- home
- Advanced Search
- Energy Research
- 15. Life on land
- 12. Responsible consumption
- 3. Good health
- DE
- JP
- Aurora Universities Network
- Energy Research
- 15. Life on land
- 12. Responsible consumption
- 3. Good health
- DE
- JP
- Aurora Universities Network
description Publicationkeyboard_double_arrow_right Article , Other literature type 2017Publisher:Springer Science and Business Media LLC Authors: Ingo Karschin; Alex G. Berg; Jutta Geldermann;Cogeneration of heat and electricity is an important pillar of energy and climate policy. To plan the production and distribution system of combined heat and power (CHP) systems for residential heating, suitable methods for decision support are needed. For a comprehensive feasibility analysis, the integration of the location and capacity planning of the power plants, the choice of customers, and the network planning of the heating network into one optimization model are necessary. Thus, we develop an optimization model for electricity generation and heat supply. This mixed integer linear program (MILP) is based on graph theory for network flow problems. We apply the network location model for the optimization of district heating systems in the City of Osorno in Chile, which exhibits the “checkerboard layout” typically found in many South American cities. The network location model can support the strategic planning of investments in renewable energy projects because it permits the analysis of changing energy prices, calculation of break-even prices for heat and electricity, and estimation of greenhouse gas emission savings.
Zeitschrift für Ener... arrow_drop_down Zeitschrift für EnergiewirtschaftArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: CrossrefUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2018Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12398-017-0216-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Zeitschrift für Ener... arrow_drop_down Zeitschrift für EnergiewirtschaftArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: CrossrefUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2018Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12398-017-0216-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2017Publisher:Springer Science and Business Media LLC Authors: Ingo Karschin; Alex G. Berg; Jutta Geldermann;Cogeneration of heat and electricity is an important pillar of energy and climate policy. To plan the production and distribution system of combined heat and power (CHP) systems for residential heating, suitable methods for decision support are needed. For a comprehensive feasibility analysis, the integration of the location and capacity planning of the power plants, the choice of customers, and the network planning of the heating network into one optimization model are necessary. Thus, we develop an optimization model for electricity generation and heat supply. This mixed integer linear program (MILP) is based on graph theory for network flow problems. We apply the network location model for the optimization of district heating systems in the City of Osorno in Chile, which exhibits the “checkerboard layout” typically found in many South American cities. The network location model can support the strategic planning of investments in renewable energy projects because it permits the analysis of changing energy prices, calculation of break-even prices for heat and electricity, and estimation of greenhouse gas emission savings.
Zeitschrift für Ener... arrow_drop_down Zeitschrift für EnergiewirtschaftArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: CrossrefUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2018Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12398-017-0216-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Zeitschrift für Ener... arrow_drop_down Zeitschrift für EnergiewirtschaftArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: CrossrefUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2018Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12398-017-0216-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Research , Preprint 2005Publisher:Elsevier BV Authors: Christoph Weber; Philip Vogel;doi: 10.2139/ssrn.1653408
Small decentralized power generation units (DG) are politically promoted because of their potential to reduce GHG-emissions and the existing dependency on fossil fuels. A long term goal of this promotion should be the creation of a level playing field for DG and conventional power generation. Due to the impact of DG on the electricity grid infrastructure, future regulation should consider the costs and benefits of the integration of decentralized energy generation units. Without an adequate consideration, the overall costs of the electricity generation system will be unnecessarily high. The present paper analyses, based on detailed modelling of decentralized demand and supply as well as of the overall system, the marginal costs or savings resulting from decentralized production. Thereby particular focus is laid on taking adequately into account the stochasticity both of energy demand and energy supply. An efficient grid pricing system should then remunerate long-term grid cost savings to operators of decentralized energy production or/and charge long-term additional grid costs to these operators. With detailed models of decentralized demand and supply as well as the overall system, the marginal costs or savings resulting from decentralized production are determined and their dependency on characteristics of the grid and of the decentralized supply are discussed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.1653408&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.1653408&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Research , Preprint 2005Publisher:Elsevier BV Authors: Christoph Weber; Philip Vogel;doi: 10.2139/ssrn.1653408
Small decentralized power generation units (DG) are politically promoted because of their potential to reduce GHG-emissions and the existing dependency on fossil fuels. A long term goal of this promotion should be the creation of a level playing field for DG and conventional power generation. Due to the impact of DG on the electricity grid infrastructure, future regulation should consider the costs and benefits of the integration of decentralized energy generation units. Without an adequate consideration, the overall costs of the electricity generation system will be unnecessarily high. The present paper analyses, based on detailed modelling of decentralized demand and supply as well as of the overall system, the marginal costs or savings resulting from decentralized production. Thereby particular focus is laid on taking adequately into account the stochasticity both of energy demand and energy supply. An efficient grid pricing system should then remunerate long-term grid cost savings to operators of decentralized energy production or/and charge long-term additional grid costs to these operators. With detailed models of decentralized demand and supply as well as the overall system, the marginal costs or savings resulting from decentralized production are determined and their dependency on characteristics of the grid and of the decentralized supply are discussed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.1653408&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.1653408&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Italy, GermanyPublisher:Springer Science and Business Media LLC Authors: Castellani F; Esposito A; Geldermann J; Altieri R;handle: 20.500.14243/354044
Purpose In Italy, composting olive mill waste has become a common practice, since it mitigates the environmental problems associated with spreading the waste on land. Compost can be used to prepare growth media for plant nursery cultivation as a substitute for peat, a non-renewable resource whose extraction has long raised environmental concerns. Here, we investigate two common composting procedures--open windrow and static-pile in gas-permeable bags--and compare them to evaluate their environmental impact. Methods We perform a cradle-to-grave life cycle assessment (LCA) in accordance with ISO 14040 and 14044. The LCA considers carbon storage in the soil after 100 years, fugitive greenhouse gas (GHG) emissions, and the impacts avoided by substituting for peat. We use cumulative energy demand, global warming potential (GWP), acidification potential, and eutrophication potential indicators in a contribution analysis and explore how the re-use of olive pits for energy production and reduction of commercial fertilizers improves the environmental balance. We also present a scenario analysis that indicates how parameter fluctuations affect the results. Results and discussion Our study shows that peat's impacts can be significantly reduced from 1162.3 to 96.3 kg CO2-eq/Mg for open windrow compost or 43.1 kg CO2-eq/Mg for static-pile compost in gas-permeable bags. For static-pile composting, the lack of volatile organic compound and ammonia emissions and the detection of oxygen concentrations above 12% vol. suggest fully aerobic conditions. Fugitive greenhouse gas emissions were the most important contributions to the GWP. In the contribution analysis for static-pile composting, the avoidance of compost spreading and the carbon storage effect (due to compost usage) contributed 54% of the overall impacts to GWP and between 21 and 45% to the other indicators. Conclusions This LCA study illustrates how horticulturists can improve their resource management practices by recycling olive mill waste materials. Proper management of composting unit aeration can reduce fugitive GHG emissions.
Publikationenserver ... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2019The International Journal of Life Cycle AssessmentArticle . 2018 . Peer-reviewedLicense: Springer TDMData sources: CrossrefUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2019Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11367-018-1514-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Publikationenserver ... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2019The International Journal of Life Cycle AssessmentArticle . 2018 . Peer-reviewedLicense: Springer TDMData sources: CrossrefUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2019Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11367-018-1514-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Italy, GermanyPublisher:Springer Science and Business Media LLC Authors: Castellani F; Esposito A; Geldermann J; Altieri R;handle: 20.500.14243/354044
Purpose In Italy, composting olive mill waste has become a common practice, since it mitigates the environmental problems associated with spreading the waste on land. Compost can be used to prepare growth media for plant nursery cultivation as a substitute for peat, a non-renewable resource whose extraction has long raised environmental concerns. Here, we investigate two common composting procedures--open windrow and static-pile in gas-permeable bags--and compare them to evaluate their environmental impact. Methods We perform a cradle-to-grave life cycle assessment (LCA) in accordance with ISO 14040 and 14044. The LCA considers carbon storage in the soil after 100 years, fugitive greenhouse gas (GHG) emissions, and the impacts avoided by substituting for peat. We use cumulative energy demand, global warming potential (GWP), acidification potential, and eutrophication potential indicators in a contribution analysis and explore how the re-use of olive pits for energy production and reduction of commercial fertilizers improves the environmental balance. We also present a scenario analysis that indicates how parameter fluctuations affect the results. Results and discussion Our study shows that peat's impacts can be significantly reduced from 1162.3 to 96.3 kg CO2-eq/Mg for open windrow compost or 43.1 kg CO2-eq/Mg for static-pile compost in gas-permeable bags. For static-pile composting, the lack of volatile organic compound and ammonia emissions and the detection of oxygen concentrations above 12% vol. suggest fully aerobic conditions. Fugitive greenhouse gas emissions were the most important contributions to the GWP. In the contribution analysis for static-pile composting, the avoidance of compost spreading and the carbon storage effect (due to compost usage) contributed 54% of the overall impacts to GWP and between 21 and 45% to the other indicators. Conclusions This LCA study illustrates how horticulturists can improve their resource management practices by recycling olive mill waste materials. Proper management of composting unit aeration can reduce fugitive GHG emissions.
Publikationenserver ... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2019The International Journal of Life Cycle AssessmentArticle . 2018 . Peer-reviewedLicense: Springer TDMData sources: CrossrefUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2019Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11367-018-1514-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Publikationenserver ... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2019The International Journal of Life Cycle AssessmentArticle . 2018 . Peer-reviewedLicense: Springer TDMData sources: CrossrefUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2019Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11367-018-1514-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2012 France, Australia, Netherlands, Australia, Argentina, Argentina, ItalyPublisher:Springer Science and Business Media LLC Funded by:EC | TRANZFOREC| TRANZFORAnna L. Jacobsen; Mark Westoby; Jarmila Pittermann; Amy E. Zanne; Amy E. Zanne; Frederic Lens; Hafiz Maherali; R. Brandon Pratt; Patrick J. Mitchell; Radika Bhaskar; Ian J. Wright; Sean M. Gleason; Andrea Nardini; John S. Sperry; Uwe G. Hacke; Taylor S. Feild; Maurizio Mencuccini; Sylvain Delzon; Steven Jansen; Brendan Choat; Sandra Janet Bucci; Stefan Mayr; Timothy J. Brodribb; Jordi Martínez-Vilalta; Hervé Cochard; Hervé Cochard;Shifts in rainfall patterns and increasing temperatures associated with climate change are likely to cause widespread forest decline in regions where droughts are predicted to increase in duration and severity. One primary cause of productivity loss and plant mortality during drought is hydraulic failure. Drought stress creates trapped gas emboli in the water transport system, which reduces the ability of plants to supply water to leaves for photosynthetic gas exchange and can ultimately result in desiccation and mortality. At present we lack a clear picture of how thresholds to hydraulic failure vary across a broad range of species and environments, despite many individual experiments. Here we draw together published and unpublished data on the vulnerability of the transport system to drought-induced embolism for a large number of woody species, with a view to examining the likely consequences of climate change for forest biomes. We show that 70% of 226 forest species from 81 sites worldwide operate with narrow (<1 megapascal) hydraulic safety margins against injurious levels of drought stress and therefore potentially face long-term reductions in productivity and survival if temperature and aridity increase as predicted for many regions across the globe. Safety margins are largely independent of mean annual precipitation, showing that there is global convergence in the vulnerability of forests to drought, with all forest biomes equally vulnerable to hydraulic failure regardless of their current rainfall environment. These findings provide insight into why drought-induced forest decline is occurring not only in arid regions but also in wet forests not normally considered at drought risk.
Nature arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverhttp://dx.doi.org/10.1038/natu...Other literature typeData sources: European Union Open Data PortalJames Cook University, Australia: ResearchOnline@JCUArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Naturalis Institutional RepositoryArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature11688&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 2K citations 2,078 popularity Top 0.01% influence Top 0.1% impulse Top 0.01% Powered by BIP!
more_vert Nature arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverhttp://dx.doi.org/10.1038/natu...Other literature typeData sources: European Union Open Data PortalJames Cook University, Australia: ResearchOnline@JCUArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Naturalis Institutional RepositoryArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature11688&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2012 France, Australia, Netherlands, Australia, Argentina, Argentina, ItalyPublisher:Springer Science and Business Media LLC Funded by:EC | TRANZFOREC| TRANZFORAnna L. Jacobsen; Mark Westoby; Jarmila Pittermann; Amy E. Zanne; Amy E. Zanne; Frederic Lens; Hafiz Maherali; R. Brandon Pratt; Patrick J. Mitchell; Radika Bhaskar; Ian J. Wright; Sean M. Gleason; Andrea Nardini; John S. Sperry; Uwe G. Hacke; Taylor S. Feild; Maurizio Mencuccini; Sylvain Delzon; Steven Jansen; Brendan Choat; Sandra Janet Bucci; Stefan Mayr; Timothy J. Brodribb; Jordi Martínez-Vilalta; Hervé Cochard; Hervé Cochard;Shifts in rainfall patterns and increasing temperatures associated with climate change are likely to cause widespread forest decline in regions where droughts are predicted to increase in duration and severity. One primary cause of productivity loss and plant mortality during drought is hydraulic failure. Drought stress creates trapped gas emboli in the water transport system, which reduces the ability of plants to supply water to leaves for photosynthetic gas exchange and can ultimately result in desiccation and mortality. At present we lack a clear picture of how thresholds to hydraulic failure vary across a broad range of species and environments, despite many individual experiments. Here we draw together published and unpublished data on the vulnerability of the transport system to drought-induced embolism for a large number of woody species, with a view to examining the likely consequences of climate change for forest biomes. We show that 70% of 226 forest species from 81 sites worldwide operate with narrow (<1 megapascal) hydraulic safety margins against injurious levels of drought stress and therefore potentially face long-term reductions in productivity and survival if temperature and aridity increase as predicted for many regions across the globe. Safety margins are largely independent of mean annual precipitation, showing that there is global convergence in the vulnerability of forests to drought, with all forest biomes equally vulnerable to hydraulic failure regardless of their current rainfall environment. These findings provide insight into why drought-induced forest decline is occurring not only in arid regions but also in wet forests not normally considered at drought risk.
Nature arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverhttp://dx.doi.org/10.1038/natu...Other literature typeData sources: European Union Open Data PortalJames Cook University, Australia: ResearchOnline@JCUArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Naturalis Institutional RepositoryArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature11688&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 2K citations 2,078 popularity Top 0.01% influence Top 0.1% impulse Top 0.01% Powered by BIP!
more_vert Nature arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverhttp://dx.doi.org/10.1038/natu...Other literature typeData sources: European Union Open Data PortalJames Cook University, Australia: ResearchOnline@JCUArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Naturalis Institutional RepositoryArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature11688&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2011 Netherlands, Netherlands, Netherlands, Netherlands, Germany, United KingdomPublisher:The Royal Society Publicly fundedFunded by:UKRI | Global scale impacts of c..., EC | CLIMATECOSTUKRI| Global scale impacts of climate change: a multi-sectoral analysis ,EC| CLIMATECOSTNicholls, R.; Marinova, N.; Lowe, J.; Brown, S.; Vellinga, P.; de Gusmão, D.; Hinkel, J.; Tol, R.;The range of future climate-induced sea-level rise remains highly uncertain with continued concern that large increases in the twenty-first century cannot be ruled out. The biggest source of uncertainty is the response of the large ice sheets of Greenland and west Antarctica. Based on our analysis, a pragmatic estimate of sea-level rise by 2100, for a temperature rise of 4°C or more over the same time frame, is between 0.5 m and 2 m—the probability of rises at the high end is judged to be very low, but of unquantifiable probability. However, if realized, an indicative analysis shows that the impact potential is severe, with the real risk of the forced displacement of up to 187 million people over the century (up to 2.4% of global population). This is potentially avoidable by widespread upgrade of protection, albeit rather costly with up to 0.02 per cent of global domestic product needed, and much higher in certain nations. The likelihood of protection being successfully implemented varies between regions, and is lowest in small islands, Africa and parts of Asia, and hence these regions are the most likely to see coastal abandonment. To respond to these challenges, a multi-track approach is required, which would also be appropriate if a temperature rise of less than 4°C was expected. Firstly, we should monitor sea level to detect any significant accelerations in the rate of rise in a timely manner. Secondly, we need to improve our understanding of the climate-induced processes that could contribute to rapid sea-level rise, especially the role of the two major ice sheets, to produce better models that quantify the likely future rise more precisely. Finally, responses need to be carefully considered via a combination of climate mitigation to reduce the rise and adaptation for the residual rise in sea level. In particular, long-term strategic adaptation plans for the full range of possible sea-level rise (and other change) need to be widely developed.
Wageningen Staff Pub... arrow_drop_down Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering SciencesArticle . 2011 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsta.2010.0291&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu466 citations 466 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Wageningen Staff Pub... arrow_drop_down Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering SciencesArticle . 2011 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsta.2010.0291&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2011 Netherlands, Netherlands, Netherlands, Netherlands, Germany, United KingdomPublisher:The Royal Society Publicly fundedFunded by:UKRI | Global scale impacts of c..., EC | CLIMATECOSTUKRI| Global scale impacts of climate change: a multi-sectoral analysis ,EC| CLIMATECOSTNicholls, R.; Marinova, N.; Lowe, J.; Brown, S.; Vellinga, P.; de Gusmão, D.; Hinkel, J.; Tol, R.;The range of future climate-induced sea-level rise remains highly uncertain with continued concern that large increases in the twenty-first century cannot be ruled out. The biggest source of uncertainty is the response of the large ice sheets of Greenland and west Antarctica. Based on our analysis, a pragmatic estimate of sea-level rise by 2100, for a temperature rise of 4°C or more over the same time frame, is between 0.5 m and 2 m—the probability of rises at the high end is judged to be very low, but of unquantifiable probability. However, if realized, an indicative analysis shows that the impact potential is severe, with the real risk of the forced displacement of up to 187 million people over the century (up to 2.4% of global population). This is potentially avoidable by widespread upgrade of protection, albeit rather costly with up to 0.02 per cent of global domestic product needed, and much higher in certain nations. The likelihood of protection being successfully implemented varies between regions, and is lowest in small islands, Africa and parts of Asia, and hence these regions are the most likely to see coastal abandonment. To respond to these challenges, a multi-track approach is required, which would also be appropriate if a temperature rise of less than 4°C was expected. Firstly, we should monitor sea level to detect any significant accelerations in the rate of rise in a timely manner. Secondly, we need to improve our understanding of the climate-induced processes that could contribute to rapid sea-level rise, especially the role of the two major ice sheets, to produce better models that quantify the likely future rise more precisely. Finally, responses need to be carefully considered via a combination of climate mitigation to reduce the rise and adaptation for the residual rise in sea level. In particular, long-term strategic adaptation plans for the full range of possible sea-level rise (and other change) need to be widely developed.
Wageningen Staff Pub... arrow_drop_down Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering SciencesArticle . 2011 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsta.2010.0291&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu466 citations 466 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Wageningen Staff Pub... arrow_drop_down Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering SciencesArticle . 2011 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsta.2010.0291&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015 France, Netherlands, France, France, France, Germany, France, FrancePublisher:Copernicus GmbH Funded by:EC | GHG EUROPEEC| GHG EUROPENicolas Vuichard; Xiuchen Wu; Xiuchen Wu; Eddy Moors; P. Ciais; N. de Noblet-Ducoudré; Pierre Cellier; Xuhui Wang; P. Di Tommasi; Christine Moureaux; Eric Larmanou; Tanguy Manise; W.W.P. Jans; Luca Vitale; Thomas Grünwald; Vincenzo Magliulo; Jan Elbers; Dominique Ripoche; Tiphaine Tallec; Eric Ceschia; Anne De Ligne; Martin Wattenbach; Benjamin Loubet; Nicolas Viovy; Christian Bernhofer;Abstract. The responses of crop functioning to changing climate and atmospheric CO2 concentration ([CO2]) could have large effects on food production, and impact carbon, water and energy fluxes, causing feedbacks to climate. To simulate the responses of temperate crops to changing climate and [CO2], accounting for the specific phenology of crops mediated by management practice, we present here the development of a process-oriented terrestrial biogeochemical model named ORCHIDEE-CROP (v0), which integrates a generic crop phenology and harvest module and a very simple parameterization of nitrogen fertilization, into the land surface model (LSM) ORCHIDEEv196, in order to simulate biophysical and biochemical interactions in croplands, as well as plant productivity and harvested yield. The model is applicable for a range of temperate crops, but it is tested here for maize and winter wheat, with the phenological parameterizations of two European varieties originating from the STICS agronomical model. We evaluate the ORCHIDEE-CROP (v0) model against eddy covariance and biometric measurements at 7 winter wheat and maize sites in Europe. The specific ecosystem variables used in the evaluation are CO2 fluxes (NEE), latent heat and sensible heat fluxes. Additional measurements of leaf area index (LAI), aboveground biomass and yield are used as well. Evaluation results reveal that ORCHIDEE-CROP (v0) reproduces the observed timing of crop development stages and the amplitude of pertaining LAI changes in contrast to ORCHIDEEv196 in which by default crops have the same phenology than grass. A near-halving of the root mean square error of LAI from 2.38 ± 0.77 to 1.08 ± 0.34 m2 m−2 is obtained between ORCHIDEEv196 and ORCHIDEE-CROP (v0) across the 7 study sites. Improved crop phenology and carbon allocation lead to a general good match between modelled and observed aboveground biomass (with a normalized root mean squared error (NRMSE) of 11.0–54.2 %), crop yield, as well as of the daily carbon and energy fluxes with NRMSE of ~9.0–20.1 and ~9.4–22.3 % for NEE, and sensible and latent heat fluxes, respectively. The model data mistfit for energy fluxes are within uncertainties of the measurements, which themselves show an incomplete energy balance closure within the range 80.6–86.3 %. The remaining discrepancies between modelled and observed LAI and other variables at specific sites are partly attributable to unrealistic representation of management events. In addition, ORCHIDEE-CROP (v0) is shown to have the ability to capture the spatial gradients of carbon and energy-related variables, such as gross primary productivity, NEE, sensible heat fluxes and latent heat fluxes, across the sites in Europe, an important requirement for future spatially explicit simulations. Further improvement of the model with an explicit parameterization of nutrition dynamics and of management, is expected to improve its predictive ability to simulate croplands in an Earth System Model.
Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2016Full-Text: https://hal.inrae.fr/hal-02635924/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2016Full-Text: https://hal.inrae.fr/hal-02635924/documentUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2016Full-Text: https://hal.science/hal-01587289Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Full-Text: https://hal.science/hal-01587289Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Full-Text: https://hal.inrae.fr/hal-02635924Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/gmdd-8...Article . 2015 . Peer-reviewedLicense: CC BYData sources: CrossrefGeoscientific Model DevelopmentArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Geoscientific Model DevelopmentArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Geoscientific Model DevelopmentArticle . 2016GFZ German Research Centre for GeosciencesArticle . 2016Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2016Data sources: GFZ German Research Centre for GeosciencesINRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverWageningen Staff PublicationsArticle . 2016License: CC BYData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2016License: CC-BY-ND-NCData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmdd-8-4653-2015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 61 citations 61 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2016Full-Text: https://hal.inrae.fr/hal-02635924/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2016Full-Text: https://hal.inrae.fr/hal-02635924/documentUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2016Full-Text: https://hal.science/hal-01587289Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Full-Text: https://hal.science/hal-01587289Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Full-Text: https://hal.inrae.fr/hal-02635924Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/gmdd-8...Article . 2015 . Peer-reviewedLicense: CC BYData sources: CrossrefGeoscientific Model DevelopmentArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Geoscientific Model DevelopmentArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Geoscientific Model DevelopmentArticle . 2016GFZ German Research Centre for GeosciencesArticle . 2016Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2016Data sources: GFZ German Research Centre for GeosciencesINRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverWageningen Staff PublicationsArticle . 2016License: CC BYData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2016License: CC-BY-ND-NCData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmdd-8-4653-2015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015 France, Netherlands, France, France, France, Germany, France, FrancePublisher:Copernicus GmbH Funded by:EC | GHG EUROPEEC| GHG EUROPENicolas Vuichard; Xiuchen Wu; Xiuchen Wu; Eddy Moors; P. Ciais; N. de Noblet-Ducoudré; Pierre Cellier; Xuhui Wang; P. Di Tommasi; Christine Moureaux; Eric Larmanou; Tanguy Manise; W.W.P. Jans; Luca Vitale; Thomas Grünwald; Vincenzo Magliulo; Jan Elbers; Dominique Ripoche; Tiphaine Tallec; Eric Ceschia; Anne De Ligne; Martin Wattenbach; Benjamin Loubet; Nicolas Viovy; Christian Bernhofer;Abstract. The responses of crop functioning to changing climate and atmospheric CO2 concentration ([CO2]) could have large effects on food production, and impact carbon, water and energy fluxes, causing feedbacks to climate. To simulate the responses of temperate crops to changing climate and [CO2], accounting for the specific phenology of crops mediated by management practice, we present here the development of a process-oriented terrestrial biogeochemical model named ORCHIDEE-CROP (v0), which integrates a generic crop phenology and harvest module and a very simple parameterization of nitrogen fertilization, into the land surface model (LSM) ORCHIDEEv196, in order to simulate biophysical and biochemical interactions in croplands, as well as plant productivity and harvested yield. The model is applicable for a range of temperate crops, but it is tested here for maize and winter wheat, with the phenological parameterizations of two European varieties originating from the STICS agronomical model. We evaluate the ORCHIDEE-CROP (v0) model against eddy covariance and biometric measurements at 7 winter wheat and maize sites in Europe. The specific ecosystem variables used in the evaluation are CO2 fluxes (NEE), latent heat and sensible heat fluxes. Additional measurements of leaf area index (LAI), aboveground biomass and yield are used as well. Evaluation results reveal that ORCHIDEE-CROP (v0) reproduces the observed timing of crop development stages and the amplitude of pertaining LAI changes in contrast to ORCHIDEEv196 in which by default crops have the same phenology than grass. A near-halving of the root mean square error of LAI from 2.38 ± 0.77 to 1.08 ± 0.34 m2 m−2 is obtained between ORCHIDEEv196 and ORCHIDEE-CROP (v0) across the 7 study sites. Improved crop phenology and carbon allocation lead to a general good match between modelled and observed aboveground biomass (with a normalized root mean squared error (NRMSE) of 11.0–54.2 %), crop yield, as well as of the daily carbon and energy fluxes with NRMSE of ~9.0–20.1 and ~9.4–22.3 % for NEE, and sensible and latent heat fluxes, respectively. The model data mistfit for energy fluxes are within uncertainties of the measurements, which themselves show an incomplete energy balance closure within the range 80.6–86.3 %. The remaining discrepancies between modelled and observed LAI and other variables at specific sites are partly attributable to unrealistic representation of management events. In addition, ORCHIDEE-CROP (v0) is shown to have the ability to capture the spatial gradients of carbon and energy-related variables, such as gross primary productivity, NEE, sensible heat fluxes and latent heat fluxes, across the sites in Europe, an important requirement for future spatially explicit simulations. Further improvement of the model with an explicit parameterization of nutrition dynamics and of management, is expected to improve its predictive ability to simulate croplands in an Earth System Model.
Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2016Full-Text: https://hal.inrae.fr/hal-02635924/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2016Full-Text: https://hal.inrae.fr/hal-02635924/documentUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2016Full-Text: https://hal.science/hal-01587289Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Full-Text: https://hal.science/hal-01587289Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Full-Text: https://hal.inrae.fr/hal-02635924Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/gmdd-8...Article . 2015 . Peer-reviewedLicense: CC BYData sources: CrossrefGeoscientific Model DevelopmentArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Geoscientific Model DevelopmentArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Geoscientific Model DevelopmentArticle . 2016GFZ German Research Centre for GeosciencesArticle . 2016Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2016Data sources: GFZ German Research Centre for GeosciencesINRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverWageningen Staff PublicationsArticle . 2016License: CC BYData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2016License: CC-BY-ND-NCData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmdd-8-4653-2015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 61 citations 61 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2016Full-Text: https://hal.inrae.fr/hal-02635924/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2016Full-Text: https://hal.inrae.fr/hal-02635924/documentUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2016Full-Text: https://hal.science/hal-01587289Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Full-Text: https://hal.science/hal-01587289Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Full-Text: https://hal.inrae.fr/hal-02635924Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/gmdd-8...Article . 2015 . Peer-reviewedLicense: CC BYData sources: CrossrefGeoscientific Model DevelopmentArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Geoscientific Model DevelopmentArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Geoscientific Model DevelopmentArticle . 2016GFZ German Research Centre for GeosciencesArticle . 2016Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2016Data sources: GFZ German Research Centre for GeosciencesINRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverWageningen Staff PublicationsArticle . 2016License: CC BYData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2016License: CC-BY-ND-NCData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmdd-8-4653-2015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 United Kingdom, Netherlands, NetherlandsPublisher:Resilience Alliance, Inc. Funded by:EC | KNOWSEASEC| KNOWSEASMee, L.; Cooper, P.; Kannen, A.; Gilbert, A.J.; O`Higgins, T.;BACKGROUND There is ample evidence for human alteration of Europe’s regional seas, particularly the enclosed or partly enclosed Baltic, Black, Mediterranean, and North Seas. Accounts of habitat and biodiversity loss, pollution, and the decline of fish stocks in these economically, socially, and ecologically important seas demonstrate unsustainable use of the marine environment. At the same time, there is an insufficient quantity and quality of information to enable purely evidence-based management of Europe’s seas despite this being a declared goal of many decisionmakers; for example, less than 10% of the deep sea has been systematically explored (UNEP 2006). Evidence-based management alone is rarely possible in situations with complex value-laden policy options (Greenhalgh and Russell 2009), and unfortunately, many of the most pervasive problems in the marine environment are “wicked” second-order problems (Jentoft and Chuenpagdee 2009): they are complex in nature and their management will often involve both winners and losers. Solutions to these problems involve less politically attractive, valuebased choices and may require long time lags before tangible results are observed. Fisheries management, habitat and species protection, competition for marine space, and invasive species are all examples of “wicked” problems. These are some of the biggest issues facing Europe’s seas and are the major focus of this article and Special Feature. For the first time in European history, most countries have adopted a common maritime policy (the 2007 Integrated Maritime Policy) and a legally binding environmental directive (the 2008 Marine Strategy Framework Directive [MSFD]). These comprehensive policy vehicles encompass, or closely interface with, more specific measures, such as the recently reformed Common Fisheries Policy, the Water Framework Directive, the Habitats and Birds Directive, and a number of targeted policy instruments that deal with aspects of pollution control and coastal zone management. The overall array of measures has the potential to ensure the sustainable use of Europe’s seas and the restoration of marine environments, but the pathway between the current situation and the implementation of an ecosystem approach to management (the aspiration of the European Commission; see Our Approach to Research) is fraught with “wicked” problems. Science can help society resolve these problems, but in many cases this requires the broad and integrative vision of Odum’s (1971) “macroscope” rather than trying to piece together an ill-fitting jigsaw puzzle of discipline-focused information. This paper and the others in this Special Feature employ a systems approach. We describe the approach, how it can be applied practically, and some of the challenges in making it work. Though the work is based on research on Europe’s seas, it has much wider implications for regional seas throughout the world. OUR APPROACH TO RESEARCH ON MARINE SOCIALECOLOGICAL SYSTEMS The research described in this paper (and Special Feature) was conducted in the framework of the EU-FP7 funded project Knowledge-based Sustainable Management of Europe’s Seas (KnowSeas). The interdisciplinary research spanned 4 years and involved 33 institutions from 16 European countries (KnowSeas 2013). Its primary objective was to develop “a comprehensive scientific knowledge base and practical guidance for the application of the ecosystem approach to the sustainable development of Europe’s regional seas.” Given the knowledge gaps and uncertainties in the way Europe’s marine social-ecological systems function (e.g., unresolved causal links, poorly mapped habitats, nonlinear dynamics), an iterative approach to inquiry was adopted, based partly on the reasoning behind soft systems analysis (e.g., Checkland 2000).
Ecology and Society arrow_drop_down Ecology and SocietyArticle . 2015University of Bath's research portalArticle . 2015Data sources: University of Bath's research portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5751/es-07143-200101&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Ecology and Society arrow_drop_down Ecology and SocietyArticle . 2015University of Bath's research portalArticle . 2015Data sources: University of Bath's research portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5751/es-07143-200101&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 United Kingdom, Netherlands, NetherlandsPublisher:Resilience Alliance, Inc. Funded by:EC | KNOWSEASEC| KNOWSEASMee, L.; Cooper, P.; Kannen, A.; Gilbert, A.J.; O`Higgins, T.;BACKGROUND There is ample evidence for human alteration of Europe’s regional seas, particularly the enclosed or partly enclosed Baltic, Black, Mediterranean, and North Seas. Accounts of habitat and biodiversity loss, pollution, and the decline of fish stocks in these economically, socially, and ecologically important seas demonstrate unsustainable use of the marine environment. At the same time, there is an insufficient quantity and quality of information to enable purely evidence-based management of Europe’s seas despite this being a declared goal of many decisionmakers; for example, less than 10% of the deep sea has been systematically explored (UNEP 2006). Evidence-based management alone is rarely possible in situations with complex value-laden policy options (Greenhalgh and Russell 2009), and unfortunately, many of the most pervasive problems in the marine environment are “wicked” second-order problems (Jentoft and Chuenpagdee 2009): they are complex in nature and their management will often involve both winners and losers. Solutions to these problems involve less politically attractive, valuebased choices and may require long time lags before tangible results are observed. Fisheries management, habitat and species protection, competition for marine space, and invasive species are all examples of “wicked” problems. These are some of the biggest issues facing Europe’s seas and are the major focus of this article and Special Feature. For the first time in European history, most countries have adopted a common maritime policy (the 2007 Integrated Maritime Policy) and a legally binding environmental directive (the 2008 Marine Strategy Framework Directive [MSFD]). These comprehensive policy vehicles encompass, or closely interface with, more specific measures, such as the recently reformed Common Fisheries Policy, the Water Framework Directive, the Habitats and Birds Directive, and a number of targeted policy instruments that deal with aspects of pollution control and coastal zone management. The overall array of measures has the potential to ensure the sustainable use of Europe’s seas and the restoration of marine environments, but the pathway between the current situation and the implementation of an ecosystem approach to management (the aspiration of the European Commission; see Our Approach to Research) is fraught with “wicked” problems. Science can help society resolve these problems, but in many cases this requires the broad and integrative vision of Odum’s (1971) “macroscope” rather than trying to piece together an ill-fitting jigsaw puzzle of discipline-focused information. This paper and the others in this Special Feature employ a systems approach. We describe the approach, how it can be applied practically, and some of the challenges in making it work. Though the work is based on research on Europe’s seas, it has much wider implications for regional seas throughout the world. OUR APPROACH TO RESEARCH ON MARINE SOCIALECOLOGICAL SYSTEMS The research described in this paper (and Special Feature) was conducted in the framework of the EU-FP7 funded project Knowledge-based Sustainable Management of Europe’s Seas (KnowSeas). The interdisciplinary research spanned 4 years and involved 33 institutions from 16 European countries (KnowSeas 2013). Its primary objective was to develop “a comprehensive scientific knowledge base and practical guidance for the application of the ecosystem approach to the sustainable development of Europe’s regional seas.” Given the knowledge gaps and uncertainties in the way Europe’s marine social-ecological systems function (e.g., unresolved causal links, poorly mapped habitats, nonlinear dynamics), an iterative approach to inquiry was adopted, based partly on the reasoning behind soft systems analysis (e.g., Checkland 2000).
Ecology and Society arrow_drop_down Ecology and SocietyArticle . 2015University of Bath's research portalArticle . 2015Data sources: University of Bath's research portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5751/es-07143-200101&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Ecology and Society arrow_drop_down Ecology and SocietyArticle . 2015University of Bath's research portalArticle . 2015Data sources: University of Bath's research portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5751/es-07143-200101&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2017 Netherlands, Norway, Denmark, Netherlands, GermanyPublisher:Springer Science and Business Media LLC Funded by:EC | HADESEC| HADESTorben R. Christensen; Mikael K. Sejr; Torsten Sachs; Frans-Jan W. Parmentier; Jorien E. Vonk; Jørgen Bendtsen; Ronnie N. Glud; Søren Rysgaard; Søren Rysgaard; Jacobus van Huissteden; Brent Else;pmid: 28116680
pmc: PMC5258664
The current downturn of the arctic cryosphere, such as the strong loss of sea ice, melting of ice sheets and glaciers, and permafrost thaw, affects the marine and terrestrial carbon cycles in numerous interconnected ways. Nonetheless, processes in the ocean and on land have been too often considered in isolation while it has become increasingly clear that the two environments are strongly connected: Sea ice decline is one of the main causes of the rapid warming of the Arctic, and the flow of carbon from rivers into the Arctic Ocean affects marine processes and the air-sea exchange of CO2. This review, therefore, provides an overview of the current state of knowledge of the arctic terrestrial and marine carbon cycle, connections in between, and how this complex system is affected by climate change and a declining cryosphere. Ultimately, better knowledge of biogeochemical processes combined with improved model representations of ocean-land interactions are essential to accurately predict the development of arctic ecosystems and associated climate feedbacks.
AMBIO arrow_drop_down University of Southern Denmark Research OutputArticle . 2017Data sources: University of Southern Denmark Research OutputAmbio Special ReportArticle . 2017License: CC BYData sources: University of Southern Denmark Research OutputGFZ German Research Centre for GeosciencesArticle . 2017Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2017Data sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13280-016-0872-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 61 citations 61 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert AMBIO arrow_drop_down University of Southern Denmark Research OutputArticle . 2017Data sources: University of Southern Denmark Research OutputAmbio Special ReportArticle . 2017License: CC BYData sources: University of Southern Denmark Research OutputGFZ German Research Centre for GeosciencesArticle . 2017Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2017Data sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13280-016-0872-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2017 Netherlands, Norway, Denmark, Netherlands, GermanyPublisher:Springer Science and Business Media LLC Funded by:EC | HADESEC| HADESTorben R. Christensen; Mikael K. Sejr; Torsten Sachs; Frans-Jan W. Parmentier; Jorien E. Vonk; Jørgen Bendtsen; Ronnie N. Glud; Søren Rysgaard; Søren Rysgaard; Jacobus van Huissteden; Brent Else;pmid: 28116680
pmc: PMC5258664
The current downturn of the arctic cryosphere, such as the strong loss of sea ice, melting of ice sheets and glaciers, and permafrost thaw, affects the marine and terrestrial carbon cycles in numerous interconnected ways. Nonetheless, processes in the ocean and on land have been too often considered in isolation while it has become increasingly clear that the two environments are strongly connected: Sea ice decline is one of the main causes of the rapid warming of the Arctic, and the flow of carbon from rivers into the Arctic Ocean affects marine processes and the air-sea exchange of CO2. This review, therefore, provides an overview of the current state of knowledge of the arctic terrestrial and marine carbon cycle, connections in between, and how this complex system is affected by climate change and a declining cryosphere. Ultimately, better knowledge of biogeochemical processes combined with improved model representations of ocean-land interactions are essential to accurately predict the development of arctic ecosystems and associated climate feedbacks.
AMBIO arrow_drop_down University of Southern Denmark Research OutputArticle . 2017Data sources: University of Southern Denmark Research OutputAmbio Special ReportArticle . 2017License: CC BYData sources: University of Southern Denmark Research OutputGFZ German Research Centre for GeosciencesArticle . 2017Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2017Data sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13280-016-0872-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 61 citations 61 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert AMBIO arrow_drop_down University of Southern Denmark Research OutputArticle . 2017Data sources: University of Southern Denmark Research OutputAmbio Special ReportArticle . 2017License: CC BYData sources: University of Southern Denmark Research OutputGFZ German Research Centre for GeosciencesArticle . 2017Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2017Data sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13280-016-0872-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Germany, DenmarkPublisher:Elsevier BV Authors: Vasileios Kosmas; Vasileios Kosmas; Michele Acciaro;A fuel levy is one of the market-based measures (MBMs) currently under consideration at the International Maritime Organization. MBMs have been proposed to improve the energy efficiency of the shipping sector and reduce its emissions. This paper analyses the economic and environmental implications of two types of levy on shipping bunker fuels by means of an analytical model built on the cobweb theorem. A unit-tax per ton of fuel and an ad-valorem tax, enforced as a percentage of fuel prices, are examined. In both cases, a speed and fuel-consumption reduction equivalent to an improvement in the energy efficiency of the sector would be expected as a result of the regulation enforcement. The speed reduction in the unit-tax case depends on fuel prices and the tax amount, whereas in the ad-valorem case it relies upon the enforced tax percentage.Both schemes lead to industry profit decline, the extent of which depend on the structure of the levy and market conditions. Since there is concern that the costs resulting from the policy will be passed from shipping companies to their customers along the supply chain, the paper dwells on how the costs arising from the enforcement of the levy will be actually allocated between ship-owners and operators, and cargo-owners. In a market characterised by high freight rates and with no or limited excess capacity, a higher percentage of the total tax amount is transferred from ship-owners to shippers. In case of a recession the opposite happens.
FID move Open Access... arrow_drop_down FID move Open Access RepositoryArticle . 2017Full-Text: https://doi.org/10.1016/j.trd.2017.09.010Data sources: Bielefeld Academic Search Engine (BASE)Transportation Research Part D Transport and EnvironmentArticle . 2017 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefTransportation Research Part D Transport and EnvironmentArticleLicense: CC BY NC NDData sources: UnpayWallTransportation Research Part D Transport and EnvironmentArticle . 2017License: cc_by_nc_ndData sources: CBS Research PortalTransportation Research Part D Transport and EnvironmentJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.trd.2017.09.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 60 citations 60 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert FID move Open Access... arrow_drop_down FID move Open Access RepositoryArticle . 2017Full-Text: https://doi.org/10.1016/j.trd.2017.09.010Data sources: Bielefeld Academic Search Engine (BASE)Transportation Research Part D Transport and EnvironmentArticle . 2017 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefTransportation Research Part D Transport and EnvironmentArticleLicense: CC BY NC NDData sources: UnpayWallTransportation Research Part D Transport and EnvironmentArticle . 2017License: cc_by_nc_ndData sources: CBS Research PortalTransportation Research Part D Transport and EnvironmentJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.trd.2017.09.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Germany, DenmarkPublisher:Elsevier BV Authors: Vasileios Kosmas; Vasileios Kosmas; Michele Acciaro;A fuel levy is one of the market-based measures (MBMs) currently under consideration at the International Maritime Organization. MBMs have been proposed to improve the energy efficiency of the shipping sector and reduce its emissions. This paper analyses the economic and environmental implications of two types of levy on shipping bunker fuels by means of an analytical model built on the cobweb theorem. A unit-tax per ton of fuel and an ad-valorem tax, enforced as a percentage of fuel prices, are examined. In both cases, a speed and fuel-consumption reduction equivalent to an improvement in the energy efficiency of the sector would be expected as a result of the regulation enforcement. The speed reduction in the unit-tax case depends on fuel prices and the tax amount, whereas in the ad-valorem case it relies upon the enforced tax percentage.Both schemes lead to industry profit decline, the extent of which depend on the structure of the levy and market conditions. Since there is concern that the costs resulting from the policy will be passed from shipping companies to their customers along the supply chain, the paper dwells on how the costs arising from the enforcement of the levy will be actually allocated between ship-owners and operators, and cargo-owners. In a market characterised by high freight rates and with no or limited excess capacity, a higher percentage of the total tax amount is transferred from ship-owners to shippers. In case of a recession the opposite happens.
FID move Open Access... arrow_drop_down FID move Open Access RepositoryArticle . 2017Full-Text: https://doi.org/10.1016/j.trd.2017.09.010Data sources: Bielefeld Academic Search Engine (BASE)Transportation Research Part D Transport and EnvironmentArticle . 2017 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefTransportation Research Part D Transport and EnvironmentArticleLicense: CC BY NC NDData sources: UnpayWallTransportation Research Part D Transport and EnvironmentArticle . 2017License: cc_by_nc_ndData sources: CBS Research PortalTransportation Research Part D Transport and EnvironmentJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.trd.2017.09.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 60 citations 60 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert FID move Open Access... arrow_drop_down FID move Open Access RepositoryArticle . 2017Full-Text: https://doi.org/10.1016/j.trd.2017.09.010Data sources: Bielefeld Academic Search Engine (BASE)Transportation Research Part D Transport and EnvironmentArticle . 2017 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefTransportation Research Part D Transport and EnvironmentArticleLicense: CC BY NC NDData sources: UnpayWallTransportation Research Part D Transport and EnvironmentArticle . 2017License: cc_by_nc_ndData sources: CBS Research PortalTransportation Research Part D Transport and EnvironmentJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.trd.2017.09.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Denmark, SpainPublisher:Elsevier BV Funded by:EC | MFP, EC | Nutri2CycleEC| MFP ,EC| Nutri2CycleAuthors: Edilene Pereira Andrade; August Bonmati; Laureano Jimenez Esteller; Sander Brunn; +3 AuthorsEdilene Pereira Andrade; August Bonmati; Laureano Jimenez Esteller; Sander Brunn; Lars Stoumann Jensen; Erik Meers; Assumpcio Anton;handle: 20.500.12327/1469
The adverse effects of agriculture and livestock production on the environment are well-known and require mitigation in order to achieve sustainability in the food production chain. This study focused on adverse effects related to biogeochemical flows of phosphorus and nitrogen cycles which natural balances have been greatly disturbed by current practices. To assess the potential benefits and detrimental effects of proposed mitigation measures, adequate impact indicators are required. The challenge lies in identifying and providing indicators that cover the important aspects of environmental sustainability and allow a direct comparison of policy alternatives. A review of potential indicators that are also consistent with those used to indicate the performance of agricultural and general sustainability (i.e. the European Green Deal) led to the selection of fifteen agri-environmental indicators covering the main environmental issues in agriculture. The indicators identified offered an effective representation of environmental behaviour and would be useful in communicating a comprehensive ‘dashboard’ for professional end users of solutions to nutrient recovery and nutrient efficiency improvement in arable and livestock systems. The selected dashboard indicators (DBI) covered the dimensions of ‘use of primary resources’, ‘emissions to the environment’ and ‘resilience to climate change’. Five case studies were investigated to test the DBI using an Excel questionnaire applying the qualitative approach of the Delphi method together with expert knowledge. As expected, the results indicated that there were potential benefits of the technologies in terms of improved ‘nutrient recovery’ and decreased ‘nitrate leaching’. Potential disadvantages included increased electricity and oil consumption and greater ammonia volatilisation due to the increased use of organic fertilisers. The indicator ‘water’ received more neutral responses; thus, the specific technology was not expected to consistently affect the indicator. In relation to ‘particulate matter’, the results were indicated to be ‘unknown’ for some solutions due to the difficulty of predicting this indicator. Furthermore, methodologies for estimating quantitative values for the dashboard indicators were proposed, and a quantitative assessment was performed for the solution ‘catch crops to recover nutrients’, confirming the responses in the qualitative assessment. The dashboard indicators selected covered the main aspects of the solutions, identified in more comprehensive studies of environmental impacts, as being suitable for the rapid assessment of technologies for nutrient recovery in agriculture. As such, they can be used as a pre-screening method for technologies designed to improve the environmental sustainability of arable and livestock systems. info:eu-repo/semantics/publishedVersion
Ecological Indicator... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTACopenhagen University Research Information SystemArticle . 2022Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecolind.2021.108471&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 4visibility views 4 download downloads 7 Powered bymore_vert Ecological Indicator... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTACopenhagen University Research Information SystemArticle . 2022Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecolind.2021.108471&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Denmark, SpainPublisher:Elsevier BV Funded by:EC | MFP, EC | Nutri2CycleEC| MFP ,EC| Nutri2CycleAuthors: Edilene Pereira Andrade; August Bonmati; Laureano Jimenez Esteller; Sander Brunn; +3 AuthorsEdilene Pereira Andrade; August Bonmati; Laureano Jimenez Esteller; Sander Brunn; Lars Stoumann Jensen; Erik Meers; Assumpcio Anton;handle: 20.500.12327/1469
The adverse effects of agriculture and livestock production on the environment are well-known and require mitigation in order to achieve sustainability in the food production chain. This study focused on adverse effects related to biogeochemical flows of phosphorus and nitrogen cycles which natural balances have been greatly disturbed by current practices. To assess the potential benefits and detrimental effects of proposed mitigation measures, adequate impact indicators are required. The challenge lies in identifying and providing indicators that cover the important aspects of environmental sustainability and allow a direct comparison of policy alternatives. A review of potential indicators that are also consistent with those used to indicate the performance of agricultural and general sustainability (i.e. the European Green Deal) led to the selection of fifteen agri-environmental indicators covering the main environmental issues in agriculture. The indicators identified offered an effective representation of environmental behaviour and would be useful in communicating a comprehensive ‘dashboard’ for professional end users of solutions to nutrient recovery and nutrient efficiency improvement in arable and livestock systems. The selected dashboard indicators (DBI) covered the dimensions of ‘use of primary resources’, ‘emissions to the environment’ and ‘resilience to climate change’. Five case studies were investigated to test the DBI using an Excel questionnaire applying the qualitative approach of the Delphi method together with expert knowledge. As expected, the results indicated that there were potential benefits of the technologies in terms of improved ‘nutrient recovery’ and decreased ‘nitrate leaching’. Potential disadvantages included increased electricity and oil consumption and greater ammonia volatilisation due to the increased use of organic fertilisers. The indicator ‘water’ received more neutral responses; thus, the specific technology was not expected to consistently affect the indicator. In relation to ‘particulate matter’, the results were indicated to be ‘unknown’ for some solutions due to the difficulty of predicting this indicator. Furthermore, methodologies for estimating quantitative values for the dashboard indicators were proposed, and a quantitative assessment was performed for the solution ‘catch crops to recover nutrients’, confirming the responses in the qualitative assessment. The dashboard indicators selected covered the main aspects of the solutions, identified in more comprehensive studies of environmental impacts, as being suitable for the rapid assessment of technologies for nutrient recovery in agriculture. As such, they can be used as a pre-screening method for technologies designed to improve the environmental sustainability of arable and livestock systems. info:eu-repo/semantics/publishedVersion
Ecological Indicator... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTACopenhagen University Research Information SystemArticle . 2022Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecolind.2021.108471&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 4visibility views 4 download downloads 7 Powered bymore_vert Ecological Indicator... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTACopenhagen University Research Information SystemArticle . 2022Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecolind.2021.108471&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2017Publisher:Springer Science and Business Media LLC Authors: Ingo Karschin; Alex G. Berg; Jutta Geldermann;Cogeneration of heat and electricity is an important pillar of energy and climate policy. To plan the production and distribution system of combined heat and power (CHP) systems for residential heating, suitable methods for decision support are needed. For a comprehensive feasibility analysis, the integration of the location and capacity planning of the power plants, the choice of customers, and the network planning of the heating network into one optimization model are necessary. Thus, we develop an optimization model for electricity generation and heat supply. This mixed integer linear program (MILP) is based on graph theory for network flow problems. We apply the network location model for the optimization of district heating systems in the City of Osorno in Chile, which exhibits the “checkerboard layout” typically found in many South American cities. The network location model can support the strategic planning of investments in renewable energy projects because it permits the analysis of changing energy prices, calculation of break-even prices for heat and electricity, and estimation of greenhouse gas emission savings.
Zeitschrift für Ener... arrow_drop_down Zeitschrift für EnergiewirtschaftArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: CrossrefUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2018Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12398-017-0216-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Zeitschrift für Ener... arrow_drop_down Zeitschrift für EnergiewirtschaftArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: CrossrefUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2018Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12398-017-0216-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2017Publisher:Springer Science and Business Media LLC Authors: Ingo Karschin; Alex G. Berg; Jutta Geldermann;Cogeneration of heat and electricity is an important pillar of energy and climate policy. To plan the production and distribution system of combined heat and power (CHP) systems for residential heating, suitable methods for decision support are needed. For a comprehensive feasibility analysis, the integration of the location and capacity planning of the power plants, the choice of customers, and the network planning of the heating network into one optimization model are necessary. Thus, we develop an optimization model for electricity generation and heat supply. This mixed integer linear program (MILP) is based on graph theory for network flow problems. We apply the network location model for the optimization of district heating systems in the City of Osorno in Chile, which exhibits the “checkerboard layout” typically found in many South American cities. The network location model can support the strategic planning of investments in renewable energy projects because it permits the analysis of changing energy prices, calculation of break-even prices for heat and electricity, and estimation of greenhouse gas emission savings.
Zeitschrift für Ener... arrow_drop_down Zeitschrift für EnergiewirtschaftArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: CrossrefUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2018Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12398-017-0216-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Zeitschrift für Ener... arrow_drop_down Zeitschrift für EnergiewirtschaftArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: CrossrefUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2018Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12398-017-0216-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Research , Preprint 2005Publisher:Elsevier BV Authors: Christoph Weber; Philip Vogel;doi: 10.2139/ssrn.1653408
Small decentralized power generation units (DG) are politically promoted because of their potential to reduce GHG-emissions and the existing dependency on fossil fuels. A long term goal of this promotion should be the creation of a level playing field for DG and conventional power generation. Due to the impact of DG on the electricity grid infrastructure, future regulation should consider the costs and benefits of the integration of decentralized energy generation units. Without an adequate consideration, the overall costs of the electricity generation system will be unnecessarily high. The present paper analyses, based on detailed modelling of decentralized demand and supply as well as of the overall system, the marginal costs or savings resulting from decentralized production. Thereby particular focus is laid on taking adequately into account the stochasticity both of energy demand and energy supply. An efficient grid pricing system should then remunerate long-term grid cost savings to operators of decentralized energy production or/and charge long-term additional grid costs to these operators. With detailed models of decentralized demand and supply as well as the overall system, the marginal costs or savings resulting from decentralized production are determined and their dependency on characteristics of the grid and of the decentralized supply are discussed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.1653408&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.1653408&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Research , Preprint 2005Publisher:Elsevier BV Authors: Christoph Weber; Philip Vogel;doi: 10.2139/ssrn.1653408
Small decentralized power generation units (DG) are politically promoted because of their potential to reduce GHG-emissions and the existing dependency on fossil fuels. A long term goal of this promotion should be the creation of a level playing field for DG and conventional power generation. Due to the impact of DG on the electricity grid infrastructure, future regulation should consider the costs and benefits of the integration of decentralized energy generation units. Without an adequate consideration, the overall costs of the electricity generation system will be unnecessarily high. The present paper analyses, based on detailed modelling of decentralized demand and supply as well as of the overall system, the marginal costs or savings resulting from decentralized production. Thereby particular focus is laid on taking adequately into account the stochasticity both of energy demand and energy supply. An efficient grid pricing system should then remunerate long-term grid cost savings to operators of decentralized energy production or/and charge long-term additional grid costs to these operators. With detailed models of decentralized demand and supply as well as the overall system, the marginal costs or savings resulting from decentralized production are determined and their dependency on characteristics of the grid and of the decentralized supply are discussed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.1653408&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.1653408&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Italy, GermanyPublisher:Springer Science and Business Media LLC Authors: Castellani F; Esposito A; Geldermann J; Altieri R;handle: 20.500.14243/354044
Purpose In Italy, composting olive mill waste has become a common practice, since it mitigates the environmental problems associated with spreading the waste on land. Compost can be used to prepare growth media for plant nursery cultivation as a substitute for peat, a non-renewable resource whose extraction has long raised environmental concerns. Here, we investigate two common composting procedures--open windrow and static-pile in gas-permeable bags--and compare them to evaluate their environmental impact. Methods We perform a cradle-to-grave life cycle assessment (LCA) in accordance with ISO 14040 and 14044. The LCA considers carbon storage in the soil after 100 years, fugitive greenhouse gas (GHG) emissions, and the impacts avoided by substituting for peat. We use cumulative energy demand, global warming potential (GWP), acidification potential, and eutrophication potential indicators in a contribution analysis and explore how the re-use of olive pits for energy production and reduction of commercial fertilizers improves the environmental balance. We also present a scenario analysis that indicates how parameter fluctuations affect the results. Results and discussion Our study shows that peat's impacts can be significantly reduced from 1162.3 to 96.3 kg CO2-eq/Mg for open windrow compost or 43.1 kg CO2-eq/Mg for static-pile compost in gas-permeable bags. For static-pile composting, the lack of volatile organic compound and ammonia emissions and the detection of oxygen concentrations above 12% vol. suggest fully aerobic conditions. Fugitive greenhouse gas emissions were the most important contributions to the GWP. In the contribution analysis for static-pile composting, the avoidance of compost spreading and the carbon storage effect (due to compost usage) contributed 54% of the overall impacts to GWP and between 21 and 45% to the other indicators. Conclusions This LCA study illustrates how horticulturists can improve their resource management practices by recycling olive mill waste materials. Proper management of composting unit aeration can reduce fugitive GHG emissions.
Publikationenserver ... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2019The International Journal of Life Cycle AssessmentArticle . 2018 . Peer-reviewedLicense: Springer TDMData sources: CrossrefUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2019Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11367-018-1514-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Publikationenserver ... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2019The International Journal of Life Cycle AssessmentArticle . 2018 . Peer-reviewedLicense: Springer TDMData sources: CrossrefUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2019Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11367-018-1514-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Italy, GermanyPublisher:Springer Science and Business Media LLC Authors: Castellani F; Esposito A; Geldermann J; Altieri R;handle: 20.500.14243/354044
Purpose In Italy, composting olive mill waste has become a common practice, since it mitigates the environmental problems associated with spreading the waste on land. Compost can be used to prepare growth media for plant nursery cultivation as a substitute for peat, a non-renewable resource whose extraction has long raised environmental concerns. Here, we investigate two common composting procedures--open windrow and static-pile in gas-permeable bags--and compare them to evaluate their environmental impact. Methods We perform a cradle-to-grave life cycle assessment (LCA) in accordance with ISO 14040 and 14044. The LCA considers carbon storage in the soil after 100 years, fugitive greenhouse gas (GHG) emissions, and the impacts avoided by substituting for peat. We use cumulative energy demand, global warming potential (GWP), acidification potential, and eutrophication potential indicators in a contribution analysis and explore how the re-use of olive pits for energy production and reduction of commercial fertilizers improves the environmental balance. We also present a scenario analysis that indicates how parameter fluctuations affect the results. Results and discussion Our study shows that peat's impacts can be significantly reduced from 1162.3 to 96.3 kg CO2-eq/Mg for open windrow compost or 43.1 kg CO2-eq/Mg for static-pile compost in gas-permeable bags. For static-pile composting, the lack of volatile organic compound and ammonia emissions and the detection of oxygen concentrations above 12% vol. suggest fully aerobic conditions. Fugitive greenhouse gas emissions were the most important contributions to the GWP. In the contribution analysis for static-pile composting, the avoidance of compost spreading and the carbon storage effect (due to compost usage) contributed 54% of the overall impacts to GWP and between 21 and 45% to the other indicators. Conclusions This LCA study illustrates how horticulturists can improve their resource management practices by recycling olive mill waste materials. Proper management of composting unit aeration can reduce fugitive GHG emissions.
Publikationenserver ... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2019The International Journal of Life Cycle AssessmentArticle . 2018 . Peer-reviewedLicense: Springer TDMData sources: CrossrefUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2019Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11367-018-1514-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Publikationenserver ... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2019The International Journal of Life Cycle AssessmentArticle . 2018 . Peer-reviewedLicense: Springer TDMData sources: CrossrefUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2019Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11367-018-1514-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2012 France, Australia, Netherlands, Australia, Argentina, Argentina, ItalyPublisher:Springer Science and Business Media LLC Funded by:EC | TRANZFOREC| TRANZFORAnna L. Jacobsen; Mark Westoby; Jarmila Pittermann; Amy E. Zanne; Amy E. Zanne; Frederic Lens; Hafiz Maherali; R. Brandon Pratt; Patrick J. Mitchell; Radika Bhaskar; Ian J. Wright; Sean M. Gleason; Andrea Nardini; John S. Sperry; Uwe G. Hacke; Taylor S. Feild; Maurizio Mencuccini; Sylvain Delzon; Steven Jansen; Brendan Choat; Sandra Janet Bucci; Stefan Mayr; Timothy J. Brodribb; Jordi Martínez-Vilalta; Hervé Cochard; Hervé Cochard;Shifts in rainfall patterns and increasing temperatures associated with climate change are likely to cause widespread forest decline in regions where droughts are predicted to increase in duration and severity. One primary cause of productivity loss and plant mortality during drought is hydraulic failure. Drought stress creates trapped gas emboli in the water transport system, which reduces the ability of plants to supply water to leaves for photosynthetic gas exchange and can ultimately result in desiccation and mortality. At present we lack a clear picture of how thresholds to hydraulic failure vary across a broad range of species and environments, despite many individual experiments. Here we draw together published and unpublished data on the vulnerability of the transport system to drought-induced embolism for a large number of woody species, with a view to examining the likely consequences of climate change for forest biomes. We show that 70% of 226 forest species from 81 sites worldwide operate with narrow (<1 megapascal) hydraulic safety margins against injurious levels of drought stress and therefore potentially face long-term reductions in productivity and survival if temperature and aridity increase as predicted for many regions across the globe. Safety margins are largely independent of mean annual precipitation, showing that there is global convergence in the vulnerability of forests to drought, with all forest biomes equally vulnerable to hydraulic failure regardless of their current rainfall environment. These findings provide insight into why drought-induced forest decline is occurring not only in arid regions but also in wet forests not normally considered at drought risk.
Nature arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverhttp://dx.doi.org/10.1038/natu...Other literature typeData sources: European Union Open Data PortalJames Cook University, Australia: ResearchOnline@JCUArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Naturalis Institutional RepositoryArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature11688&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 2K citations 2,078 popularity Top 0.01% influence Top 0.1% impulse Top 0.01% Powered by BIP!
more_vert Nature arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverhttp://dx.doi.org/10.1038/natu...Other literature typeData sources: European Union Open Data PortalJames Cook University, Australia: ResearchOnline@JCUArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Naturalis Institutional RepositoryArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature11688&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2012 France, Australia, Netherlands, Australia, Argentina, Argentina, ItalyPublisher:Springer Science and Business Media LLC Funded by:EC | TRANZFOREC| TRANZFORAnna L. Jacobsen; Mark Westoby; Jarmila Pittermann; Amy E. Zanne; Amy E. Zanne; Frederic Lens; Hafiz Maherali; R. Brandon Pratt; Patrick J. Mitchell; Radika Bhaskar; Ian J. Wright; Sean M. Gleason; Andrea Nardini; John S. Sperry; Uwe G. Hacke; Taylor S. Feild; Maurizio Mencuccini; Sylvain Delzon; Steven Jansen; Brendan Choat; Sandra Janet Bucci; Stefan Mayr; Timothy J. Brodribb; Jordi Martínez-Vilalta; Hervé Cochard; Hervé Cochard;Shifts in rainfall patterns and increasing temperatures associated with climate change are likely to cause widespread forest decline in regions where droughts are predicted to increase in duration and severity. One primary cause of productivity loss and plant mortality during drought is hydraulic failure. Drought stress creates trapped gas emboli in the water transport system, which reduces the ability of plants to supply water to leaves for photosynthetic gas exchange and can ultimately result in desiccation and mortality. At present we lack a clear picture of how thresholds to hydraulic failure vary across a broad range of species and environments, despite many individual experiments. Here we draw together published and unpublished data on the vulnerability of the transport system to drought-induced embolism for a large number of woody species, with a view to examining the likely consequences of climate change for forest biomes. We show that 70% of 226 forest species from 81 sites worldwide operate with narrow (<1 megapascal) hydraulic safety margins against injurious levels of drought stress and therefore potentially face long-term reductions in productivity and survival if temperature and aridity increase as predicted for many regions across the globe. Safety margins are largely independent of mean annual precipitation, showing that there is global convergence in the vulnerability of forests to drought, with all forest biomes equally vulnerable to hydraulic failure regardless of their current rainfall environment. These findings provide insight into why drought-induced forest decline is occurring not only in arid regions but also in wet forests not normally considered at drought risk.
Nature arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverhttp://dx.doi.org/10.1038/natu...Other literature typeData sources: European Union Open Data PortalJames Cook University, Australia: ResearchOnline@JCUArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Naturalis Institutional RepositoryArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature11688&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 2K citations 2,078 popularity Top 0.01% influence Top 0.1% impulse Top 0.01% Powered by BIP!
more_vert Nature arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverhttp://dx.doi.org/10.1038/natu...Other literature typeData sources: European Union Open Data PortalJames Cook University, Australia: ResearchOnline@JCUArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Naturalis Institutional RepositoryArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature11688&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2011 Netherlands, Netherlands, Netherlands, Netherlands, Germany, United KingdomPublisher:The Royal Society Publicly fundedFunded by:UKRI | Global scale impacts of c..., EC | CLIMATECOSTUKRI| Global scale impacts of climate change: a multi-sectoral analysis ,EC| CLIMATECOSTNicholls, R.; Marinova, N.; Lowe, J.; Brown, S.; Vellinga, P.; de Gusmão, D.; Hinkel, J.; Tol, R.;The range of future climate-induced sea-level rise remains highly uncertain with continued concern that large increases in the twenty-first century cannot be ruled out. The biggest source of uncertainty is the response of the large ice sheets of Greenland and west Antarctica. Based on our analysis, a pragmatic estimate of sea-level rise by 2100, for a temperature rise of 4°C or more over the same time frame, is between 0.5 m and 2 m—the probability of rises at the high end is judged to be very low, but of unquantifiable probability. However, if realized, an indicative analysis shows that the impact potential is severe, with the real risk of the forced displacement of up to 187 million people over the century (up to 2.4% of global population). This is potentially avoidable by widespread upgrade of protection, albeit rather costly with up to 0.02 per cent of global domestic product needed, and much higher in certain nations. The likelihood of protection being successfully implemented varies between regions, and is lowest in small islands, Africa and parts of Asia, and hence these regions are the most likely to see coastal abandonment. To respond to these challenges, a multi-track approach is required, which would also be appropriate if a temperature rise of less than 4°C was expected. Firstly, we should monitor sea level to detect any significant accelerations in the rate of rise in a timely manner. Secondly, we need to improve our understanding of the climate-induced processes that could contribute to rapid sea-level rise, especially the role of the two major ice sheets, to produce better models that quantify the likely future rise more precisely. Finally, responses need to be carefully considered via a combination of climate mitigation to reduce the rise and adaptation for the residual rise in sea level. In particular, long-term strategic adaptation plans for the full range of possible sea-level rise (and other change) need to be widely developed.
Wageningen Staff Pub... arrow_drop_down Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering SciencesArticle . 2011 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsta.2010.0291&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu466 citations 466 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Wageningen Staff Pub... arrow_drop_down Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering SciencesArticle . 2011 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsta.2010.0291&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2011 Netherlands, Netherlands, Netherlands, Netherlands, Germany, United KingdomPublisher:The Royal Society Publicly fundedFunded by:UKRI | Global scale impacts of c..., EC | CLIMATECOSTUKRI| Global scale impacts of climate change: a multi-sectoral analysis ,EC| CLIMATECOSTNicholls, R.; Marinova, N.; Lowe, J.; Brown, S.; Vellinga, P.; de Gusmão, D.; Hinkel, J.; Tol, R.;The range of future climate-induced sea-level rise remains highly uncertain with continued concern that large increases in the twenty-first century cannot be ruled out. The biggest source of uncertainty is the response of the large ice sheets of Greenland and west Antarctica. Based on our analysis, a pragmatic estimate of sea-level rise by 2100, for a temperature rise of 4°C or more over the same time frame, is between 0.5 m and 2 m—the probability of rises at the high end is judged to be very low, but of unquantifiable probability. However, if realized, an indicative analysis shows that the impact potential is severe, with the real risk of the forced displacement of up to 187 million people over the century (up to 2.4% of global population). This is potentially avoidable by widespread upgrade of protection, albeit rather costly with up to 0.02 per cent of global domestic product needed, and much higher in certain nations. The likelihood of protection being successfully implemented varies between regions, and is lowest in small islands, Africa and parts of Asia, and hence these regions are the most likely to see coastal abandonment. To respond to these challenges, a multi-track approach is required, which would also be appropriate if a temperature rise of less than 4°C was expected. Firstly, we should monitor sea level to detect any significant accelerations in the rate of rise in a timely manner. Secondly, we need to improve our understanding of the climate-induced processes that could contribute to rapid sea-level rise, especially the role of the two major ice sheets, to produce better models that quantify the likely future rise more precisely. Finally, responses need to be carefully considered via a combination of climate mitigation to reduce the rise and adaptation for the residual rise in sea level. In particular, long-term strategic adaptation plans for the full range of possible sea-level rise (and other change) need to be widely developed.
Wageningen Staff Pub... arrow_drop_down Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering SciencesArticle . 2011 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsta.2010.0291&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu466 citations 466 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Wageningen Staff Pub... arrow_drop_down Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering SciencesArticle . 2011 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsta.2010.0291&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015 France, Netherlands, France, France, France, Germany, France, FrancePublisher:Copernicus GmbH Funded by:EC | GHG EUROPEEC| GHG EUROPENicolas Vuichard; Xiuchen Wu; Xiuchen Wu; Eddy Moors; P. Ciais; N. de Noblet-Ducoudré; Pierre Cellier; Xuhui Wang; P. Di Tommasi; Christine Moureaux; Eric Larmanou; Tanguy Manise; W.W.P. Jans; Luca Vitale; Thomas Grünwald; Vincenzo Magliulo; Jan Elbers; Dominique Ripoche; Tiphaine Tallec; Eric Ceschia; Anne De Ligne; Martin Wattenbach; Benjamin Loubet; Nicolas Viovy; Christian Bernhofer;Abstract. The responses of crop functioning to changing climate and atmospheric CO2 concentration ([CO2]) could have large effects on food production, and impact carbon, water and energy fluxes, causing feedbacks to climate. To simulate the responses of temperate crops to changing climate and [CO2], accounting for the specific phenology of crops mediated by management practice, we present here the development of a process-oriented terrestrial biogeochemical model named ORCHIDEE-CROP (v0), which integrates a generic crop phenology and harvest module and a very simple parameterization of nitrogen fertilization, into the land surface model (LSM) ORCHIDEEv196, in order to simulate biophysical and biochemical interactions in croplands, as well as plant productivity and harvested yield. The model is applicable for a range of temperate crops, but it is tested here for maize and winter wheat, with the phenological parameterizations of two European varieties originating from the STICS agronomical model. We evaluate the ORCHIDEE-CROP (v0) model against eddy covariance and biometric measurements at 7 winter wheat and maize sites in Europe. The specific ecosystem variables used in the evaluation are CO2 fluxes (NEE), latent heat and sensible heat fluxes. Additional measurements of leaf area index (LAI), aboveground biomass and yield are used as well. Evaluation results reveal that ORCHIDEE-CROP (v0) reproduces the observed timing of crop development stages and the amplitude of pertaining LAI changes in contrast to ORCHIDEEv196 in which by default crops have the same phenology than grass. A near-halving of the root mean square error of LAI from 2.38 ± 0.77 to 1.08 ± 0.34 m2 m−2 is obtained between ORCHIDEEv196 and ORCHIDEE-CROP (v0) across the 7 study sites. Improved crop phenology and carbon allocation lead to a general good match between modelled and observed aboveground biomass (with a normalized root mean squared error (NRMSE) of 11.0–54.2 %), crop yield, as well as of the daily carbon and energy fluxes with NRMSE of ~9.0–20.1 and ~9.4–22.3 % for NEE, and sensible and latent heat fluxes, respectively. The model data mistfit for energy fluxes are within uncertainties of the measurements, which themselves show an incomplete energy balance closure within the range 80.6–86.3 %. The remaining discrepancies between modelled and observed LAI and other variables at specific sites are partly attributable to unrealistic representation of management events. In addition, ORCHIDEE-CROP (v0) is shown to have the ability to capture the spatial gradients of carbon and energy-related variables, such as gross primary productivity, NEE, sensible heat fluxes and latent heat fluxes, across the sites in Europe, an important requirement for future spatially explicit simulations. Further improvement of the model with an explicit parameterization of nutrition dynamics and of management, is expected to improve its predictive ability to simulate croplands in an Earth System Model.
Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2016Full-Text: https://hal.inrae.fr/hal-02635924/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2016Full-Text: https://hal.inrae.fr/hal-02635924/documentUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2016Full-Text: https://hal.science/hal-01587289Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Full-Text: https://hal.science/hal-01587289Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Full-Text: https://hal.inrae.fr/hal-02635924Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/gmdd-8...Article . 2015 . Peer-reviewedLicense: CC BYData sources: CrossrefGeoscientific Model DevelopmentArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Geoscientific Model DevelopmentArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Geoscientific Model DevelopmentArticle . 2016GFZ German Research Centre for GeosciencesArticle . 2016Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2016Data sources: GFZ German Research Centre for GeosciencesINRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverWageningen Staff PublicationsArticle . 2016License: CC BYData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2016License: CC-BY-ND-NCData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmdd-8-4653-2015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 61 citations 61 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2016Full-Text: https://hal.inrae.fr/hal-02635924/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2016Full-Text: https://hal.inrae.fr/hal-02635924/documentUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2016Full-Text: https://hal.science/hal-01587289Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Full-Text: https://hal.science/hal-01587289Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Full-Text: https://hal.inrae.fr/hal-02635924Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/gmdd-8...Article . 2015 . Peer-reviewedLicense: CC BYData sources: CrossrefGeoscientific Model DevelopmentArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Geoscientific Model DevelopmentArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Geoscientific Model DevelopmentArticle . 2016GFZ German Research Centre for GeosciencesArticle . 2016Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2016Data sources: GFZ German Research Centre for GeosciencesINRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverWageningen Staff PublicationsArticle . 2016License: CC BYData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2016License: CC-BY-ND-NCData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmdd-8-4653-2015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015 France, Netherlands, France, France, France, Germany, France, FrancePublisher:Copernicus GmbH Funded by:EC | GHG EUROPEEC| GHG EUROPENicolas Vuichard; Xiuchen Wu; Xiuchen Wu; Eddy Moors; P. Ciais; N. de Noblet-Ducoudré; Pierre Cellier; Xuhui Wang; P. Di Tommasi; Christine Moureaux; Eric Larmanou; Tanguy Manise; W.W.P. Jans; Luca Vitale; Thomas Grünwald; Vincenzo Magliulo; Jan Elbers; Dominique Ripoche; Tiphaine Tallec; Eric Ceschia; Anne De Ligne; Martin Wattenbach; Benjamin Loubet; Nicolas Viovy; Christian Bernhofer;Abstract. The responses of crop functioning to changing climate and atmospheric CO2 concentration ([CO2]) could have large effects on food production, and impact carbon, water and energy fluxes, causing feedbacks to climate. To simulate the responses of temperate crops to changing climate and [CO2], accounting for the specific phenology of crops mediated by management practice, we present here the development of a process-oriented terrestrial biogeochemical model named ORCHIDEE-CROP (v0), which integrates a generic crop phenology and harvest module and a very simple parameterization of nitrogen fertilization, into the land surface model (LSM) ORCHIDEEv196, in order to simulate biophysical and biochemical interactions in croplands, as well as plant productivity and harvested yield. The model is applicable for a range of temperate crops, but it is tested here for maize and winter wheat, with the phenological parameterizations of two European varieties originating from the STICS agronomical model. We evaluate the ORCHIDEE-CROP (v0) model against eddy covariance and biometric measurements at 7 winter wheat and maize sites in Europe. The specific ecosystem variables used in the evaluation are CO2 fluxes (NEE), latent heat and sensible heat fluxes. Additional measurements of leaf area index (LAI), aboveground biomass and yield are used as well. Evaluation results reveal that ORCHIDEE-CROP (v0) reproduces the observed timing of crop development stages and the amplitude of pertaining LAI changes in contrast to ORCHIDEEv196 in which by default crops have the same phenology than grass. A near-halving of the root mean square error of LAI from 2.38 ± 0.77 to 1.08 ± 0.34 m2 m−2 is obtained between ORCHIDEEv196 and ORCHIDEE-CROP (v0) across the 7 study sites. Improved crop phenology and carbon allocation lead to a general good match between modelled and observed aboveground biomass (with a normalized root mean squared error (NRMSE) of 11.0–54.2 %), crop yield, as well as of the daily carbon and energy fluxes with NRMSE of ~9.0–20.1 and ~9.4–22.3 % for NEE, and sensible and latent heat fluxes, respectively. The model data mistfit for energy fluxes are within uncertainties of the measurements, which themselves show an incomplete energy balance closure within the range 80.6–86.3 %. The remaining discrepancies between modelled and observed LAI and other variables at specific sites are partly attributable to unrealistic representation of management events. In addition, ORCHIDEE-CROP (v0) is shown to have the ability to capture the spatial gradients of carbon and energy-related variables, such as gross primary productivity, NEE, sensible heat fluxes and latent heat fluxes, across the sites in Europe, an important requirement for future spatially explicit simulations. Further improvement of the model with an explicit parameterization of nutrition dynamics and of management, is expected to improve its predictive ability to simulate croplands in an Earth System Model.
Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2016Full-Text: https://hal.inrae.fr/hal-02635924/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2016Full-Text: https://hal.inrae.fr/hal-02635924/documentUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2016Full-Text: https://hal.science/hal-01587289Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Full-Text: https://hal.science/hal-01587289Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Full-Text: https://hal.inrae.fr/hal-02635924Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/gmdd-8...Article . 2015 . Peer-reviewedLicense: CC BYData sources: CrossrefGeoscientific Model DevelopmentArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Geoscientific Model DevelopmentArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Geoscientific Model DevelopmentArticle . 2016GFZ German Research Centre for GeosciencesArticle . 2016Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2016Data sources: GFZ German Research Centre for GeosciencesINRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverWageningen Staff PublicationsArticle . 2016License: CC BYData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2016License: CC-BY-ND-NCData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmdd-8-4653-2015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 61 citations 61 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2016Full-Text: https://hal.inrae.fr/hal-02635924/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2016Full-Text: https://hal.inrae.fr/hal-02635924/documentUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2016Full-Text: https://hal.science/hal-01587289Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Full-Text: https://hal.science/hal-01587289Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Full-Text: https://hal.inrae.fr/hal-02635924Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/gmdd-8...Article . 2015 . Peer-reviewedLicense: CC BYData sources: CrossrefGeoscientific Model DevelopmentArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Geoscientific Model DevelopmentArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Geoscientific Model DevelopmentArticle . 2016GFZ German Research Centre for GeosciencesArticle . 2016Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2016Data sources: GFZ German Research Centre for GeosciencesINRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverWageningen Staff PublicationsArticle . 2016License: CC BYData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2016License: CC-BY-ND-NCData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmdd-8-4653-2015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 United Kingdom, Netherlands, NetherlandsPublisher:Resilience Alliance, Inc. Funded by:EC | KNOWSEASEC| KNOWSEASMee, L.; Cooper, P.; Kannen, A.; Gilbert, A.J.; O`Higgins, T.;BACKGROUND There is ample evidence for human alteration of Europe’s regional seas, particularly the enclosed or partly enclosed Baltic, Black, Mediterranean, and North Seas. Accounts of habitat and biodiversity loss, pollution, and the decline of fish stocks in these economically, socially, and ecologically important seas demonstrate unsustainable use of the marine environment. At the same time, there is an insufficient quantity and quality of information to enable purely evidence-based management of Europe’s seas despite this being a declared goal of many decisionmakers; for example, less than 10% of the deep sea has been systematically explored (UNEP 2006). Evidence-based management alone is rarely possible in situations with complex value-laden policy options (Greenhalgh and Russell 2009), and unfortunately, many of the most pervasive problems in the marine environment are “wicked” second-order problems (Jentoft and Chuenpagdee 2009): they are complex in nature and their management will often involve both winners and losers. Solutions to these problems involve less politically attractive, valuebased choices and may require long time lags before tangible results are observed. Fisheries management, habitat and species protection, competition for marine space, and invasive species are all examples of “wicked” problems. These are some of the biggest issues facing Europe’s seas and are the major focus of this article and Special Feature. For the first time in European history, most countries have adopted a common maritime policy (the 2007 Integrated Maritime Policy) and a legally binding environmental directive (the 2008 Marine Strategy Framework Directive [MSFD]). These comprehensive policy vehicles encompass, or closely interface with, more specific measures, such as the recently reformed Common Fisheries Policy, the Water Framework Directive, the Habitats and Birds Directive, and a number of targeted policy instruments that deal with aspects of pollution control and coastal zone management. The overall array of measures has the potential to ensure the sustainable use of Europe’s seas and the restoration of marine environments, but the pathway between the current situation and the implementation of an ecosystem approach to management (the aspiration of the European Commission; see Our Approach to Research) is fraught with “wicked” problems. Science can help society resolve these problems, but in many cases this requires the broad and integrative vision of Odum’s (1971) “macroscope” rather than trying to piece together an ill-fitting jigsaw puzzle of discipline-focused information. This paper and the others in this Special Feature employ a systems approach. We describe the approach, how it can be applied practically, and some of the challenges in making it work. Though the work is based on research on Europe’s seas, it has much wider implications for regional seas throughout the world. OUR APPROACH TO RESEARCH ON MARINE SOCIALECOLOGICAL SYSTEMS The research described in this paper (and Special Feature) was conducted in the framework of the EU-FP7 funded project Knowledge-based Sustainable Management of Europe’s Seas (KnowSeas). The interdisciplinary research spanned 4 years and involved 33 institutions from 16 European countries (KnowSeas 2013). Its primary objective was to develop “a comprehensive scientific knowledge base and practical guidance for the application of the ecosystem approach to the sustainable development of Europe’s regional seas.” Given the knowledge gaps and uncertainties in the way Europe’s marine social-ecological systems function (e.g., unresolved causal links, poorly mapped habitats, nonlinear dynamics), an iterative approach to inquiry was adopted, based partly on the reasoning behind soft systems analysis (e.g., Checkland 2000).
Ecology and Society arrow_drop_down Ecology and SocietyArticle . 2015University of Bath's research portalArticle . 2015Data sources: University of Bath's research portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5751/es-07143-200101&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Ecology and Society arrow_drop_down Ecology and SocietyArticle . 2015University of Bath's research portalArticle . 2015Data sources: University of Bath's research portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5751/es-07143-200101&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 United Kingdom, Netherlands, NetherlandsPublisher:Resilience Alliance, Inc. Funded by:EC | KNOWSEASEC| KNOWSEASMee, L.; Cooper, P.; Kannen, A.; Gilbert, A.J.; O`Higgins, T.;BACKGROUND There is ample evidence for human alteration of Europe’s regional seas, particularly the enclosed or partly enclosed Baltic, Black, Mediterranean, and North Seas. Accounts of habitat and biodiversity loss, pollution, and the decline of fish stocks in these economically, socially, and ecologically important seas demonstrate unsustainable use of the marine environment. At the same time, there is an insufficient quantity and quality of information to enable purely evidence-based management of Europe’s seas despite this being a declared goal of many decisionmakers; for example, less than 10% of the deep sea has been systematically explored (UNEP 2006). Evidence-based management alone is rarely possible in situations with complex value-laden policy options (Greenhalgh and Russell 2009), and unfortunately, many of the most pervasive problems in the marine environment are “wicked” second-order problems (Jentoft and Chuenpagdee 2009): they are complex in nature and their management will often involve both winners and losers. Solutions to these problems involve less politically attractive, valuebased choices and may require long time lags before tangible results are observed. Fisheries management, habitat and species protection, competition for marine space, and invasive species are all examples of “wicked” problems. These are some of the biggest issues facing Europe’s seas and are the major focus of this article and Special Feature. For the first time in European history, most countries have adopted a common maritime policy (the 2007 Integrated Maritime Policy) and a legally binding environmental directive (the 2008 Marine Strategy Framework Directive [MSFD]). These comprehensive policy vehicles encompass, or closely interface with, more specific measures, such as the recently reformed Common Fisheries Policy, the Water Framework Directive, the Habitats and Birds Directive, and a number of targeted policy instruments that deal with aspects of pollution control and coastal zone management. The overall array of measures has the potential to ensure the sustainable use of Europe’s seas and the restoration of marine environments, but the pathway between the current situation and the implementation of an ecosystem approach to management (the aspiration of the European Commission; see Our Approach to Research) is fraught with “wicked” problems. Science can help society resolve these problems, but in many cases this requires the broad and integrative vision of Odum’s (1971) “macroscope” rather than trying to piece together an ill-fitting jigsaw puzzle of discipline-focused information. This paper and the others in this Special Feature employ a systems approach. We describe the approach, how it can be applied practically, and some of the challenges in making it work. Though the work is based on research on Europe’s seas, it has much wider implications for regional seas throughout the world. OUR APPROACH TO RESEARCH ON MARINE SOCIALECOLOGICAL SYSTEMS The research described in this paper (and Special Feature) was conducted in the framework of the EU-FP7 funded project Knowledge-based Sustainable Management of Europe’s Seas (KnowSeas). The interdisciplinary research spanned 4 years and involved 33 institutions from 16 European countries (KnowSeas 2013). Its primary objective was to develop “a comprehensive scientific knowledge base and practical guidance for the application of the ecosystem approach to the sustainable development of Europe’s regional seas.” Given the knowledge gaps and uncertainties in the way Europe’s marine social-ecological systems function (e.g., unresolved causal links, poorly mapped habitats, nonlinear dynamics), an iterative approach to inquiry was adopted, based partly on the reasoning behind soft systems analysis (e.g., Checkland 2000).
Ecology and Society arrow_drop_down Ecology and SocietyArticle . 2015University of Bath's research portalArticle . 2015Data sources: University of Bath's research portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5751/es-07143-200101&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Ecology and Society arrow_drop_down Ecology and SocietyArticle . 2015University of Bath's research portalArticle . 2015Data sources: University of Bath's research portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5751/es-07143-200101&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2017 Netherlands, Norway, Denmark, Netherlands, GermanyPublisher:Springer Science and Business Media LLC Funded by:EC | HADESEC| HADESTorben R. Christensen; Mikael K. Sejr; Torsten Sachs; Frans-Jan W. Parmentier; Jorien E. Vonk; Jørgen Bendtsen; Ronnie N. Glud; Søren Rysgaard; Søren Rysgaard; Jacobus van Huissteden; Brent Else;pmid: 28116680
pmc: PMC5258664
The current downturn of the arctic cryosphere, such as the strong loss of sea ice, melting of ice sheets and glaciers, and permafrost thaw, affects the marine and terrestrial carbon cycles in numerous interconnected ways. Nonetheless, processes in the ocean and on land have been too often considered in isolation while it has become increasingly clear that the two environments are strongly connected: Sea ice decline is one of the main causes of the rapid warming of the Arctic, and the flow of carbon from rivers into the Arctic Ocean affects marine processes and the air-sea exchange of CO2. This review, therefore, provides an overview of the current state of knowledge of the arctic terrestrial and marine carbon cycle, connections in between, and how this complex system is affected by climate change and a declining cryosphere. Ultimately, better knowledge of biogeochemical processes combined with improved model representations of ocean-land interactions are essential to accurately predict the development of arctic ecosystems and associated climate feedbacks.
AMBIO arrow_drop_down University of Southern Denmark Research OutputArticle . 2017Data sources: University of Southern Denmark Research OutputAmbio Special ReportArticle . 2017License: CC BYData sources: University of Southern Denmark Research OutputGFZ German Research Centre for GeosciencesArticle . 2017Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2017Data sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13280-016-0872-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 61 citations 61 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert AMBIO arrow_drop_down University of Southern Denmark Research OutputArticle . 2017Data sources: University of Southern Denmark Research OutputAmbio Special ReportArticle . 2017License: CC BYData sources: University of Southern Denmark Research OutputGFZ German Research Centre for GeosciencesArticle . 2017Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2017Data sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13280-016-0872-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2017 Netherlands, Norway, Denmark, Netherlands, GermanyPublisher:Springer Science and Business Media LLC Funded by:EC | HADESEC| HADESTorben R. Christensen; Mikael K. Sejr; Torsten Sachs; Frans-Jan W. Parmentier; Jorien E. Vonk; Jørgen Bendtsen; Ronnie N. Glud; Søren Rysgaard; Søren Rysgaard; Jacobus van Huissteden; Brent Else;pmid: 28116680
pmc: PMC5258664
The current downturn of the arctic cryosphere, such as the strong loss of sea ice, melting of ice sheets and glaciers, and permafrost thaw, affects the marine and terrestrial carbon cycles in numerous interconnected ways. Nonetheless, processes in the ocean and on land have been too often considered in isolation while it has become increasingly clear that the two environments are strongly connected: Sea ice decline is one of the main causes of the rapid warming of the Arctic, and the flow of carbon from rivers into the Arctic Ocean affects marine processes and the air-sea exchange of CO2. This review, therefore, provides an overview of the current state of knowledge of the arctic terrestrial and marine carbon cycle, connections in between, and how this complex system is affected by climate change and a declining cryosphere. Ultimately, better knowledge of biogeochemical processes combined with improved model representations of ocean-land interactions are essential to accurately predict the development of arctic ecosystems and associated climate feedbacks.
AMBIO arrow_drop_down University of Southern Denmark Research OutputArticle . 2017Data sources: University of Southern Denmark Research OutputAmbio Special ReportArticle . 2017License: CC BYData sources: University of Southern Denmark Research OutputGFZ German Research Centre for GeosciencesArticle . 2017Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2017Data sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13280-016-0872-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 61 citations 61 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert AMBIO arrow_drop_down University of Southern Denmark Research OutputArticle . 2017Data sources: University of Southern Denmark Research OutputAmbio Special ReportArticle . 2017License: CC BYData sources: University of Southern Denmark Research OutputGFZ German Research Centre for GeosciencesArticle . 2017Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2017Data sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13280-016-0872-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Germany, DenmarkPublisher:Elsevier BV Authors: Vasileios Kosmas; Vasileios Kosmas; Michele Acciaro;A fuel levy is one of the market-based measures (MBMs) currently under consideration at the International Maritime Organization. MBMs have been proposed to improve the energy efficiency of the shipping sector and reduce its emissions. This paper analyses the economic and environmental implications of two types of levy on shipping bunker fuels by means of an analytical model built on the cobweb theorem. A unit-tax per ton of fuel and an ad-valorem tax, enforced as a percentage of fuel prices, are examined. In both cases, a speed and fuel-consumption reduction equivalent to an improvement in the energy efficiency of the sector would be expected as a result of the regulation enforcement. The speed reduction in the unit-tax case depends on fuel prices and the tax amount, whereas in the ad-valorem case it relies upon the enforced tax percentage.Both schemes lead to industry profit decline, the extent of which depend on the structure of the levy and market conditions. Since there is concern that the costs resulting from the policy will be passed from shipping companies to their customers along the supply chain, the paper dwells on how the costs arising from the enforcement of the levy will be actually allocated between ship-owners and operators, and cargo-owners. In a market characterised by high freight rates and with no or limited excess capacity, a higher percentage of the total tax amount is transferred from ship-owners to shippers. In case of a recession the opposite happens.
FID move Open Access... arrow_drop_down FID move Open Access RepositoryArticle . 2017Full-Text: https://doi.org/10.1016/j.trd.2017.09.010Data sources: Bielefeld Academic Search Engine (BASE)Transportation Research Part D Transport and EnvironmentArticle . 2017 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefTransportation Research Part D Transport and EnvironmentArticleLicense: CC BY NC NDData sources: UnpayWallTransportation Research Part D Transport and EnvironmentArticle . 2017License: cc_by_nc_ndData sources: CBS Research PortalTransportation Research Part D Transport and EnvironmentJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.trd.2017.09.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 60 citations 60 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert FID move Open Access... arrow_drop_down FID move Open Access RepositoryArticle . 2017Full-Text: https://doi.org/10.1016/j.trd.2017.09.010Data sources: Bielefeld Academic Search Engine (BASE)Transportation Research Part D Transport and EnvironmentArticle . 2017 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefTransportation Research Part D Transport and EnvironmentArticleLicense: CC BY NC NDData sources: UnpayWallTransportation Research Part D Transport and EnvironmentArticle . 2017License: cc_by_nc_ndData sources: CBS Research PortalTransportation Research Part D Transport and EnvironmentJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.trd.2017.09.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Germany, DenmarkPublisher:Elsevier BV Authors: Vasileios Kosmas; Vasileios Kosmas; Michele Acciaro;A fuel levy is one of the market-based measures (MBMs) currently under consideration at the International Maritime Organization. MBMs have been proposed to improve the energy efficiency of the shipping sector and reduce its emissions. This paper analyses the economic and environmental implications of two types of levy on shipping bunker fuels by means of an analytical model built on the cobweb theorem. A unit-tax per ton of fuel and an ad-valorem tax, enforced as a percentage of fuel prices, are examined. In both cases, a speed and fuel-consumption reduction equivalent to an improvement in the energy efficiency of the sector would be expected as a result of the regulation enforcement. The speed reduction in the unit-tax case depends on fuel prices and the tax amount, whereas in the ad-valorem case it relies upon the enforced tax percentage.Both schemes lead to industry profit decline, the extent of which depend on the structure of the levy and market conditions. Since there is concern that the costs resulting from the policy will be passed from shipping companies to their customers along the supply chain, the paper dwells on how the costs arising from the enforcement of the levy will be actually allocated between ship-owners and operators, and cargo-owners. In a market characterised by high freight rates and with no or limited excess capacity, a higher percentage of the total tax amount is transferred from ship-owners to shippers. In case of a recession the opposite happens.
FID move Open Access... arrow_drop_down FID move Open Access RepositoryArticle . 2017Full-Text: https://doi.org/10.1016/j.trd.2017.09.010Data sources: Bielefeld Academic Search Engine (BASE)Transportation Research Part D Transport and EnvironmentArticle . 2017 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefTransportation Research Part D Transport and EnvironmentArticleLicense: CC BY NC NDData sources: UnpayWallTransportation Research Part D Transport and EnvironmentArticle . 2017License: cc_by_nc_ndData sources: CBS Research PortalTransportation Research Part D Transport and EnvironmentJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.trd.2017.09.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 60 citations 60 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert FID move Open Access... arrow_drop_down FID move Open Access RepositoryArticle . 2017Full-Text: https://doi.org/10.1016/j.trd.2017.09.010Data sources: Bielefeld Academic Search Engine (BASE)Transportation Research Part D Transport and EnvironmentArticle . 2017 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefTransportation Research Part D Transport and EnvironmentArticleLicense: CC BY NC NDData sources: UnpayWallTransportation Research Part D Transport and EnvironmentArticle . 2017License: cc_by_nc_ndData sources: CBS Research PortalTransportation Research Part D Transport and EnvironmentJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.trd.2017.09.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Denmark, SpainPublisher:Elsevier BV Funded by:EC | MFP, EC | Nutri2CycleEC| MFP ,EC| Nutri2CycleAuthors: Edilene Pereira Andrade; August Bonmati; Laureano Jimenez Esteller; Sander Brunn; +3 AuthorsEdilene Pereira Andrade; August Bonmati; Laureano Jimenez Esteller; Sander Brunn; Lars Stoumann Jensen; Erik Meers; Assumpcio Anton;handle: 20.500.12327/1469
The adverse effects of agriculture and livestock production on the environment are well-known and require mitigation in order to achieve sustainability in the food production chain. This study focused on adverse effects related to biogeochemical flows of phosphorus and nitrogen cycles which natural balances have been greatly disturbed by current practices. To assess the potential benefits and detrimental effects of proposed mitigation measures, adequate impact indicators are required. The challenge lies in identifying and providing indicators that cover the important aspects of environmental sustainability and allow a direct comparison of policy alternatives. A review of potential indicators that are also consistent with those used to indicate the performance of agricultural and general sustainability (i.e. the European Green Deal) led to the selection of fifteen agri-environmental indicators covering the main environmental issues in agriculture. The indicators identified offered an effective representation of environmental behaviour and would be useful in communicating a comprehensive ‘dashboard’ for professional end users of solutions to nutrient recovery and nutrient efficiency improvement in arable and livestock systems. The selected dashboard indicators (DBI) covered the dimensions of ‘use of primary resources’, ‘emissions to the environment’ and ‘resilience to climate change’. Five case studies were investigated to test the DBI using an Excel questionnaire applying the qualitative approach of the Delphi method together with expert knowledge. As expected, the results indicated that there were potential benefits of the technologies in terms of improved ‘nutrient recovery’ and decreased ‘nitrate leaching’. Potential disadvantages included increased electricity and oil consumption and greater ammonia volatilisation due to the increased use of organic fertilisers. The indicator ‘water’ received more neutral responses; thus, the specific technology was not expected to consistently affect the indicator. In relation to ‘particulate matter’, the results were indicated to be ‘unknown’ for some solutions due to the difficulty of predicting this indicator. Furthermore, methodologies for estimating quantitative values for the dashboard indicators were proposed, and a quantitative assessment was performed for the solution ‘catch crops to recover nutrients’, confirming the responses in the qualitative assessment. The dashboard indicators selected covered the main aspects of the solutions, identified in more comprehensive studies of environmental impacts, as being suitable for the rapid assessment of technologies for nutrient recovery in agriculture. As such, they can be used as a pre-screening method for technologies designed to improve the environmental sustainability of arable and livestock systems. info:eu-repo/semantics/publishedVersion
Ecological Indicator... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTACopenhagen University Research Information SystemArticle . 2022Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecolind.2021.108471&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 4visibility views 4 download downloads 7 Powered bymore_vert Ecological Indicator... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTACopenhagen University Research Information SystemArticle . 2022Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecolind.2021.108471&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Denmark, SpainPublisher:Elsevier BV Funded by:EC | MFP, EC | Nutri2CycleEC| MFP ,EC| Nutri2CycleAuthors: Edilene Pereira Andrade; August Bonmati; Laureano Jimenez Esteller; Sander Brunn; +3 AuthorsEdilene Pereira Andrade; August Bonmati; Laureano Jimenez Esteller; Sander Brunn; Lars Stoumann Jensen; Erik Meers; Assumpcio Anton;handle: 20.500.12327/1469
The adverse effects of agriculture and livestock production on the environment are well-known and require mitigation in order to achieve sustainability in the food production chain. This study focused on adverse effects related to biogeochemical flows of phosphorus and nitrogen cycles which natural balances have been greatly disturbed by current practices. To assess the potential benefits and detrimental effects of proposed mitigation measures, adequate impact indicators are required. The challenge lies in identifying and providing indicators that cover the important aspects of environmental sustainability and allow a direct comparison of policy alternatives. A review of potential indicators that are also consistent with those used to indicate the performance of agricultural and general sustainability (i.e. the European Green Deal) led to the selection of fifteen agri-environmental indicators covering the main environmental issues in agriculture. The indicators identified offered an effective representation of environmental behaviour and would be useful in communicating a comprehensive ‘dashboard’ for professional end users of solutions to nutrient recovery and nutrient efficiency improvement in arable and livestock systems. The selected dashboard indicators (DBI) covered the dimensions of ‘use of primary resources’, ‘emissions to the environment’ and ‘resilience to climate change’. Five case studies were investigated to test the DBI using an Excel questionnaire applying the qualitative approach of the Delphi method together with expert knowledge. As expected, the results indicated that there were potential benefits of the technologies in terms of improved ‘nutrient recovery’ and decreased ‘nitrate leaching’. Potential disadvantages included increased electricity and oil consumption and greater ammonia volatilisation due to the increased use of organic fertilisers. The indicator ‘water’ received more neutral responses; thus, the specific technology was not expected to consistently affect the indicator. In relation to ‘particulate matter’, the results were indicated to be ‘unknown’ for some solutions due to the difficulty of predicting this indicator. Furthermore, methodologies for estimating quantitative values for the dashboard indicators were proposed, and a quantitative assessment was performed for the solution ‘catch crops to recover nutrients’, confirming the responses in the qualitative assessment. The dashboard indicators selected covered the main aspects of the solutions, identified in more comprehensive studies of environmental impacts, as being suitable for the rapid assessment of technologies for nutrient recovery in agriculture. As such, they can be used as a pre-screening method for technologies designed to improve the environmental sustainability of arable and livestock systems. info:eu-repo/semantics/publishedVersion
Ecological Indicator... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTACopenhagen University Research Information SystemArticle . 2022Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecolind.2021.108471&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 4visibility views 4 download downloads 7 Powered bymore_vert Ecological Indicator... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTACopenhagen University Research Information SystemArticle . 2022Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecolind.2021.108471&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu