- home
- Advanced Search
- Energy Research
- 2. Zero hunger
- 6. Clean water
- EU
- PL
- Aurora Universities Network
- Energy Research
- 2. Zero hunger
- 6. Clean water
- EU
- PL
- Aurora Universities Network
description Publicationkeyboard_double_arrow_right Article , Journal 2018 AustraliaPublisher:Elsevier BV Funded by:EC | DELTA-MIN, EC | CARBFIXEC| DELTA-MIN ,EC| CARBFIXAuthors:Iwona Galeczka;
Iwona Galeczka
Iwona Galeczka in OpenAIREDomenik Wolff-Boenisch;
Domenik Wolff-Boenisch;Domenik Wolff-Boenisch
Domenik Wolff-Boenisch in OpenAIREhandle: 20.500.11937/60306
Abstract Recent publications on the successful mineralisation of carbon dioxide in basalts in Iceland and Washington State, USA, have shown that mineral storage can be a serious alternative to more mainstream geologic carbon storage efforts to lock away permanently carbon dioxide. In this study we look at the pore solution chemistry and mineralogy of basaltic glass and crystalline basalt under post-injection conditions, i.e. after rise of the pH via matrix dissolution and the first phase of carbonate formation. Experimental findings indicate that further precipitation of carbonates under more alkaline conditions is highly dependent on the availability of divalent cations. If the pore water is deficient in divalent cations, smectites and/or zeolites will dominate the secondary mineralogy of the pore space, depending on the basalt matrix. At low carbonate alkalinity no additional secondary carbonates are expected to form meaning the remaining pore space is lost to secondary silicates, irrespective of the basalt matrix. At high carbonate alkalinity, some of this limited storage volume may additionally be occupied by dawsonite −if the Na concentration in the percolating groundwater (brine) is high. Using synthetic seawater as a proxy for the groundwater composition and thus furnishing considerable amounts of divalent cations to the carbonated solution, results in massive precipitation of calcite, magnesite, and other Ca/Mg-carbonates under already moderate carbonate alkalinity. More efficient use of the basaltic storage volume can thus be attained by promoting formation of secondary carbonates compared to the inevitable formation of secondary silicate phases at higher pH. This can be done by ensuring that the pore water does not become depleted in divalent cations, even after carbonate formation. Using seawater as carbonating fluid or injection of CO2 into the basaltic oceanic crust, where saline fluids percolate, can reach this goal. However, such an approach needs sophisticated reactive transport modelling to adjust CO2 injection rates in order to avoid too rapid carbonate deposition and clogging of the pore space too close to the injection well.
International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2017.11.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 47 citations 47 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2017.11.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Netherlands, NorwayPublisher:IOP Publishing Funded by:EC | SIZEEC| SIZEAuthors:Arnald Puy;
Bruce Lankford;Arnald Puy
Arnald Puy in OpenAIREJonas Meier;
Saskia van der Kooij; +1 AuthorsJonas Meier
Jonas Meier in OpenAIREArnald Puy;
Bruce Lankford;Arnald Puy
Arnald Puy in OpenAIREJonas Meier;
Saskia van der Kooij;Jonas Meier
Jonas Meier in OpenAIREAndrea Saltelli;
Andrea Saltelli
Andrea Saltelli in OpenAIREhandle: 11250/3039998
Abstract An assessment of the human impact on the global water cycle requires estimating the volume of water withdrawn for irrigated agriculture. A key parameter in this calculation is the irrigation efficiency, which corrects for the fraction of water lost between irrigation withdrawals and the crop due to management, distribution or conveyance losses. Here we show that the irrigation efficiency used in global irrigation models is flawed for it overlooks key ambiguities in partial efficiencies, irrigation technologies, the definition of ‘large-scale’ irrigated areas or managerial factors. Once accounted for, these uncertainties can make irrigation withdrawal estimates fluctuate by more than one order of magnitude at the country level. Such variability is larger and leads to more extreme values than that caused by the uncertainties related with climate change. Our results highlight the need to embrace deep uncertainties in irrigation efficiency to prevent the design of shortsighted policies at the river basin-water-agricultural interface.
University of Bergen... arrow_drop_down University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/11250/3039998Data sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ac5768&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 18visibility views 18 download downloads 30 Powered bymore_vert University of Bergen... arrow_drop_down University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/11250/3039998Data sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ac5768&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 United KingdomPublisher:Springer Science and Business Media LLC Funded by:SNSF | Fate and effects of engin..., EC | MICRONANOTOXSNSF| Fate and effects of engineered nanoparticles in stream periphyton ,EC| MICRONANOTOXAuthors:Kroll, Alexandra;
Kroll, Alexandra
Kroll, Alexandra in OpenAIREMatzke, Marianne;
Rybicki, Marcus; Obert-Rauser, Patrick; +7 AuthorsMatzke, Marianne
Matzke, Marianne in OpenAIREKroll, Alexandra;
Kroll, Alexandra
Kroll, Alexandra in OpenAIREMatzke, Marianne;
Rybicki, Marcus; Obert-Rauser, Patrick; Burkart, Corinna; Jurkschat, Kerstin; Verweij, Rudo; Sgier, Linn; Jungmann, Dirk; Backhaus, Thomas;Matzke, Marianne
Matzke, Marianne in OpenAIRESvendsen, Claus;
Svendsen, Claus
Svendsen, Claus in OpenAIREpmid: 26122573
pmc: PMC4766215
Silver nanoparticles (AgNP) are currently defined as emerging pollutants in surface water ecosystems. Whether the toxic effects of AgNP towards freshwater organisms are fully explainable by the release of ionic silver (Ag(+)) has not been conclusively elucidated. Long-term effects to benthic microbial communities (periphyton) that provide essential functions in stream ecosystems are unknown. The effects of exposure of periphyton to 2 and 20 μg/L Ag(+) (AgNO3) and AgNP (polyvinylpyrrolidone stabilised) were investigated in artificial indoor streams. The extracellular polymeric substances (EPS) and 3D biofilm structure, biomass, algae species, Ag concentrations in the water phase and bioassociated Ag were analysed. A strong decrease in total Ag was observed within 4 days. Bioassociated Ag was proportional to dissolved Ag indicating a rate limitation by diffusion across the diffusive boundary layer. Two micrograms per liter of AgNO3 or AgNP did not induce significant effects despite detectable bioassociation of Ag. The 20-μg/L AgNO3 affected green algae and diatom communities, biomass and the ratio of polysaccharides to proteins in EPS. The 20-μg/L AgNO3 and AgNP decreased biofilm volume to about 50 %, while the decrease of biomass was lower in 20 μg/L AgNP samples than the 20-μg/L AgNO3 indicating a compaction of the NP-exposed biofilms. Roughness coefficients were lower in 20 μg/L AgNP-treated samples. The more traditional endpoints (biomass and diversity) indicated silver ion concentration-dependent effects, while the newly introduced parameters (3D structure and EPS) indicated both silver ion concentration-dependent effects and effects related to the silver species applied.
Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Environmental Science and Pollution ResearchArticle . 2015 . Peer-reviewedLicense: CC BYData sources: CrossrefEnvironmental Science and Pollution ResearchArticle . 2016Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-015-4887-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 1visibility views 1 download downloads 16 Powered bymore_vert Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Environmental Science and Pollution ResearchArticle . 2015 . Peer-reviewedLicense: CC BYData sources: CrossrefEnvironmental Science and Pollution ResearchArticle . 2016Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-015-4887-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Czech Republic, Czech Republic, France, United Kingdom, France, NetherlandsPublisher:Wiley Authors: Monika Wulf; Ilze Liepiņa;Kris Verheyen;
Kris Verheyen
Kris Verheyen in OpenAIREHaben Blondeel;
+25 AuthorsHaben Blondeel
Haben Blondeel in OpenAIREMonika Wulf; Ilze Liepiņa;Kris Verheyen;
Kris Verheyen
Kris Verheyen in OpenAIREHaben Blondeel;
Haben Blondeel
Haben Blondeel in OpenAIRESimon M. Smart;
Simon M. Smart
Simon M. Smart in OpenAIRESybryn L. Maes;
Sybryn L. Maes
Sybryn L. Maes in OpenAIRERadosław Gawryś;
Thilo Heinken;Radosław Gawryś
Radosław Gawryś in OpenAIREJörg Brunet;
Jörg Brunet
Jörg Brunet in OpenAIREWerner Härdtle;
Emiel De Lombaerde;Werner Härdtle
Werner Härdtle in OpenAIREKarol Ujházy;
Karol Ujházy
Karol Ujházy in OpenAIREGuillaume Decocq;
Guillaume Decocq
Guillaume Decocq in OpenAIREMichael P. Perring;
Michael P. Perring; Steffi Heinrichs;Michael P. Perring
Michael P. Perring in OpenAIREBogdan Jaroszewicz;
Bogdan Jaroszewicz
Bogdan Jaroszewicz in OpenAIRELeen Depauw;
Leen Depauw
Leen Depauw in OpenAIREFrantišek Máliš;
František Máliš
František Máliš in OpenAIREDries Landuyt;
Wolfgang Schmidt; Radim Hédl; Jan den Ouden;Dries Landuyt
Dries Landuyt in OpenAIREJanusz Czerepko;
Guntis Brūmelis;Janusz Czerepko
Janusz Czerepko in OpenAIREDéborah Closset-Kopp;
Déborah Closset-Kopp
Déborah Closset-Kopp in OpenAIREMartin Macek;
Martin Macek
Martin Macek in OpenAIREMartin Kopecký;
Martin Kopecký;Martin Kopecký
Martin Kopecký in OpenAIREAbstract A central challenge of today's ecological research is predicting how ecosystems will develop under future global change. Accurate predictions are complicated by (a) simultaneous effects of different drivers, such as climate change, nitrogen deposition and management changes; and (b) legacy effects from previous land use. We tested whether herb layer biodiversity (i.e. richness, Shannon diversity and evenness) and functional (i.e. herb cover, specific leaf area [SLA] and plant height) responses to environmental change drivers depended on land‐use history. We used resurvey data from 192 plots across nineteen European temperate forest regions, with large spatial variability in environmental change factors. We tested for interactions between land‐use history, distinguishing ancient and recent (i.e. post‐agricultural) forests and four drivers: temperature, nitrogen deposition, and aridity at the regional scale and light dynamics at the plot‐scale. Land‐use history significantly modulated global change effects on the functional signature of the herb layer (i.e. cover, SLA and plant height). Light availability was the main environmental driver of change interacting with land‐use history. We found greater herb cover and plant height decreases and SLA increases with decreasing light availability in ancient than in recent forests. Furthermore, we found greater decreases in herb cover with increased nitrogen deposition in ancient forests, whereas warming had the strongest decreasing effect on the herb cover in recent forests. Interactive effects between land‐use history and global change on biodiversity were not found, but species evenness increased more in ancient than in recent forests. Synthesis. Our results demonstrate that land‐use history should not be overlooked when predicting forest herb layer responses to global change. Moreover, we found that herb layer composition in semi‐natural deciduous forests is mainly controlled by local canopy characteristics, regulating light levels at the forest floor, and much less by environmental changes at the regional scale (here: warming, nitrogen deposition and aridity). The observed disconnect between biodiversity and functional herb layer responses to environmental changes demonstrates the importance of assessing both types of responses to increase our understanding of the possible impact of global change on the herb layer.
Journal of Ecology arrow_drop_down Repository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesJournal of EcologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2745.13339&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 57 citations 57 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Ecology arrow_drop_down Repository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesJournal of EcologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2745.13339&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 United KingdomPublisher:Wiley Funded by:UKRI | ADVENT (ADdressing Valuat..., UKRI | Feasibility of Afforestat..., EC | ESM2025UKRI| ADVENT (ADdressing Valuation of Energy and Nature Together) ,UKRI| Feasibility of Afforestation and Biomass energy with carbon capture storage for Greenhouse Gas Removal (FAB GGR) ,EC| ESM2025Authors:Emma W. Littleton;
Emma W. Littleton
Emma W. Littleton in OpenAIREAnita Shepherd;
Anita Shepherd
Anita Shepherd in OpenAIREAnna B. Harper;
Anna B. Harper
Anna B. Harper in OpenAIREAstley F. S. Hastings;
+4 AuthorsAstley F. S. Hastings
Astley F. S. Hastings in OpenAIREEmma W. Littleton;
Emma W. Littleton
Emma W. Littleton in OpenAIREAnita Shepherd;
Anita Shepherd
Anita Shepherd in OpenAIREAnna B. Harper;
Anna B. Harper
Anna B. Harper in OpenAIREAstley F. S. Hastings;
Astley F. S. Hastings
Astley F. S. Hastings in OpenAIRENaomi E. Vaughan;
Naomi E. Vaughan
Naomi E. Vaughan in OpenAIREJonathan Doelman;
Jonathan Doelman
Jonathan Doelman in OpenAIREDetlef P. van Vuuren;
Detlef P. van Vuuren
Detlef P. van Vuuren in OpenAIRETimothy M. Lenton;
Timothy M. Lenton
Timothy M. Lenton in OpenAIREdoi: 10.1111/gcbb.12982
handle: 2164/19964
AbstractLarge‐scale bioenergy plays a key role in climate change mitigation scenarios, but its efficacy is uncertain. This study aims to quantify that uncertainty by contrasting the results of three different types of models under the same mitigation scenario (RCP2.6‐SSP2), consistent with a 2°C temperature target. This analysis focuses on a single bioenergy feedstock, Miscanthus × giganteus, and contrasts projections for its yields and environmental effects from an integrated assessment model (IMAGE), a land surface and dynamic global vegetation model tailored to Miscanthus bioenergy (JULES) and a bioenergy crop model (MiscanFor). Under the present climate, JULES, IMAGE and MiscanFor capture the observed magnitude and variability in Miscanthus yields across Europe; yet in the tropics JULES and IMAGE predict high yields, whereas MiscanFor predicts widespread drought‐related diebacks. 2040–2049 projections show there is a rapid scale up of over 200 Mha bioenergy cropping area in the tropics. Resulting biomass yield ranges from 12 (MiscanFor) to 39 (JULES) Gt dry matter over that decade. Change in soil carbon ranges from +0.7 Pg C (MiscanFor) to −2.8 Pg C (JULES), depending on preceding land cover and soil carbon.2090–99 projections show large‐scale biomass energy with carbon capture and storage (BECCS) is projected in Europe. The models agree that <2°C global warming will increase yields in the higher latitudes, but drought stress in the Mediterranean region could produce low yields (MiscanFor), and significant losses of soil carbon (JULES and IMAGE). These results highlight the uncertainty in rapidly scaling‐up biomass energy supply, especially in dry tropical climates and in regions where future climate change could result in drier conditions. This has important policy implications—because prominently used scenarios to limit warming to ‘well below 2°C’ (including the one explored here) depend upon its effectiveness.
Aberdeen University ... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/2164/19964Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12982&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 9visibility views 9 download downloads 11 Powered bymore_vert Aberdeen University ... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/2164/19964Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12982&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Embargo end date: 15 Feb 2022 South Africa, Spain, Switzerland, United States, DenmarkPublisher:Proceedings of the National Academy of Sciences Funded by:EC | MIDLAND, EC | COUPLED, EC | SystemShift +2 projectsEC| MIDLAND ,EC| COUPLED ,EC| SystemShift ,EC| MAT_STOCKS ,EC| HEFTAuthors:Meyfroidt, Patrick;
Meyfroidt, Patrick
Meyfroidt, Patrick in OpenAIREDe Bremond, Ariane;
De Bremond, Ariane
De Bremond, Ariane in OpenAIRERyan, Casey M.;
Ryan, Casey M.
Ryan, Casey M. in OpenAIREArcher, Emma;
+47 AuthorsArcher, Emma
Archer, Emma in OpenAIREMeyfroidt, Patrick;
Meyfroidt, Patrick
Meyfroidt, Patrick in OpenAIREDe Bremond, Ariane;
De Bremond, Ariane
De Bremond, Ariane in OpenAIRERyan, Casey M.;
Ryan, Casey M.
Ryan, Casey M. in OpenAIREArcher, Emma;
Aspinall, Richard;Archer, Emma
Archer, Emma in OpenAIREChhabra, Abha;
Camara, Gilberto;Chhabra, Abha
Chhabra, Abha in OpenAIRECorbera, Esteve;
Corbera, Esteve
Corbera, Esteve in OpenAIREDeFries, Ruth;
DeFries, Ruth
DeFries, Ruth in OpenAIREDíaz, Sandra;
Díaz, Sandra
Díaz, Sandra in OpenAIREDong, Jinwei;
Dong, Jinwei
Dong, Jinwei in OpenAIREEllis, Erle C.;
Ellis, Erle C.
Ellis, Erle C. in OpenAIREErb, Karl-Heinz;
Fisher, Janet A.;Erb, Karl-Heinz
Erb, Karl-Heinz in OpenAIREGarrett, Rachael D.;
Golubiewski, Nancy E.; Grau, H. Ricardo; Grove, J. Morgan;Garrett, Rachael D.
Garrett, Rachael D. in OpenAIREHaberl, Helmut;
Haberl, Helmut
Haberl, Helmut in OpenAIREHeinimann, Andreas;
Heinimann, Andreas
Heinimann, Andreas in OpenAIREHostert, Patrick;
Jobbágy, Esteban G.; Kerr, Suzi;Hostert, Patrick
Hostert, Patrick in OpenAIREKuemmerle, Tobias;
Kuemmerle, Tobias
Kuemmerle, Tobias in OpenAIRELambin, Eric F.;
Lavorel, Sandra;Lambin, Eric F.
Lambin, Eric F. in OpenAIRELele, Sharachandra;
Lele, Sharachandra
Lele, Sharachandra in OpenAIREMertz, Ole;
Mertz, Ole
Mertz, Ole in OpenAIREMesserli, Peter;
Messerli, Peter
Messerli, Peter in OpenAIREMetternicht, Graciela;
Metternicht, Graciela
Metternicht, Graciela in OpenAIREMunroe, Darla K.;
Munroe, Darla K.
Munroe, Darla K. in OpenAIRENagendra, Harini;
Nagendra, Harini
Nagendra, Harini in OpenAIRENielsen, Jonas Østergaard;
Ojima, Dennis S.;Nielsen, Jonas Østergaard
Nielsen, Jonas Østergaard in OpenAIREParker, Dawn Cassandra;
Parker, Dawn Cassandra
Parker, Dawn Cassandra in OpenAIREPascual, Unai;
Pascual, Unai
Pascual, Unai in OpenAIREPorter, John R.;
Ramankutty, Navin;Porter, John R.
Porter, John R. in OpenAIREReenberg, Anette;
Roy Chowdhury, Rinku;Reenberg, Anette
Reenberg, Anette in OpenAIRESeto, Karen C.;
Seto, Karen C.
Seto, Karen C. in OpenAIRESeufert, Verena;
Seufert, Verena
Seufert, Verena in OpenAIREShibata, Hideaki;
Shibata, Hideaki
Shibata, Hideaki in OpenAIREThomson, Allison;
Thomson, Allison
Thomson, Allison in OpenAIRETurner, Billie L.;
Turner, Billie L.
Turner, Billie L. in OpenAIREUrabe, Jotaro;
Urabe, Jotaro
Urabe, Jotaro in OpenAIREVeldkamp, Tom;
Veldkamp, Tom
Veldkamp, Tom in OpenAIREVerburg, Peter H.;
Verburg, Peter H.
Verburg, Peter H. in OpenAIREZeleke, Gete;
Zeleke, Gete
Zeleke, Gete in OpenAIREzu Ermgassen, Erasmus K. H. J.;
Universitat Autònoma de Barcelona. Departament de Geografia;zu Ermgassen, Erasmus K. H. J.
zu Ermgassen, Erasmus K. H. J. in OpenAIRELand use is central to addressing sustainability issues, including biodiversity conservation, climate change, food security, poverty alleviation, and sustainable energy. In this paper, we synthesize knowledge accumulated in land system science, the integrated study of terrestrial social-ecological systems, into 10 hard truths that have strong, general, empirical support. These facts help to explain the challenges of achieving sustainability in land use and thus also point toward solutions. The 10 facts are as follows: 1) Meanings and values of land are socially constructed and contested; 2) land systems exhibit complex behaviors with abrupt, hard-to-predict changes; 3) irreversible changes and path dependence are common features of land systems; 4) some land uses have a small footprint but very large impacts; 5) drivers and impacts of land-use change are globally interconnected and spill over to distant locations; 6) humanity lives on a used planet where all land provides benefits to societies; 7) land-use change usually entails trade-offs between different benefits—"win–wins" are thus rare; 8) land tenure and land-use claims are often unclear, overlapping, and contested; 9) the benefits and burdens from land are unequally distributed; and 10) land users have multiple, sometimes conflicting, ideas of what social and environmental justice entails. The facts have implications for governance, but do not provide fixed answers. Instead they constitute a set of core principles which can guide scientists, policy makers, and practitioners toward meeting sustainability challenges in land use.
Columbia University ... arrow_drop_down Columbia University Academic CommonsArticle . 2022Full-Text: https://doi.org/10.7916/gqbb-4y58Data sources: Bielefeld Academic Search Engine (BASE)UP Research Data RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2022License: CC BYData sources: Diposit Digital de Documents de la UABUniversity of Western Sydney (UWS): Research DirectArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2109217118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 215 citations 215 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Columbia University ... arrow_drop_down Columbia University Academic CommonsArticle . 2022Full-Text: https://doi.org/10.7916/gqbb-4y58Data sources: Bielefeld Academic Search Engine (BASE)UP Research Data RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2022License: CC BYData sources: Diposit Digital de Documents de la UABUniversity of Western Sydney (UWS): Research DirectArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2109217118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal , Preprint , Report 2019 France, Spain, United Kingdom, France, United Kingdom, United Kingdom, Finland, FrancePublisher:American Association for the Advancement of Science (AAAS) Publicly fundedFunded by:NSF | Predicting Regional Invas..., EC | BIOBIO, EC | ECOWORM +13 projectsNSF| Predicting Regional Invasion Dynamic Processes (PRIDE)-Developing a Cross-scale, Functional-trait Based Modeling Framework ,EC| BIOBIO ,EC| ECOWORM ,EC| SPECIALS ,NSERC ,FWF| The macrofauna decomposer food web on alpine pastureland ,EC| TERRESTREVOL ,EC| AGFORWARD ,NWO| EV Diagnostics for monitoring therapy byliquid tuneable Coulter flowcytometry (project 3.2) ,FWF| Litter decomposition and humus formation in highalpine soils ,DFG| German Centre for Integrative Biodiversity Research - iDiv ,EC| Gradual_Change ,FCT| LA 1 ,NSF| IGERT: Ecology, Management and Restoration of Integrated Human/Natural Landscapes ,EC| FUNDIVEUROPE ,AKA| Macrodetritivore range shifts and implications for aboveground-belowground interactionsAuthors: Devin Routh;Aidan M. Keith;
Geoff H. Baker;Aidan M. Keith
Aidan M. Keith in OpenAIREBoris Schröder;
+142 AuthorsBoris Schröder
Boris Schröder in OpenAIREDevin Routh;Aidan M. Keith;
Geoff H. Baker;Aidan M. Keith
Aidan M. Keith in OpenAIREBoris Schröder;
Fredrick O. Ayuke;Boris Schröder
Boris Schröder in OpenAIREIñigo Virto;
Iñigo Virto
Iñigo Virto in OpenAIREThomas W. Crowther;
Thomas W. Crowther
Thomas W. Crowther in OpenAIREAnahí Domínguez;
Yvan Capowiez;Anahí Domínguez
Anahí Domínguez in OpenAIREIrina V. Zenkova;
Irina V. Zenkova
Irina V. Zenkova in OpenAIREKonstantin B. Gongalsky;
Konstantin B. Gongalsky
Konstantin B. Gongalsky in OpenAIREMartin Holmstrup;
Sandy M. Smith;Martin Holmstrup
Martin Holmstrup in OpenAIREMark E. Caulfield;
Mark E. Caulfield
Mark E. Caulfield in OpenAIREChristian Mulder;
Robin Beauséjour;Christian Mulder
Christian Mulder in OpenAIREShishir Paudel;
Shishir Paudel
Shishir Paudel in OpenAIREMatthias C. Rillig;
Matthias C. Rillig
Matthias C. Rillig in OpenAIREMichael Steinwandter;
Michiel Rutgers; Takuo Hishi;Michael Steinwandter
Michael Steinwandter in OpenAIRELoes van Schaik;
Jérôme Mathieu;Loes van Schaik
Loes van Schaik in OpenAIREGuillaume Xavier Rousseau;
José Antonio Talavera;Guillaume Xavier Rousseau
Guillaume Xavier Rousseau in OpenAIREMiguel Á. Rodríguez;
Miguel Á. Rodríguez
Miguel Á. Rodríguez in OpenAIRENico Eisenhauer;
Nico Eisenhauer
Nico Eisenhauer in OpenAIRECarlos Fragoso;
H. Lalthanzara; Thibaud Decaëns; Luis M. Hernández;Carlos Fragoso
Carlos Fragoso in OpenAIREAdrian A. Wackett;
David J. Russell;Adrian A. Wackett
Adrian A. Wackett in OpenAIREWeixin Zhang;
Weixin Zhang
Weixin Zhang in OpenAIREDavid A. Wardle;
David A. Wardle
David A. Wardle in OpenAIREScott R. Loss;
Scott R. Loss
Scott R. Loss in OpenAIRESteven J. Fonte;
Steven J. Fonte
Steven J. Fonte in OpenAIRELiliana B. Falco;
Liliana B. Falco
Liliana B. Falco in OpenAIREOlaf Schmidt;
Olaf Schmidt
Olaf Schmidt in OpenAIRERadim Matula;
Radim Matula
Radim Matula in OpenAIREShaieste Gholami;
Darío J. Díaz Cosín; Anna Rożen; Robert L. Bradley;Shaieste Gholami
Shaieste Gholami in OpenAIREWim H. van der Putten;
Michael J. Gundale; Andrea Dávalos; Andrea Dávalos; Rosa Fernández;Wim H. van der Putten
Wim H. van der Putten in OpenAIREJohan van den Hoogen;
Johan van den Hoogen
Johan van den Hoogen in OpenAIREFranciska T. de Vries;
Victoria Nuzzo; Mujeeb Rahman P;Franciska T. de Vries
Franciska T. de Vries in OpenAIREAndré L.C. Franco;
André L.C. Franco
André L.C. Franco in OpenAIREJan Hendrik Moos;
Jan Hendrik Moos
Jan Hendrik Moos in OpenAIREJoann K. Whalen;
Martine Fugère;Joann K. Whalen
Joann K. Whalen in OpenAIREMac A. Callaham;
Mac A. Callaham
Mac A. Callaham in OpenAIREMiwa Arai;
Miwa Arai
Miwa Arai in OpenAIREElizabeth M. Bach;
Yiqing Li; Raphaël Marichal; Jonatan Klaminder; Monika Joschko; George G. Brown;Elizabeth M. Bach
Elizabeth M. Bach in OpenAIREMichael B. Wironen;
Dolores Trigo; Nathaniel H. Wehr;Michael B. Wironen
Michael B. Wironen in OpenAIREMaria Kernecker;
Kristine N. Hopfensperger; Amy Choi;Maria Kernecker
Maria Kernecker in OpenAIREEsperanza Huerta Lwanga;
Sanna T. Kukkonen;Esperanza Huerta Lwanga
Esperanza Huerta Lwanga in OpenAIREBasil V. Iannone;
Veikko Huhta; Birgitta König-Ries; Guénola Pérès;Basil V. Iannone
Basil V. Iannone in OpenAIRESalvador Rebollo;
Olga Ferlian;Salvador Rebollo
Salvador Rebollo in OpenAIRENick van Eekeren;
Anne W. de Valença; Eric Blanchart;Nick van Eekeren
Nick van Eekeren in OpenAIREMatthew W. Warren;
Matthew W. Warren
Matthew W. Warren in OpenAIREJohan Pansu;
Christoph Emmerling;Johan Pansu
Johan Pansu in OpenAIRECourtland Kelly;
Courtland Kelly
Courtland Kelly in OpenAIREJavier Rodeiro-Iglesias;
Javier Rodeiro-Iglesias
Javier Rodeiro-Iglesias in OpenAIREArmand W. Koné;
Armand W. Koné
Armand W. Koné in OpenAIREMuhammad Rashid;
Muhammad Rashid; Alexander M. Roth;Muhammad Rashid
Muhammad Rashid in OpenAIREDavorka K. Hackenberger;
Michael Schirrmann;Davorka K. Hackenberger
Davorka K. Hackenberger in OpenAIREAlberto Orgiazzi;
Bryant C. Scharenbroch;Alberto Orgiazzi
Alberto Orgiazzi in OpenAIREUlrich Brose;
Ulrich Brose
Ulrich Brose in OpenAIREHelen Phillips;
Diana H. Wall; Noa Kekuewa Lincoln; Andrew R. Holdsworth; Raúl Piñeiro; Tunsisa T. Hurisso; Tunsisa T. Hurisso;Helen Phillips
Helen Phillips in OpenAIREMónica Gutiérrez López;
Mónica Gutiérrez López
Mónica Gutiérrez López in OpenAIREKlaus Birkhofer;
Yahya Kooch; Michel Loreau;Klaus Birkhofer
Klaus Birkhofer in OpenAIREJulia Seeber;
Jaswinder Singh; Volkmar Wolters;Julia Seeber
Julia Seeber in OpenAIRERadoslava Kanianska;
Jiro Tsukamoto; Visa Nuutinen;Radoslava Kanianska
Radoslava Kanianska in OpenAIREGerardo Moreno;
Gerardo Moreno
Gerardo Moreno in OpenAIREMarie Luise Carolina Bartz;
Juan B. Jesús Lidón;Marie Luise Carolina Bartz
Marie Luise Carolina Bartz in OpenAIREDaniel R. Lammel;
Daniel R. Lammel;Daniel R. Lammel
Daniel R. Lammel in OpenAIREMadhav P. Thakur;
Madhav P. Thakur
Madhav P. Thakur in OpenAIREFelicity Crotty;
Julia Krebs;Felicity Crotty
Felicity Crotty in OpenAIREIurii M. Lebedev;
Steven J. Vanek;Iurii M. Lebedev
Iurii M. Lebedev in OpenAIREMarta Novo;
Marta Novo
Marta Novo in OpenAIRECarlos A. Guerra;
José Camilo Bedano; Bernd Blossey;Carlos A. Guerra
Carlos A. Guerra in OpenAIRELorenzo Pérez-Camacho;
Lorenzo Pérez-Camacho
Lorenzo Pérez-Camacho in OpenAIREJoanne M. Bennett;
Joanne M. Bennett
Joanne M. Bennett in OpenAIRENobuhiro Kaneko;
Nobuhiro Kaneko
Nobuhiro Kaneko in OpenAIREMadalina Iordache;
Madalina Iordache
Madalina Iordache in OpenAIREAndrés Esteban Duhour;
Maria J. I. Briones; Abegail T Fusilero; Maxim Shashkov; Maxim Shashkov;Andrés Esteban Duhour
Andrés Esteban Duhour in OpenAIREEhsan Sayad;
Ehsan Sayad
Ehsan Sayad in OpenAIREThomas Bolger;
Alejandro Morón-Ríos; Lindsey Norgrove; Benjamin Schwarz;Thomas Bolger
Thomas Bolger in OpenAIREBart Muys;
Bart Muys
Bart Muys in OpenAIREJohan Neirynck;
Johan Neirynck
Johan Neirynck in OpenAIREJean-François Ponge;
Erin K. Cameron; Kelly S. Ramirez;Jean-François Ponge
Jean-François Ponge in OpenAIREpmid: 31649197
pmc: PMC7335308
Earthworm distribution in global soils Earthworms are key components of soil ecological communities, performing vital functions in decomposition and nutrient cycling through ecosystems. Using data from more than 7000 sites, Phillips et al. developed global maps of the distribution of earthworm diversity, abundance, and biomass (see the Perspective by Fierer). The patterns differ from those typically found in aboveground taxa; there are peaks of diversity and abundance in the mid-latitude regions and peaks of biomass in the tropics. Climate variables strongly influence these patterns, and changes are likely to have cascading effects on other soil organisms and wider ecosystem functions. Science , this issue p. 480 ; see also p. 425
Hyper Article en Lig... arrow_drop_down Hyper Article en LignePreprint . 2019License: CC BYFull-Text: https://hal.inrae.fr/hal-02788558/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationPreprint . 2019License: CC BYFull-Text: https://hal.inrae.fr/hal-02788558/documentCIRAD: HAL (Agricultural Research for Development)Article . 2019License: PDMFull-Text: https://hal.science/hal-02337185Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUReport . 2019Full-Text: https://hal.inrae.fr/hal-02788558Data sources: Bielefeld Academic Search Engine (BASE)Royal Agricultural University Repository (RAU Cirencester - CREST)Article . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019License: PDMFull-Text: https://hal.science/hal-02337185Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTANatural Environment Research Council: NERC Open Research ArchiveArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aax4851&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 286 citations 286 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 53visibility views 53 download downloads 424 Powered bymore_vert Hyper Article en Lig... arrow_drop_down Hyper Article en LignePreprint . 2019License: CC BYFull-Text: https://hal.inrae.fr/hal-02788558/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationPreprint . 2019License: CC BYFull-Text: https://hal.inrae.fr/hal-02788558/documentCIRAD: HAL (Agricultural Research for Development)Article . 2019License: PDMFull-Text: https://hal.science/hal-02337185Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUReport . 2019Full-Text: https://hal.inrae.fr/hal-02788558Data sources: Bielefeld Academic Search Engine (BASE)Royal Agricultural University Repository (RAU Cirencester - CREST)Article . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019License: PDMFull-Text: https://hal.science/hal-02337185Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTANatural Environment Research Council: NERC Open Research ArchiveArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aax4851&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Springer Science and Business Media LLC Authors:Veronica De Micco;
Veronica De Micco
Veronica De Micco in OpenAIREChiara Amitrano;
Chiara Amitrano
Chiara Amitrano in OpenAIREFelice Mastroleo;
Felice Mastroleo
Felice Mastroleo in OpenAIREGiovanna Aronne;
+13 AuthorsGiovanna Aronne
Giovanna Aronne in OpenAIREVeronica De Micco;
Veronica De Micco
Veronica De Micco in OpenAIREChiara Amitrano;
Chiara Amitrano
Chiara Amitrano in OpenAIREFelice Mastroleo;
Felice Mastroleo
Felice Mastroleo in OpenAIREGiovanna Aronne;
Giovanna Aronne
Giovanna Aronne in OpenAIREAlberto Battistelli;
Eugénie Carnero-Díaz;Alberto Battistelli
Alberto Battistelli in OpenAIREStefania De Pascale;
Stefania De Pascale
Stefania De Pascale in OpenAIREGisela Detrell;
Gisela Detrell
Gisela Detrell in OpenAIREClaude‐Gilles Dussap;
Claude‐Gilles Dussap
Claude‐Gilles Dussap in OpenAIRERamon Ganigué;
Ramon Ganigué
Ramon Ganigué in OpenAIREØyvind M. Jakobsen;
Øyvind M. Jakobsen
Øyvind M. Jakobsen in OpenAIRELucie Poulet;
Lucie Poulet
Lucie Poulet in OpenAIRERob Van Houdt;
Rob Van Houdt
Rob Van Houdt in OpenAIRECyprien Verseux;
Cyprien Verseux
Cyprien Verseux in OpenAIRESiegfried E. Vlaeminck;
Siegfried E. Vlaeminck
Siegfried E. Vlaeminck in OpenAIRERonnie Willaert;
Ronnie Willaert
Ronnie Willaert in OpenAIRENatalie Leys;
Natalie Leys
Natalie Leys in OpenAIREpmid: 37620398
pmc: PMC10449850
AbstractLong-term human space exploration missions require environmental control and closed Life Support Systems (LSS) capable of producing and recycling resources, thus fulfilling all the essential metabolic needs for human survival in harsh space environments, both during travel and on orbital/planetary stations. This will become increasingly necessary as missions reach farther away from Earth, thereby limiting the technical and economic feasibility of resupplying resources from Earth. Further incorporation of biological elements into state-of-the-art (mostly abiotic) LSS, leading to bioregenerative LSS (BLSS), is needed for additional resource recovery, food production, and waste treatment solutions, and to enable more self-sustainable missions to the Moon and Mars. There is a whole suite of functions crucial to sustain human presence in Low Earth Orbit (LEO) and successful settlement on Moon or Mars such as environmental control, air regeneration, waste management, water supply, food production, cabin/habitat pressurization, radiation protection, energy supply, and means for transportation, communication, and recreation. In this paper, we focus on air, water and food production, and waste management, and address some aspects of radiation protection and recreation. We briefly discuss existing knowledge, highlight open gaps, and propose possible future experiments in the short-, medium-, and long-term to achieve the targets of crewed space exploration also leading to possible benefits on Earth.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41526-023-00317-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41526-023-00317-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United Kingdom, Spain, Italy, Spain, Germany, Spain, France, Spain, FinlandPublisher:Wiley Authors:Tatiana A. Shestakova;
Tatiana A. Shestakova
Tatiana A. Shestakova in OpenAIREJordi Voltas;
Matthias Saurer; Frank Berninger; +41 AuthorsJordi Voltas
Jordi Voltas in OpenAIRETatiana A. Shestakova;
Tatiana A. Shestakova
Tatiana A. Shestakova in OpenAIREJordi Voltas;
Matthias Saurer; Frank Berninger;Jordi Voltas
Jordi Voltas in OpenAIREJan Esper;
Jan Esper
Jan Esper in OpenAIRELaia Andreu‐Hayles;
Valérie Daux; Gerhard Helle;Laia Andreu‐Hayles
Laia Andreu‐Hayles in OpenAIREMarkus Leuenberger;
Neil J. Loader; Valérie Masson‐Delmotte;Markus Leuenberger
Markus Leuenberger in OpenAIREAntonio Saracino;
John S. Waterhouse; Gerhard H. Schleser; Zdzisław Bednarz; Tatjana Boettger;Antonio Saracino
Antonio Saracino in OpenAIREIsabel Dorado‐Liñán;
Marc Filot;Isabel Dorado‐Liñán
Isabel Dorado‐Liñán in OpenAIREDavid Frank;
Michael Grabner; Marika Haupt; Emmi Hilasvuori; Högne Jungner; Maarit Kalela‐Brundin;David Frank
David Frank in OpenAIREMarek Krąpiec;
Hamid Marah; Sławomira Pawełczyk; Anna Pazdur; Monique Pierre; Octavi Planells;Marek Krąpiec
Marek Krąpiec in OpenAIRERūtilė Pukienė;
Christina E. Reynolds‐Henne;Rūtilė Pukienė
Rūtilė Pukienė in OpenAIREKatja T. Rinne‐Garmston (Rinne);
Katja T. Rinne‐Garmston (Rinne)
Katja T. Rinne‐Garmston (Rinne) in OpenAIREAngelo Rita;
Eloni Sonninen; Michel Stiévenard; Vincent R. Switsur; Elżbieta Szychowska‐Kra̧piec; Malgorzata Szymaszek;Angelo Rita
Angelo Rita in OpenAIRELuigi Todaro;
Luigi Todaro
Luigi Todaro in OpenAIREKerstin Treydte;
Kerstin Treydte
Kerstin Treydte in OpenAIREAdomas Vitas;
Martin Weigl; Rupert Wimmer; Emilia Gutiérrez;Adomas Vitas
Adomas Vitas in OpenAIREdoi: 10.1111/geb.12933
handle: 11563/137461
AbstractAimThe aim was to decipher Europe‐wide spatio‐temporal patterns of forest growth dynamics and their associations with carbon isotope fractionation processes inferred from tree rings as modulated by climate warming.LocationEurope and North Africa (30‒70° N, 10° W‒35° E).Time period1901‒2003.Major taxa studiedTemperate and Euro‐Siberian trees.MethodsWe characterize changes in the relationship between tree growth and carbon isotope fractionation over the 20th century using a European network consisting of 20 site chronologies. Using indexed tree‐ring widths (TRWi), we assess shifts in the temporal coherence of radial growth across sites (synchrony) for five forest ecosystems (Atlantic, boreal, cold continental, Mediterranean and temperate). We also examine whether TRWi shows variable coupling with leaf‐level gas exchange, inferred from indexed carbon isotope discrimination of tree‐ring cellulose (Δ13Ci).ResultsWe find spatial autocorrelation for TRWi and Δ13Ci extending over a maximum of 1,000 km among forest stands. However, growth synchrony is not uniform across Europe, but increases along a latitudinal gradient concurrent with decreasing temperature and evapotranspiration. Latitudinal relationships between TRWi and Δ13Ci (changing from negative to positive southwards) point to drought impairing carbon uptake via stomatal regulation for water saving occurring at forests below 60° N in continental Europe. An increase in forest growth synchrony over the 20th century together with increasingly positive relationships between TRWi and Δ13Ci indicate intensifying impacts of drought on tree performance. These effects are noticeable in drought‐prone biomes (Mediterranean, temperate and cold continental).Main conclusionsAt the turn of this century, convergence in growth synchrony across European forest ecosystems is coupled with coordinated warming‐induced effects of drought on leaf physiology and tree growth spreading northwards. Such a tendency towards exacerbated moisture‐sensitive growth and physiology could override positive effects of enhanced leaf intercellular CO2 concentrations, possibly resulting in Europe‐wide declines of forest carbon gain in the coming decades.
Università degli Stu... arrow_drop_down Università degli Studi della Basilicata: CINECA IRISArticle . 2019Full-Text: http://hdl.handle.net/11563/137461Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAGlobal Ecology and BiogeographyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.12933&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 38 citations 38 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Università degli Stu... arrow_drop_down Università degli Studi della Basilicata: CINECA IRISArticle . 2019Full-Text: http://hdl.handle.net/11563/137461Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAGlobal Ecology and BiogeographyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.12933&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 United Kingdom, France, DenmarkPublisher:Informa UK Limited Funded by:EC | I-REDD+EC| I-REDD+Authors:Mertz, Ole;
Muller, Daniel; Sikor, Thomas; Hett, Cornelia; +24 AuthorsMertz, Ole
Mertz, Ole in OpenAIREMertz, Ole;
Muller, Daniel; Sikor, Thomas; Hett, Cornelia;Mertz, Ole
Mertz, Ole in OpenAIREHeinimann, Andreas;
Heinimann, Andreas
Heinimann, Andreas in OpenAIRECastella, Jean-Christophe;
Castella, Jean-Christophe
Castella, Jean-Christophe in OpenAIRELestrelin, Guillaume;
Lestrelin, Guillaume
Lestrelin, Guillaume in OpenAIRERyan, Casey M.;
Reay, David S.; Schmidt-Vogt, Dietrich;Ryan, Casey M.
Ryan, Casey M. in OpenAIREDanielsen, Finn;
Danielsen, Finn
Danielsen, Finn in OpenAIRETheilade, Ida;
Theilade, Ida
Theilade, Ida in OpenAIREvan Noordwijk, Meine;
van Noordwijk, Meine
van Noordwijk, Meine in OpenAIREVerchot, Louis;
Burgess, Neil D.; Berry, Nicholas J.;Verchot, Louis
Verchot, Louis in OpenAIREPham, Thu Thuy;
Pham, Thu Thuy
Pham, Thu Thuy in OpenAIREMesserli, Peter;
Xu, Jianchu;Messerli, Peter
Messerli, Peter in OpenAIREFensholt, Rasmus;
Hostert, Patrick;Fensholt, Rasmus
Fensholt, Rasmus in OpenAIREPflugmacher, Dirk;
Pflugmacher, Dirk
Pflugmacher, Dirk in OpenAIREBruun, Thilde Bech;
Bruun, Thilde Bech
Bruun, Thilde Bech in OpenAIREde Neergaard, Andreas;
de Neergaard, Andreas
de Neergaard, Andreas in OpenAIREDons, Klaus;
Dewi, Sonya; Rutishauer, Ervan;Dons, Klaus
Dons, Klaus in OpenAIRESun, Zhanli;
Sun, Zhanli
Sun, Zhanli in OpenAIREhandle: 10568/95438
International climate negotiations have stressed the importance of considering emissions from forest degradation under the planned REDD+ (Reducing Emissions from Deforestation and forest Degradation + enhancing forest carbon stocks) mechanism. However, most research, pilot-REDD+ projects and carbon certification agencies have focused on deforestation and there appears to be a gap in knowledge on complex mosaic landscapes containing degraded forests, smallholder agriculture, agroforestry and plantations. In this paper we therefore review current research on how avoided forest degradation may affect emissions of greenhouse gases (GHG) and expected co-benefits in terms of biodiversity and livelihoods. There are still high uncertainties in measuring and monitoring emissions of carbon and other GHG from mosaic landscapes with forest degradation since most research has focused on binary analyses of forest vs. deforested land. Studies on the impacts of forest degradation on biodiversity contain mixed results and there is little empirical evidence on the influence of REDD+ on local livelihoods and tenure security, partly due to the lack of actual payment schemes. Governance structures are also more complex in landscapes with degraded forests as there are often multiple owners and types of rights to land and trees. Recent technological advances in remote sensing have improved estimation of carbon stock changes but establishment of historic reference levels is still challenged by the availability of sensor systems and ground measurements during the reference period. The inclusion of forest degradation in REDD+ calls for a range of new research efforts to enhance our knowledge of how to assess the impacts of avoided forest degradation. A first step will be to ensure that complex mosaic landscapes can be recognised under REDD+ on their own merits.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018Full-Text: https://hdl.handle.net/10568/95438Data sources: Bielefeld Academic Search Engine (BASE)Geografisk Tidsskrift-Danish Journal of GeographyArticle . 2012Data sources: SESAM Publication Database - FP7 ENVUniversity of Copenhagen: ResearchArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Geografisk Tidsskrift-Danish Journal of GeographyArticle . 2012 . Peer-reviewedData sources: CrossrefUniversity of East Anglia: UEA Digital RepositoryArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/00167223.2012.709678&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 79 citations 79 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018Full-Text: https://hdl.handle.net/10568/95438Data sources: Bielefeld Academic Search Engine (BASE)Geografisk Tidsskrift-Danish Journal of GeographyArticle . 2012Data sources: SESAM Publication Database - FP7 ENVUniversity of Copenhagen: ResearchArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Geografisk Tidsskrift-Danish Journal of GeographyArticle . 2012 . Peer-reviewedData sources: CrossrefUniversity of East Anglia: UEA Digital RepositoryArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/00167223.2012.709678&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu