI CRN3036), MRC (MR/P008984/1, MR/P024408/1, MR/P02386X/1), Institut national du cancer (1P20CA217231), Institut national du cœur, des poumons et du sang (HHSN268200900033C, 5U01HL114180, 1UM1HL134590), Institut national de la santé mentale (1U19MH098780), Fonds national suisse pour la science (40P740-160366), Bienvenu (074833/Z/04/Z, 093541/Z/10/Z, 103994/Z/14/Z, 107435/Z/15/Z, 205177/Z/16/Z, 214185/Z/18/Z, 218743/Z/19/Z), et la World Diabetes Foundation (WDF15-1224). Les opinions exprimées sont celles des auteurs et pas nécessairement celles de Wellcome, du NIHR ou du ministère de la Santé et des Affaires sociales. Les sources de financement n'ont joué aucun rôle dans la préparation de ce commentaire ou dans la décision de soumettre pour publication. Nous reconnaissons la contribution de Matthew King. Télécharger .pdf (.12 Mo) Aide avec les fichiers pdf Annexe supplémentaire Correction à Lancet Planet Health 2020 ; 4 : e381-82Zavaleta-Cortijo C, Ford JD, Arotoma-Rojas I, et al. Changement climatique et COVID-19 : renforcer les systèmes alimentaires autochtones. Lancet Planet Health 2020 ; 4 : e381-82 - Dans ce commentaire, le nom du septième auteur devrait être « J Jaime Miranda ». Cette correction a été apportée en date du 9 septembre 2020. Texte intégral PDF Open AccessSupport Indigenous food system biocultural diversityLe commentaire de Carol Zavaleta-Cortijo et de ses collègues1 était opportun pour souligner les défis auxquels sont confrontés les peuples autochtones en raison des effets combinés du changement climatique, de la COVID-19 et des inégalités de longue date. Bien que la pression sur les moyens de subsistance autochtones ne soit pas nouvelle, les effets actuels sont extrêmes, à la fois en termes de décès dus au virus et de perturbations des modes de vie, y compris les systèmes alimentaires autochtones. Texte intégral PDF en libre accès Las poblaciones indígenas corren un riesgo especialmente alto de COVID-19 debido a factores como la discriminación, la exclusión social, el despojo de tierras y una alta prevalencia de formas de malnutrición.1Anderson I Robson B Connolly M et al.Ind Indigenous and tribal peoples 'health (The Lancet-Lowitja Institute Global Collaboration): a population study.Lancet. 2016; 388: 131-157Resumen Texto completo PDF PubMed Scopus (592) Google Scholar El cambio climático está agravando muchas de estas causas de desigualdades en la salud, socavando los mecanismos de afrontamiento que tradicionalmente se utilizan para gestionar eventos extremos como pandemias e interrumpiendo los sistemas alimentarios y las dietas locales.2Ford JD King N Galappaththi EK Pearce T McDowell G Harper SL La resiliencia de los pueblos indígenas al cambio ambiental. Una sola Tierra. 2020; 2: 532-543Resumen Texto completo Texto completo PDF Scopus (122) Google Scholar Abordar las desigualdades estructurales subyacentes y fortalecer los sistemas de conocimiento indígenas ofrece oportunidades para desarrollar la resiliencia a los choques socioecológicos compuestos, incluidos los efectos climáticos y las pandemias. El cambio climático está afectando a los sistemas alimentarios indígenas, lo que hace que las poblaciones indígenas sean vulnerables a la inseguridad alimentaria y nutricional.3Informe especial del Panel Intergubernamental sobre el Cambio Climático: calentamiento global de 1·5°C.https://www.ipcc.ch/sr15/Date: 2018Fecha de acceso: 24 de julio de 2020Google Scholar La naturaleza y el alcance de los efectos de COVID-19 en los sistemas alimentarios indígenas aún se desconocen en gran medida, pero los resultados directos incluyen la mortalidad por enfermedades graves, la reducción del acceso a los alimentos, los cambios en la dieta local y las pérdidas económicas derivadas de los confinamientos. Estos resultados presentan impedimentos para la recuperación de las poblaciones que ya enfrentan desafíos nutricionales sustanciales. Los efectos de pandemias anteriores en los sistemas alimentarios indígenas afectaron a los niños en particular, cuando los adultos se enfermaron y se redujo el acceso a los alimentos en el hogar.4Mamelund S-E Sattenspiel L Dimka J La mortalidad asociada a la influenza durante la pandemia de influenza de 1918–1919 en Alaska y Labrador: una comparación.Soc Sci Hist. 2013; 37: 177-229Google Scholar Prestación inadecuada de servicios de salud para las poblaciones indígenas, incluido el escaso acceso a servicios culturalmente seguros ,5Brascoupé S Waters C Seguridad cultural explorando la aplicabilidad del concepto de seguridad cultural a la salud aborigen y el bienestar de la comunidad. Int J Indigen Health. 2006; 5: 6-41Google Scholar añade otra capa de complejidad ante la pandemia de COVID-19. Los efectos del cambio climático socavan la seguridad alimentaria indígena, lo que a su vez compromete la resiliencia de las poblaciones indígenas a las pandemias. Al mismo tiempo, las interrupciones en la seguridad alimentaria y nutricional y las consiguientes implicaciones para la salud de las poblaciones indígenas durante las pandemias exacerban su vulnerabilidad al cambio climático. En este contexto, comprender, reforzar y proteger los sistemas alimentarios indígenas en el contexto de un clima cambiante debe ser una piedra angular de la recuperación posterior a la pandemia. En la Amazonía peruana, algunas comunidades indígenas shawi han optado por aislarse en el bosque durante la pandemia de COVID-19.6Zavaleta C COVID-19: revisar los datos de los pueblos indígenas. Naturaleza. 2020; 580: 185Crossref PubMed Scopus (19) Google Scholar Estas comunidades confían en las dietas tradicionales y el conocimiento indígena de los sistemas alimentarios locales, y tienen poca disponibilidad y accesibilidad a los alimentos externos y a los programas gubernamentales de ayuda alimentaria. Durante este autoaislamiento, la dependencia de los sistemas alimentarios indígenas está inextricablemente vinculada al conocimiento indígena sobre la tierra, los ríos y la biodiversidad, que incluye el conocimiento de las técnicas locales para preservar y preparar alimentos.7Zavaleta C Berrang-Ford L et al. Múltiples impulsores no climáticos de la inseguridad alimentaria refuerzan las trayectorias de mala adaptación al cambio climático entre los indígenas Shawi peruanos en la Amazonía.PLoS One. 2018; 13e0205714Crossref PubMed Scopus (28) Google Scholar Sin embargo, los alimentos del bosque se ven afectados por la biodiversidad y la pérdida de vegetación: las olas de calor, la variación de las precipitaciones y los eventos climáticos extremos más frecuentes e intensos están relacionados con la deforestación y el cambio climático y se ven agravados por un debilitamiento de las habilidades tradicionales de caza y pesca como resultado de los cambios climáticos y sociales.6Zavaleta C COVID-19: revisar los datos de los pueblos indígenas. Naturaleza. 2020; 580: 185Crossref PubMed Scopus (19) Google Scholar, 8Marengo JA Souza Jr, CM Thonicke K et al. Cambios en el clima y el uso de la tierra en la región amazónica: variabilidad y tendencias actuales y futuras. Front Earth Sci. 2018; 6: 228Crossref Scopus (219) Google Scholar, 9Harper SL Berrang-Ford L Carcamo C et al.The Indigenous climate–food–health nexus.in: Mason LR Rigg J People and climate change: vulnerability, adaptation, and social justice. Oxford Scholarship Online, Oxford2019: 184Crossref Google Scholar En el Ártico, los inuit son testigos de algunas de las tasas de calentamiento más rápidas a nivel mundial.3Informe especial del Panel Intergubernamental sobre el Cambio Climático: calentamiento global de 1·5°C.https://www.ipcc.ch/sr15/Date: 2018Fecha de acceso: 24 de julio de 2020Google Scholar La lejanía de la región y las restricciones de viaje han ayudado a reducir la propagación de COVID-19; sin embargo, las interrupciones en las redes de suministro han tenido efectos en la disponibilidad de alimentos en las comunidades que dependen de los alimentos minoristas que llegan desde las regiones del sur. Para gestionar estas interrupciones, cosechar y compartir alimentos locales, que se practica ampliamente en muchas regiones árticas ,9HarperSL Berrang-Ford L Carcamo C et al. The Indigenous climate-food-health nexus.in: Mason LR Rigg J People and climate change: vulnerability, adaptation, and social justice. Oxford Scholarship Online, Oxford2019: 184Crossref Google Scholar ha ayudado a mantener la seguridad alimentaria y nutricional. Al mismo tiempo, sin embargo, estos sistemas alimentarios indígenas locales se han visto comprometidos por los extremos climáticos, incluidas las temperaturas récord, la sequía y los incendios forestales. En Uganda, algunas poblaciones indígenas (por ejemplo, Batwa) se han adherido a las medidas de COVID-19, incluido el distanciamiento físico, quedarse en casa y evitar los centros comerciales debido a las multitudes, que desafían la seguridad alimentaria y nutricional al restringir el acceso a los mercados. Además, la ayuda alimentaria gubernamental oportuna no ha llegado adecuadamente a las poblaciones indígenas. El confinamiento prolongado en Uganda, particularmente para los distritos fronterizos donde viven muchas poblaciones indígenas, ha obstaculizado su movilidad para acceder a las áreas boscosas para alimentarse, el acceso a las comunidades cercanas para ofrecer mano de obra para el intercambio de alimentos y el acceso a los campos agrícolas para la producción de alimentos. Estos desafíos se ven exacerbados por los efectos climáticos existentes ,9Harper SL Berrang-Ford L Carcamo C et al. The Indigenous climate-food-health nexus.in: Mason LR Rigg J People and climate change: vulnerability, adaptation, and social justice. Oxford Scholarship Online, Oxford2019: 184Crossref Google Scholar, incluidas las recientes inundaciones en 2019 que dañaron los cultivos, comprometieron la producción de alimentos ,10Chang 'a LB Kijazi AL Mafuru KB et al. Evaluación de la evolución y los impactos socioeconómicos de las precipitaciones extremas en octubre de 2019 en el este de África. Atmos Clim Sci. 2020; 10: 319-338Google Scholar y redujo la resiliencia de las poblaciones indígenas cuando llegó la pandemia de COVID-19. El cambio climático desafía la resiliencia de los sistemas alimentarios indígenas con repercusiones directas e inmediatas para la salud y la nutrición de las poblaciones indígenas.2Ford JD King N Galappaththi EK Pearce T McDowell G Harper SL The resilience of Indigenous Peoples to environmental change. One Earth. 2020; 2: 532-543Resumen Texto completo Texto completo PDF Scopus (122) Google Académico En nuestro mundo altamente conectado, la pandemia de COVID-19 ha viajado fácilmente a través de continentes, llegando a ubicaciones geográficas remotas y comunidades indígenas en menos de 6 meses. Existe una ventana de oportunidad vital para apoyar a las poblaciones indígenas que enfrentan la carga doble y sindémica de los peligros socioecológicos compuestos y en cascada, como el cambio climático y las pandemias, priorizando la protección de las fuentes clave de alimentos indígenas (por ejemplo, los bosques tropicales, los ecosistemas árticos), reforzando y apoyando la importancia de los sistemas de conocimiento indígenas, mejorando el acceso a recursos de salud culturalmente seguros y salvaguardando el acceso y los derechos a la tierra y los recursos naturales de las poblaciones indígenas. Este es el momento de garantizar que las decisiones actuales y las trayectorias de desarrollo no pongan en peligro aún más la resiliencia de los sistemas alimentarios indígenas, que tienen un papel integral en la respuesta de las poblaciones indígenas a las pandemias y los cambios climáticos actuales y futuros. Esta publicación en línea ha sido corregida. La versión corregida apareció por primera vez en thelancet.com/planetary-health el 9 de septiembre de 2020. Esta publicación en línea ha sido corregida. La versión corregida apareció por primera vez en thelancet.com/planetary-health el 9 de septiembre de 2020. Declaramos que no hay intereses en competencia. CZ-C recibió el apoyo del Instituto Nacional de Investigación en Salud (NIHR), utilizando los fondos de la Asistencia Oficial para el Desarrollo del Reino Unido, y de Wellcome (218743/Z/19/Z) en el marco de la Asociación NIHR–Wellcome para la Investigación en Salud Global. CZ-C es miembro del Grupo de Investigación de Salud y Adaptación Indígena al Cambio Climático. IA-R, JDF, SL, PJG, DBN, MN, CJW, LB-F y SLH están financiados por los Institutos Canadienses de Investigación en Salud a través del programa de Adaptación de la Salud Indígena al Cambio Climático. JJM reconoce el apoyo de Alliance for Health Policy and Systems Research (HQHSR1206660), Bernard Lown Scholars in Cardiovascular Health Program en Harvard T H Chan School of Public Health (BLSCHP-1902), Bloomberg Philanthropies (a través de la Escuela de Salud Pública de la Universidad de Carolina del Norte en Chapel Hill), Fondecyt (Fondo Nacional para el Desarrollo Científico, Tecnológico y la Innovación Tecnológica) a través de Cienciactiva en Concytec (Consejo Nacional de Ciencia Tecnología e Innovación Tecnológica), British Council, Embajada Británica y el Fondo Newton-Paulet (223-2018, 224-2018), Departamento de Desarrollo Internacional, Consejo de Investigación Médica (MRC) y Wellcome Global Health Trials (MR/M007405/1), Fogarty International Center (R21TW009982, D71TW010877), Grand Challenges Canada (0335-04), International Development Research Center Canada (IDRC 106887, 108167), Inter-American Institute for Global Change Research (IAI CRN3036), MRC (MR/P008984/1, MR/P024408/1, MR/P02386X/1), National Cancer Institute (1P20CA217231), National Heart, Lung and Blood Institute (HHSN268200900033C, 5U01HL114180, 1UM1HL134590), National Institute of Mental Health (1U19MH098780), Swiss National Science Foundation (40P740-160366), Wellcome (074833/Z/04/Z, 093541/Z/10/Z, 103994/Z/14/Z, 107435/Z/15/Z, 205177/Z/16/Z, 214185/Z/18/Z, 218743/Z/19/Z), y la World Diabetes Foundation (WDF15-1224). Las opiniones expresadas son las de los autores y no necesariamente las de Wellcome, el NIHR o el Departamento de Salud y Asistencia Social. Las fuentes de financiación no tuvieron ningún papel en la preparación de este Comentario o en la decisión de enviarlo para su publicación. Reconocemos la contribución de Matthew King. Download .pdf (.12 MB) Help with pdf files Supplementary appendix Correction to Lancet Planet Health 2020; 4: e381–82Zavaleta-Cortijo C, Ford JD, Arotoma-Rojas I, et al. Cambio climático y COVID-19: reforzando los sistemas alimentarios indígenas. Lancet Planet Health 2020; 4: e381-82-En este Comentario, el nombre del séptimo autor debe ser "J Jaime Miranda". Esta corrección se ha realizado a partir del 9 de septiembre de 2020. PDF de texto completo Acceso abiertoApoyar la diversidad biocultural del sistema alimentario indígenaEl comentario de Carol Zavaleta-Cortijo y sus colegas1 fue oportuno al enfatizar los desafíos que enfrentan los pueblos indígenas debido a los efectos combinados del cambio climático, COVID-19 y las desigualdades de larga data. Aunque la presión sobre los medios de vida indígenas no es nada nuevo, los efectos actuales son extremos, tanto en términos de muertes debido al virus como de interrupciones en las formas de vida, incluidos los sistemas alimentarios indígenas. Acceso abierto en PDF de texto completo Indigenous populations are at especially high risk from COVID-19 because of factors such discrimination, social exclusion, land dispossession, and a high prevalence of forms of malnutrition.1Anderson I Robson B Connolly M et al.Indigenous and tribal peoples' health (The Lancet–Lowitja Institute Global Collaboration): a population study.Lancet. 2016; 388: 131-157Summary Full Text Full Text PDF PubMed Scopus (592) Google Scholar Climate change is compounding many of these causes of health inequities, undermining coping mechanisms that are traditionally used to manage extreme events such as pandemics, and disrupting food systems and local diets.2Ford JD King N Galappaththi EK Pearce T McDowell G Harper SL The resilience of Indigenous Peoples to environmental change.One Earth. 2020; 2: 532-543Summary Full Text Full Text PDF Scopus (122) Google Scholar Addressing underlying structural inequities and strengthening Indigenous knowledge systems offer opportunities for building resilience to compound socioecological shocks, including climate effects and pandemics. Climate change is affecting Indigenous food systems, making Indigenous populations vulnerable to food and nutritional insecurity.3Intergovernmental Panel on Climate ChangeSpecial report: global warming of 1·5°C.https://www.ipcc.ch/sr15/Date: 2018Date accessed: July 24, 2020Google Scholar The nature and extent of the effects of COVID-19 on Indigenous food systems are still largely unknown, but the direct results include mortality from severe illness, reduced access to food, changes in local diet, and economic losses resulting from lockdowns. These outcomes present impediments to the recovery of populations already facing substantial nutritional challenges. The effects of previous pandemics on Indigenous food systems affected children in particular, when adults became ill and household food access was reduced.4Mamelund S-E Sattenspiel L Dimka J Influenza-associated mortality during the 1918–1919 influenza pandemic in Alaska and Labrador: a comparison.Soc Sci Hist. 2013; 37: 177-229Google Scholar Inadequate health service provision for Indigenous populations, including scant access to culturally safe services,5Brascoupé S Waters C Cultural safety exploring the applicability of the concept of cultural safety to aboriginal health and community wellness.Int J Indigen Health. 2006; 5: 6-41Google Scholar adds another layer of complexity in the face of the COVID-19 pandemic. Effects of climate change undermine Indigenous food security, in turn compromising the resilience of Indigenous populations to pandemics. At the same time, disruptions to food and nutrition security and the resulting health implications for Indigenous populations during pandemics exacerbate their vulnerability to climate change. In this context, understanding, reinforcing, and protecting Indigenous food systems in the context of a changing climate must be a cornerstone of post-pandemic recovery. In the Peruvian Amazon, some Shawi Indigenous communities have chosen to self-isolate in the forest during the COVID-19 pandemic.6Zavaleta C COVID-19: review Indigenous peoples' data.Nature. 2020; 580: 185Crossref PubMed Scopus (19) Google Scholar These communities are relying on traditional diets and Indigenous knowledge of local food systems, and they have little availability and accessibility to external food and government food-aid programmes. During this self-isolation, reliance on Indigenous food systems is inextricably linked to Indigenous knowledge about the land, rivers, and biodiversity, which includes knowledge of local techniques to preserve and prepare food.7Zavaleta C Berrang-Ford L et al.Multiple non-climatic drivers of food insecurity reinforce climate change maladaptation trajectories among Peruvian Indigenous Shawi in the Amazon.PLoS One. 2018; 13e0205714Crossref PubMed Scopus (28) Google Scholar However, food from the forest is being affected by biodiversity and vegetation loss: heatwaves, precipitation variation, and more frequent and intense extreme weather events are all related to deforestation and climate change and are compounded by a weakening of traditional hunting and fishing skills as a result of climatic and societal changes.6Zavaleta C COVID-19: review Indigenous peoples' data.Nature. 2020; 580: 185Crossref PubMed Scopus (19) Google Scholar, 8Marengo JA Souza Jr, CM Thonicke K et al.Changes in climate and land use over the Amazon region: current and future variability and trends.Front Earth Sci. 2018; 6: 228Crossref Scopus (219) Google Scholar, 9Harper SL Berrang-Ford L Carcamo C et al.The Indigenous climate–food–health nexus.in: Mason LR Rigg J People and climate change: vulnerability, adaptation, and social justice. Oxford Scholarship Online, Oxford2019: 184Crossref Google Scholar In the Arctic, Inuit are witnessing some of the most rapid rates of warming globally.3Intergovernmental Panel on Climate ChangeSpecial report: global warming of 1·5°C.https://www.ipcc.ch/sr15/Date: 2018Date accessed: July 24, 2020Google Scholar The remoteness of the region and travel restrictions have helped curtail the spread of COVID-19; however, disruptions to supply networks have had effects on food availability in communities that rely on retail food flown in from southern regions. To manage these disruptions, harvesting and sharing local foods, which is widely practiced in many Arctic regions,9Harper SL Berrang-Ford L Carcamo C et al.The Indigenous climate–food–health nexus.in: Mason LR Rigg J People and climate change: vulnerability, adaptation, and social justice. Oxford Scholarship Online, Oxford2019: 184Crossref Google Scholar has helped maintain food and nutrition security. Simultaneously, however, these local Indigenous food systems have been compromised by climatic extremes, including record-breaking temperatures, drought, and wildfires. In Uganda, some Indigenous populations (eg, Batwa) have adhered to COVID-19 measures, including physical distancing, staying home, and avoiding trading centres because of crowds, which challenge food and nutrition security by restricting access to markets. Furthermore, timely government food aid has not adequately reached Indigenous populations. The extended lockdown in Uganda, particularly for border districts where many Indigenous populations live, has hampered their mobility to access forested areas for foraging, access to nearby communities to offer labour for food exchange, and access to agricultural fields for food production. These challenges are exacerbated by existing climate effects,9Harper SL Berrang-Ford L Carcamo C et al.The Indigenous climate–food–health nexus.in: Mason LR Rigg J People and climate change: vulnerability, adaptation, and social justice. Oxford Scholarship Online, Oxford2019: 184Crossref Google Scholar including recent flooding in 2019 that damaged crops, compromised food production,10Chang'a LB Kijazi AL Mafuru KB et al.Assessment of the evolution and socio-economic impacts of extreme rainfall events in October 2019 over the east Africa.Atmos Clim Sci. 2020; 10: 319-338Google Scholar and reduced the resilience of Indigenous populations when the COVID-19 pandemic hit. Climate change challenges the resilience of Indigenous food systems with direct and immediate repercussions for the health and nutrition of Indigenous populations.2Ford JD King N Galappaththi EK Pearce T McDowell G Harper SL The resilience of Indigenous Peoples to environmental change.One Earth. 2020; 2: 532-543Summary Full Text Full Text PDF Scopus (122) Google Scholar In our highly connected world, the COVID-19 pandemic has easily travelled across continents, reaching remote geographical locations and Indigenous communities in less than 6 months. There is a vital window of opportunity to support Indigenous populations who face the double and syndemic burden of compound and cascading socioecological hazards, such as climate change and pandemics, by prioritising the protection of key Indigenous food sources (eg, tropical forests, Arctic ecosystems), by reinforcing and supporting the importance of Indigenous knowledge systems, by improving access to culturally safe health resources, and by and safeguarding access and rights to land and natural resources of Indigenous populations. This is the time to ensure that current decisions and development trajectories do not further jeopardise the resilience of Indigenous food systems, which have integral roles in the response of Indigenous populations to current and future pandemics and climatic changes. This online publication has been corrected. The corrected version first appeared at thelancet.com/planetary-health on September 9, 2020 This online publication has been corrected. The corrected version first appeared at thelancet.com/planetary-health on September 9, 2020 We declare no competing interests. CZ-C was supported by the National Institute for Health Research (NIHR), using the UK's Official Development Assistance funding, and by Wellcome (218743/Z/19/Z) under the NIHR–Wellcome Partnership for Global Health Research. CZ-C is member of the Indigenous Health and Adaptation to Climate Change Research Group. IA-R, JDF, SL, PJG, DBN, MN, CJW, LB-F, and SLH are funded by the Canadian Institutes for Health Research through the Indigenous Health Adaptation to Climate Change programme. JJM acknowledges support from the Alliance for Health Policy and Systems Research (HQHSR1206660), the Bernard Lown Scholars in Cardiovascular Health Program at Harvard T H Chan School of Public Health (BLSCHP-1902), Bloomberg Philanthropies (via University of North Carolina at Chapel Hill School of Public Health), Fondecyt (National Fund for Scientific, Technological Development and Technological Innovation) via Cienciactiva at Concytec (Consejo Nacional de Ciencia Tecnología e Innovacíon Tecnologica), British Council, British Embassy and the Newton-Paulet Fund (223-2018, 224-2018), Department for International Development, Medical Research Council (MRC), and Wellcome Global Health Trials (MR/M007405/1), Fogarty International Center (R21TW009982, D71TW010877), Grand Challenges Canada (0335-04), International Development Research Center Canada (IDRC 106887, 108167), Inter-American Institute for Global Change Research (IAI CRN3036), MRC (MR/P008984/1, MR/P024408/1, MR/P02386X/1), National Cancer Institute (1P20CA217231), National Heart, Lung and Blood Institute (HHSN268200900033C, 5U01HL114180, 1UM1HL134590), National Institute of Mental Health (1U19MH098780), Swiss National Science Foundation (40P740-160366), Wellcome (074833/Z/04/Z, 093541/Z/10/Z, 103994/Z/14/Z, 107435/Z/15/Z, 205177/Z/16/Z, 214185/Z/18/Z, 218743/Z/19/Z), and the World Diabetes Foundation (WDF15-1224). The views expressed are those of the authors and not necessarily those of Wellcome, the NIHR or the Department of Health and Social Care. The funding sources had no role in the preparation of this Comment or in the decision to submit for publication. We acknowledge the contribution of Matthew King. Download .pdf (.12 MB) Help with pdf files Supplementary appendix Correction to Lancet Planet Health 2020; 4: e381–82Zavaleta-Cortijo C, Ford JD, Arotoma-Rojas I, et al. Climate change and COVID-19: reinforcing Indigenous food systems. Lancet Planet Health 2020; 4: e381–82—In this Comment, the seventh author's name should be "J Jaime Miranda". This correction has been made as of Sept 9, 2020. Full-Text PDF Open AccessSupport Indigenous food system biocultural diversityThe Comment by Carol Zavaleta-Cortijo and colleagues1 was timely in emphasising the challenges faced by Indigenous peoples due to the combined effects of climate change, COVID-19, and longstanding inequities. Although pressure on Indigenous livelihoods is nothing new, current effects are extreme, both in terms of deaths due to the virus and disruptions to lifeways, including Indigenous food systems. Full-Text PDF Open Access السكان الأصليون معرضون بشكل خاص لخطر الإصابة بـ COVID -19 بسبب عوامل مثل التمييز والاستبعاد الاجتماعي ومصادرة الأراضي والانتشار العالي لأشكال سوء التغذية .1 أندرسون أنا روبسون ب كونولي م وآخرون. صحة الشعوب الأصلية والقبلية (التعاون العالمي لمعهد لانسيت- لويتجا): دراسة سكانية. 2016 ؛ 388: 131-157 ملخص النص الكامل الكامل PDF PubMed Scopus (592) يضاعف الباحث العلمي من Google تغير المناخ العديد من هذه الأسباب لعدم المساواة الصحية، مما يقوض آليات التكيف التي تستخدم تقليديًا لإدارة الأحداث المتطرفة مثل الأوبئة، وتعطيل النظم الغذائية والوجبات الغذائية المحلية.2Ford JD King N Galappaththi EK Pearce T McDowell G Harper SL مرونة الشعوب الأصلية في مواجهة التغير البيئي. 2020 ؛ 2: 532-543 ملخص النص الكامل للنص الكامل PDF Scopus (122) الباحث العلمي من Google معالجة أوجه عدم المساواة الهيكلية الكامنة وتعزيز أنظمة المعرفة الأصلية توفر فرصًا لبناء القدرة على الصمود أمام الصدمات الاجتماعية البيئية المعقدة، بما في ذلك الآثار المناخية والأوبئة. يؤثر تغير المناخ على النظم الغذائية للسكان الأصليين، مما يجعل السكان الأصليين عرضة لانعدام الأمن الغذائي والتغذوي .3 الفريق الحكومي الدولي المعني بتغير المناخ تقرير خاص: الاحترار العالمي بمقدار 1·5 درجات مئوية .https://www.ipcc.ch/sr15/Date:2018Date accessed: July 24, 2020 الباحث من Google لا تزال طبيعة ومدى آثار COVID -19 على النظم الغذائية للسكان الأصليين غير معروفة إلى حد كبير، ولكن النتائج المباشرة تشمل الوفيات الناجمة عن الأمراض الشديدة، وانخفاض الوصول إلى الغذاء، والتغيرات في النظام الغذائي المحلي، والخسائر الاقتصادية الناتجة عن عمليات الإغلاق. وتمثل هذه النتائج عوائق أمام تعافي السكان الذين يواجهون بالفعل تحديات غذائية كبيرة. أثرت آثار الأوبئة السابقة على النظم الغذائية للسكان الأصليين على الأطفال على وجه الخصوص، عندما أصبح البالغون مرضى وانخفض الوصول إلى الغذاء المنزلي .4 Mamelund S - E Sattenspiel L Dimka J الوفيات المرتبطة بالأنفلونزا خلال جائحة الأنفلونزا 1918–1919 في ألاسكا ولابرادور: مقارنة .Soc Sci Hist. 2013 ؛ 37: 177-229 الباحث العلمي من Google عدم كفاية تقديم الخدمات الصحية للسكان الأصليين، بما في ذلك الوصول الضئيل إلى الخدمات الآمنة ثقافيًا، 5 السلامة الثقافية في براسكوبي إس ووترز سي التي تستكشف إمكانية تطبيق مفهوم السلامة الثقافية على صحة السكان الأصليين وصحة المجتمع. Int J Indigen Health. 2006 ؛ 5: 6-41 يضيف الباحث العلمي من Google طبقة أخرى من التعقيد في مواجهة جائحة كوفيد-19. تقوض آثار تغير المناخ الأمن الغذائي للسكان الأصليين، مما يؤدي بدوره إلى تقويض قدرة السكان الأصليين على مواجهة الأوبئة. وفي الوقت نفسه، تؤدي الاضطرابات في الأمن الغذائي والتغذوي وما ينتج عنها من آثار صحية على السكان الأصليين أثناء الأوبئة إلى تفاقم تعرضهم لتغير المناخ. وفي هذا السياق، يجب أن يكون فهم النظم الغذائية للسكان الأصليين وتعزيزها وحمايتها في سياق تغير المناخ حجر الزاوية في التعافي بعد الجائحة. في منطقة الأمازون في بيرو، اختارت بعض مجتمعات السكان الأصليين الشاوي العزل الذاتي في الغابة خلال جائحة كوفيد-19 .6 Zavaleta C COVID -19: مراجعة بيانات الشعوب الأصلية .الطبيعة. 2020 ؛ 580: 185 Crossref PubMed Scopus (19) الباحث العلمي من Google تعتمد هذه المجتمعات على النظم الغذائية التقليدية ومعرفة السكان الأصليين بالنظم الغذائية المحلية، ولديهم القليل من التوافر وإمكانية الوصول إلى الغذاء الخارجي وبرامج المساعدات الغذائية الحكومية. خلال هذا العزلة الذاتية، يرتبط الاعتماد على النظم الغذائية للسكان الأصليين ارتباطًا وثيقًا بمعارف السكان الأصليين حول الأرض والأنهار والتنوع البيولوجي، والتي تشمل معرفة التقنيات المحلية للحفاظ على الطعام وإعداده .7 وتعزز الدوافع غير المناخية المتعددة لانعدام الأمن الغذائي مسارات سوء التكيف مع تغير المناخ بين السكان الأصليين في بيرو شاوي في الأمازون .PLoS One. 2018; 13e0205714Crossref PubMed Scopus (28) الباحث من Google ومع ذلك، يتأثر الغذاء من الغابة بالتنوع البيولوجي وفقدان الغطاء النباتي: ترتبط موجات الحر وتباين هطول الأمطار والظواهر الجوية المتطرفة الأكثر تكرارًا وشدة بإزالة الغابات وتغير المناخ وتتفاقم بسبب ضعف مهارات الصيد وصيد الأسماك التقليدية نتيجة للتغيرات المناخية والمجتمعية .6 Zavaleta C -1919: مراجعة بيانات الشعوب الأصلية .الطبيعة. 2020 ؛ 580: 185Crossref PubMed Scopus (19) Google Scholar، 8Marengo JA Souza Jr، CM Thonicke K et al. التغيرات في المناخ واستخدام الأراضي في منطقة الأمازون: التقلبات والاتجاهات الحالية والمستقبلية. 2018 ؛ 6: 228 Crossref Scopus (219) الباحث العلمي من Google، 9Harper SL Berrang - Ford L Carcamo C et al.The Indigenous climate - food - health nexus.in: Mason LR Rigg J الناس وتغير المناخ: الضعف والتكيف والعدالة الاجتماعية. منحة أكسفورد عبر الإنترنت، أكسفورد2019: 184 الباحث العلمي من Google في القطب الشمالي، يشهد الإنويت بعضًا من أسرع معدلات الاحترار على مستوى العالم .3 الفريق الحكومي الدولي المعني بتغير المناخ تقرير خاص: الاحترار العالمي بمقدار 1·5 درجات مئوية .https://www.ipcc.ch/sr15/Date:2018Date accessed: July 24, 2020 الباحث العلمي من Google ساعد بعد المنطقة وقيود السفر في الحد من انتشار COVID -19 ؛ ومع ذلك، كان لاضطرابات شبكات الإمداد آثار على توافر الغذاء في المجتمعات التي تعتمد على الغذاء بالتجزئة الذي يتم نقله من المناطق الجنوبية. لإدارة هذه الاضطرابات، وحصاد ومشاركة الأطعمة المحلية، والتي تمارس على نطاق واسع في العديد من مناطق القطب الشمالي، 9 Harper SL Berrang - Ford L Carcamo C et al.The Indigenous climate - food - health nexus.in: Mason LR Rigg J الناس وتغير المناخ: الضعف والتكيف والعدالة الاجتماعية. منحة أكسفورد عبر الإنترنت، أكسفورد2019: 184 ساعد الباحث العلمي من Google في الحفاظ على الأمن الغذائي والتغذوي. ومع ذلك، في الوقت نفسه، تعرضت هذه النظم الغذائية المحلية للسكان الأصليين للخطر بسبب الظواهر المناخية المتطرفة، بما في ذلك درجات الحرارة القياسية والجفاف وحرائق الغابات. في أوغندا، التزم بعض السكان الأصليين (على سبيل المثال، باتوا) بتدابير COVID -19، بما في ذلك التباعد الجسدي، والبقاء في المنزل، وتجنب المراكز التجارية بسبب الحشود، التي تتحدى الأمن الغذائي والتغذوي من خلال تقييد الوصول إلى الأسواق. علاوة على ذلك، لم تصل المساعدات الغذائية الحكومية في الوقت المناسب إلى السكان الأصليين بشكل كافٍ. أدى الإغلاق الموسع في أوغندا، لا سيما بالنسبة للمناطق الحدودية حيث يعيش العديد من السكان الأصليين، إلى إعاقة حركتهم للوصول إلى مناطق الغابات للبحث عن الطعام، والوصول إلى المجتمعات المجاورة لتقديم العمالة مقابل تبادل الغذاء، والوصول إلى الحقول الزراعية لإنتاج الغذاء. تتفاقم هذه التحديات بسبب التأثيرات المناخية الحالية، 9 Harper SL Berrang - Ford L Carcamo C et al.The Indigenous climate - food - health nexus.in: Mason LR Rigg J People and climate change: vulnerability, adaptation, and social justice. Oxford Scholarship Online، Oxford2019: 184Crossref Google Scholar بما في ذلك الفيضانات الأخيرة في عام 2019 التي ألحقت الضرر بالمحاصيل، وأضرت بإنتاج الغذاء، 10Chang 'a LB Kijazi Al Mafuru KB et al. تقييم التطور والآثار الاجتماعية والاقتصادية لأحداث هطول الأمطار الشديدة في أكتوبر 2019 فوق شرق إفريقيا. Atmos Clim Sci. 2020 ؛ 10: 319-338 الباحث العلمي من Google وقلل من قدرة السكان الأصليين على الصمود عندما ضربت جائحة COVID -19. يتحدى تغير المناخ مرونة النظم الغذائية للسكان الأصليين مع تداعيات مباشرة وفورية على صحة وتغذية السكان الأصليين.2Ford JD King N Galappaththi EK Pearce T McDowell G Harper SL قدرة السكان الأصليين على التكيف مع التغير البيئي. أرض واحدة. 2020 ؛ 2: 532-543 ملخص النص الكامل النص الكامل PDF Scopus (122) الباحث العلمي من Google في عالمنا المترابط للغاية، انتقلت جائحة COVID -19 بسهولة عبر القارات، ووصلت إلى المواقع الجغرافية النائية ومجتمعات السكان الأصليين في أقل من 6 أشهر. هناك فرصة حيوية لدعم السكان الأصليين الذين يواجهون العبء المزدوج والمتفشي للمخاطر الاجتماعية والبيئية المركبة والمتتالية، مثل تغير المناخ والأوبئة، من خلال إعطاء الأولوية لحماية المصادر الغذائية الرئيسية للسكان الأصليين (مثل الغابات الاستوائية والنظم الإيكولوجية في القطب الشمالي)، من خلال تعزيز ودعم أهمية نظم معارف السكان الأصليين، من خلال تحسين الوصول إلى الموارد الصحية الآمنة ثقافيًا، ومن خلال حماية الوصول إلى الأراضي والموارد الطبيعية للسكان الأصليين وحقوقهم فيها. لقد حان الوقت لضمان ألا تؤدي القرارات ومسارات التنمية الحالية إلى زيادة تعريض مرونة النظم الغذائية للسكان الأصليين للخطر، والتي لها أدوار أساسية في استجابة السكان الأصليين للأوبئة الحالية والمستقبلية والتغيرات المناخية. تم تصحيح هذا المنشور عبر الإنترنت. ظهرت النسخة المصححة لأول مرة على thelancet.com/planetary-health في 9 سبتمبر 2020 تم تصحيح هذا المنشور عبر الإنترنت. ظهرت النسخة المصححة لأول مرة على thelancet.com/planetary-health في 9 سبتمبر 2020 نعلن عدم وجود مصالح متنافسة. تم دعم CZ - C من قبل المعهد الوطني للبحوث الصحية (NIHR)، باستخدام تمويل المساعدة الإنمائية الرسمية في المملكة المتحدة، ومن قبل ويلكوم (218743/Z/19/Z) في إطار الشراكة بين المؤسسة الوطنية لحقوق الإنسان ويلكوم لبحوث الصحة العالمية. CZ - C عضو في مجموعة أبحاث صحة السكان الأصليين والتكيف مع تغير المناخ. يتم تمويل IA - R و JDF و SL و PJG و DBN و MN و CJW و LB - F و SLH من قبل المعاهد الكندية للبحوث الصحية من خلال برنامج تكيف صحة السكان الأصليين مع تغير المناخ. تقر JJM بالدعم المقدم من التحالف من أجل أبحاث السياسات والنظم الصحية (HQHSR1206660)، وبرنامج برنارد لوين في برنامج صحة القلب والأوعية الدموية في كلية هارفارد تي إتش تشان للصحة العامة (BLSCHP -1902)، و Bloomberg Philanthropies (عبر جامعة نورث كارولينا في مدرسة تشابل هيل للصحة العامة)، و Fondecyt (الصندوق الوطني للتنمية العلمية والتكنولوجية والابتكار التكنولوجي) عبر Cienciactiva at Concytec (Consejo Nacional de Ciencia Tecnología e Innovacíon Tecnologica)، والمجلس البريطاني، والسفارة البريطانية وصندوق Newton - Paulet (223-2018، 224-2018)، وإدارة التنمية الدولية، ومجلس البحوث الطبية (MRC)، و Wellcome Global Health Trials (MR/M007405/1)، مركز Fogarty الدولي (R21TW009982، D71T010877)، التحديات الكبرى كندا (0335-04)، المركز الدولي لبحوث التنمية كندا (IDRC 106887، 108167)، معهد البلدان الأمريكية لبحوث التغيير العالمي (IAI CRN3036)، MRC (MR/P008984/1، MR/P024408/1، MR/P02386X/1)، المعهد الوطني للسرطان (1P20CA217231)، المعهد الوطني للقلب والرئة والدم (HHSN268200900033C، 5U01HL114180، 1UM1HL134590)، المعهد الوطني للصحة العقلية (1U19MH098780)، المؤسسة الوطنية السويسرية للعلوم (40P740 -160366)، ويلكوم (074833/Z/04/Z، 093541/Z/10/Z، 103994/Z/14/Z، 107435/Z/15/Z، 205177/Z/16/Z، 214185/Z/18/Z، 218743/Z/19/Z)، والمؤسسة العالمية للسكري (WDF15 -1224). الآراء المعبر عنها هي آراء المؤلفين وليست بالضرورة آراء ويلكوم أو المؤسسة الوطنية لحقوق الإنسان أو وزارة الصحة والرعاية الاجتماعية. لم يكن لمصادر التمويل أي دور في إعداد هذا التعليق أو في قرار التقديم للنشر. نحن نعترف بمساهمة ماثيو كينغ. Download .pdf (.12 MB) Help with pdf files Supplementary appendix Correction to Lancet Planet Health 2020; 4: e381 -82Zavaleta - Cortijo C, Ford JD, Arotoma - Rojas I, et al. تغير المناخ وكوفيد-19: تعزيز النظم الغذائية للسكان الأصليين. لانسيت بلانيت هيلث 2020 ؛ 4: e381 -82 - في هذا التعليق، يجب أن يكون اسم المؤلف السابع "جايمي ميراندا". تم إجراء هذا التصحيح اعتبارًا من 9 سبتمبر 2020. النص الكامل PDF الوصول المفتوحدعم التنوع البيولوجي الثقافي للنظام الغذائي للسكان الأصليينتعليق كارول زافاليتا- كورتيجو وزملائها1 جاء في الوقت المناسب للتأكيد على التحديات التي تواجهها الشعوب الأصلية بسبب الآثار المشتركة لتغير المناخ، وكوفيد-19، وأوجه عدم المساواة الطويلة الأمد. على الرغم من أن الضغط على سبل عيش السكان الأصليين ليس بالأمر الجديد، إلا أن الآثار الحالية شديدة، سواء من حيث الوفيات الناجمة عن الفيروس أو الاضطرابات في طرق الحياة، بما في ذلك النظم الغذائية للسكان الأصليين. الوصول المفتوح للنص الكامل PDF
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2020 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The Lancet Planetary HealthArticle . 2020License: Elsevier TDMData sources: WHO Global literature on coronavirus diseaseadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s2542-5196(20)30173-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 44 citations 44 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2020 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The Lancet Planetary HealthArticle . 2020License: Elsevier TDMData sources: WHO Global literature on coronavirus diseaseadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s2542-5196(20)30173-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 Norway, Norway, Belgium, Russian Federation, Switzerland, France, Netherlands, United States, Netherlands, AustriaPublisher:Oxford University Press (OUP) Funded by:NSF | RoL: FELS: RAISE: Collab..., RSF | Smart technologies to mon..., EC | IMBALANCE-P +4 projectsNSF| RoL: FELS: RAISE: Collaborative Research: Watershed Rules of Life ,RSF| Smart technologies to monitor, model and evaluate ecosystem services provided by urban green infrastructure and soils to support decision making in sustainable city development under global changes ,EC| IMBALANCE-P ,ANR| L-IPSL ,NSF| Collaborative Research: RUI: The Pulse-Shunt Concept: A Conceptual Framework for Quantifying and Forecasting Watershed DOM Fluxes and Transformations at the MacroSystem Scale ,RCN| The Global Carbon Budget and Carbon Atlas ,EC| COCOSAnna Peregon; Anna Peregon; Peter A. Raymond; Grégoire Broquet; Wei Li; Rong Wang; Alessandro Baccini; Jens Hartmann; Julia Pongratz; Julia Pongratz; Alexandra G. Konings; Chunjing Qiu; Ana Bastos; Jinfeng Chang; Anatoly Shvidenko; Fabienne Maignan; Chao Yue; Chao Yue; Yi Yin; Vanessa Haverd; Pierre Regnier; Hui Yang; Ashley-P Ballantyne; Yi Liu; Riccardo Valentini; Shushi Peng; Philippe Ciais; Philippe Ciais; Anthony W. King; Jakob Zscheischler; Thomas Gasser; Bertrand Guenet; Ronny Lauerwald; Ronny Lauerwald; Prabir K. Patra; Prabir K. Patra; Yitong Yao; Yilong Wang; Goulven Gildas Laruelle; Dan Zhu; Sebastiaan Luyssaert; Benjamin Poulter; Daniel S. Goll; Glen P. Peters; Josep G. Canadell; Rob J Andres; A. Johannes Dolman;pmid: 34691569
pmc: PMC8288404
Abstract Resolving regional carbon budgets is critical for informing land-based mitigation policy. For nine regions covering nearly the whole globe, we collected inventory estimates of carbon-stock changes complemented by satellite estimates of biomass changes where inventory data are missing. The net land–atmospheric carbon exchange (NEE) was calculated by taking the sum of the carbon-stock change and lateral carbon fluxes from crop and wood trade, and riverine-carbon export to the ocean. Summing up NEE from all regions, we obtained a global ‘bottom-up’ NEE for net land anthropogenic CO2 uptake of –2.2 ± 0.6 PgC yr−1 consistent with the independent top-down NEE from the global atmospheric carbon budget during 2000–2009. This estimate is so far the most comprehensive global bottom-up carbon budget accounting, which set up an important milestone for global carbon-cycle studies. By decomposing NEE into component fluxes, we found that global soil heterotrophic respiration amounts to a source of CO2 of 39 PgC yr−1 with an interquartile of 33–46 PgC yr−1—a much smaller portion of net primary productivity than previously reported.
Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2020 . Peer-reviewedFull-Text: https://boris.unibe.ch/148814/1/nwaa145.pdfData sources: Bern Open Repository and Information System (BORIS)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03004921Data sources: Bielefeld Academic Search Engine (BASE)Caltech Authors (California Institute of Technology)Article . 2021Full-Text: https://doi.org/10.1093/nsr/nwaa145Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03004921Data sources: Bielefeld Academic Search Engine (BASE)National Science ReviewArticle . 2021add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/nsr/nwaa145&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 94 citations 94 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2020 . Peer-reviewedFull-Text: https://boris.unibe.ch/148814/1/nwaa145.pdfData sources: Bern Open Repository and Information System (BORIS)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03004921Data sources: Bielefeld Academic Search Engine (BASE)Caltech Authors (California Institute of Technology)Article . 2021Full-Text: https://doi.org/10.1093/nsr/nwaa145Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03004921Data sources: Bielefeld Academic Search Engine (BASE)National Science ReviewArticle . 2021add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/nsr/nwaa145&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2016Publisher:Springer Science and Business Media LLC Funded by:RSF | Genetic markers for potat..., NSERCRSF| Genetic markers for potato breeding ,NSERCPrzemysław Kopeć; Katarzyna Juzoń; Sabina Malaga; Monika Krzewska; Ewa Surówka; Ewa Dubas; Gabriela Gołębiowska-Pikania; I. Zur; Anna Nowicka;According to predicted changes in climate, waterlogging events may occur more frequently in the future during autumn and winter at high latitudes of the Northern Hemisphere. If excess soil water coincides with the process of cold acclimation for plants, winter survival may potentially be affected. The effects of waterlogging during cold acclimation on stomatal aperture, relative water content, photochemical activity of photosystem II, freezing tolerance and plant regrowth after freezing were compared for two prehardened overwintering forage grasses, Lolium perenne and Festuca pratensis. The experiment was performed to test the hypothesis that changes in photochemical activity initiated by waterlogging-triggered modifications in the stomatal aperture contribute to changes in freezing tolerance. Principal component analysis showed that waterlogging activated different adaptive strategies in the two species studied. The increased freezing tolerance of F. pratensis was associated with increased photochemical activity connected with stomatal opening, whereas freezing tolerance of L. perenne was associated with a decrease in stomatal aperture. In conclusion, waterlogging-triggered stomatal behavior contributed to the efficiency of the cold acclimation process in L. perenne and F. pratensis.
Acta Physiologiae Pl... arrow_drop_down Acta Physiologiae PlantarumArticle . 2018 . Peer-reviewedLicense: Springer TDMData sources: CrossrefPlant Physiology and BiochemistryArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11738-018-2757-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Acta Physiologiae Pl... arrow_drop_down Acta Physiologiae PlantarumArticle . 2018 . Peer-reviewedLicense: Springer TDMData sources: CrossrefPlant Physiology and BiochemistryArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11738-018-2757-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Switzerland, Austria, Italy, Denmark, United Kingdom, Italy, AustriaPublisher:Springer Science and Business Media LLC Funded by:NSF | PostDoctoral Research Fel..., NSF | Timing is everything: sea..., NSERC +8 projectsNSF| PostDoctoral Research Fellowship ,NSF| Timing is everything: seasonality and phenological dynamics linking species, communities, and trophic feedbacks in the Low- vs. High Arctic ,NSERC ,NSF| Arctic Observing Networks: Collaborative Research: Sustaining and amplifying the ITEX AON through automation and increased interdisciplinarity of observations ,NSF| The Bonanza Creek (BNZ) LTER: Regional Consequences of Changing Climate-Disturbance Interactions for the Resilience of Alaska's Boreal Forest ,NSF| Arctic Plant Phenology - Learning through Engaged Science ,UKRI| Climate as a driver of shrub expansion and tundra greening ,RCN| The effect of snow depth and snow melt timing on arctic terrestrial ecosystems. ,NSF| Collaborative Research: Linking belowground phenology and ecosystem function in a warming Arctic ,NSF| Collaborative Research: Sustaining and amplifying the ITEX AON through automation and increased interdisciplinarity of observations. ,NSF| Warming and drying effects on tundra carbon balanceChristian Rixen; Robert D. Hollister; Isla H. Myers-Smith; Nadja Rüger; Christopher W. Kopp; Isabel W. Ashton; Anne D. Bjorkman; Philipp R. Semenchuk; Tiffany G. Troxler; Bo Elberling; Kari Klanderud; Sarah C. Elmendorf; Ørjan Totland; Marguerite Mauritz; Susanna Venn; Gregory H. R. Henry; Edward A. G. Schuur; Karin Clark; Jeffrey M. Welker; Jeffrey M. Welker; Sonja Wipf; Ulf Molau; Eric Post; Esther Lévesque; Ingibjörg S. Jónsdóttir; Ingibjörg S. Jónsdóttir; Sabine B. Rumpf; Jane G. Smith; Nicoletta Cannone; Chelsea Chisholm; Janet S. Prevéy; Elisabeth J. Cooper; Steven F. Oberbauer; Toke T. Høye; Susan M. Natali; Carl-Henrik Wahren; Katharine N. Suding; Niels Martin Schmidt; Zoe A. Panchen; Anna Maria Fosaa;Advancing phenology is one of the most visible effects of climate change on plant communities, and has been especially pronounced in temperature-limited tundra ecosystems. However, phenological responses have been shown to differ greatly between species, with some species shifting phenology more than others. We analysed a database of 42,689 tundra plant phenological observations to show that warmer temperatures are leading to a contraction of community-level flowering seasons in tundra ecosystems due to a greater advancement in the flowering times of late-flowering species than early-flowering species. Shorter flowering seasons with a changing climate have the potential to alter trophic interactions in tundra ecosystems. Interestingly, these findings differ from those of warmer ecosystems, where early-flowering species have been found to be more sensitive to temperature change, suggesting that community-level phenological responses to warming can vary greatly between biomes.
Nature Ecology & Evo... arrow_drop_down Copenhagen University Research Information SystemArticle . 2019Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Nature Ecology & EvolutionArticle . 2018 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-018-0745-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 90 citations 90 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Nature Ecology & Evo... arrow_drop_down Copenhagen University Research Information SystemArticle . 2019Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Nature Ecology & EvolutionArticle . 2018 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-018-0745-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 GermanyPublisher:Wiley Funded by:FCT | SFRH/BPD/91527/2012, SNSF | Host-parasite interaction...FCT| SFRH/BPD/91527/2012 ,SNSF| Host-parasite interactions on the move - mechanisms and cascading consequences of malaria infections in migratory birdsSilke Bauer; Martins Briedis; Jaroslav Koleček; Simeon Lisovski; Petr Procházka; Steffen Hahn; Miloš Krist; Lars Gustafsson; José A. Alves; José A. Alves; Joana Costa; Peter Adamík; Christoph M. Meier; Tamara Emmenegger; Felix Liechti;AbstractAimKnowledge of broad‐scale biogeographical patterns of animal migration is important for understanding ecological drivers of migratory behaviours. Here, we present a flyway‐scale assessment of the spatial structure and seasonal dynamics of the Afro‐Palaearctic bird migration system and explore how phenology of the environment guides long‐distance migration.LocationEurope and Africa.Time period2009–2017.Major taxa studiedBirds.MethodsWe compiled an individual‐based dataset comprising 23 passerine and near‐passerine species of 55 European breeding populations, in which a total of 564 individuals were tracked during migration between Europe and sub‐Saharan Africa. In addition, we used remotely sensed primary productivity data (the normalized difference vegetation index) to estimate the timing of vegetation green‐up in spring and senescence in autumn across Europe. First, we described how individual breeding and non‐breeding sites and the migratory flyways link geographically. Second, we examined how the timing of migration along the two major Afro‐Palaearctic flyways is tuned with vegetation phenology at the breeding sites.ResultsWe found the longitudes of individual breeding and non‐breeding sites to be related in a strongly positive manner, whereas the latitudes of breeding and non‐breeding sites were related negatively. In autumn, migration commenced ahead of vegetation senescence, and the timing of migration was 5–7 days earlier along the Western flyway compared with the Eastern flyway. In spring, the time of arrival at breeding sites was c. 1.5 days later for each degree northwards and 6–7 days later along the Eastern compared with the Western flyway, reflecting the later spring green‐up at higher latitudes and more eastern longitudes.Main conclusionsMigration of the Afro‐Palaearctic landbirds follows a longitudinally parallel leapfrog migration pattern, whereby migrants track vegetation green‐up in spring but depart before vegetation senescence in autumn. The degree of continentality along migration routes and at the breeding sites of the birds influences the timing of migration on a broad scale.
Global Ecology and B... arrow_drop_down Electronic Publication Information CenterArticle . 2020Data sources: Electronic Publication Information CenterGlobal Ecology and BiogeographyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.13063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 64 citations 64 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 6visibility views 6 download downloads 16 Powered bymore_vert Global Ecology and B... arrow_drop_down Electronic Publication Information CenterArticle . 2020Data sources: Electronic Publication Information CenterGlobal Ecology and BiogeographyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.13063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu