- home
- Advanced Search
- Energy Research
- medical and health sciences
- NL
- Aurora Universities Network
- Energy Research
- medical and health sciences
- NL
- Aurora Universities Network
description Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2020 Belgium, Netherlands, France, United KingdomPublisher:Copernicus GmbH Frédéric Chevallier; Pierre Regnier; Julia Pongratz; Atul K. Jain; Roxana Petrescu; Robert J. Scholes; Pep Canadell; Masayuki Kondo; Hui Yang; Marielle Saunois; Bo Zheng; Wouter Peters; Wouter Peters; Benjamin Poulter; Benjamin Poulter; Benjamin Poulter; Matthew W. Jones; Hanqin Tian; Xuhui Wang; Shilong Piao; Shilong Piao; Ronny Lauerwald; Ronny Lauerwald; Ingrid T. Luijkx; Anatoli Shvidenko; Anatoli Shvidenko; Gustaf Hugelius; Celso von Randow; Chunjing Qiu; Robert B. Jackson; Robert B. Jackson; Prabir K. Patra; Philippe Ciais; Ana Bastos;Abstract. Regional land carbon budgets provide insights on the spatial distribution of the land uptake of atmospheric carbon dioxide, and can be used to evaluate carbon cycle models and to define baselines for land-based additional mitigation efforts. The scientific community has been involved in providing observation-based estimates of regional carbon budgets either by downscaling atmospheric CO2 observations into surface fluxes with atmospheric inversions, by using inventories of carbon stock changes in terrestrial ecosystems, by upscaling local field observations such as flux towers with gridded climate and remote sensing fields or by integrating data-driven or process-oriented terrestrial carbon cycle models. The first coordinated attempt to collect regional carbon budgets for nine regions covering the entire globe in the RECCAP-1 project has delivered estimates for the decade 2000–2009, but these budgets were not comparable between regions, due to different definitions and component fluxes reported or omitted. The recent recognition of lateral fluxes of carbon by human activities and rivers, that connect CO2 uptake in one area with its release in another also requires better definition and protocols to reach harmonized regional budgets that can be summed up to the globe and compared with the atmospheric CO2 growth rate and inversion results. In this study, for the international initiative RECCAP-2 coordinated by the Global Carbon Project, which aims as an update of regional carbon budgets over the last two decades based on observations, for 10 regions covering the globe, with a better harmonization that the precursor project, we provide recommendations for using atmospheric inversions results to match bottom-up carbon accounting and models, and we define the different component fluxes of the net land atmosphere carbon exchange that should be reported by each research group in charge of each region. Special attention is given to lateral fluxes, inland water fluxes and land use fluxes.
Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Full-Text: https://hal.science/hal-03604087Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-03604087Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/gmd-20...Article . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefGeoscientific Model Development (GMD)Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefWageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmd-2020-259&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 46 citations 46 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
visibility 7visibility views 7 download downloads 13 Powered bymore_vert Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Full-Text: https://hal.science/hal-03604087Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-03604087Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/gmd-20...Article . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefGeoscientific Model Development (GMD)Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefWageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmd-2020-259&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Kaag, A.M.; Schulte, M.H.J.; Jansen, J.M; van Wingen, G.; Homberg, J.R.; van den Brink, W.; Wiers, R.W.; Schmaal, L.; Goudriaan, A.E.; Goudriaan, A.E.; Reneman, L.;Neuroimaging studies have demonstrated gray matter (GM) volume abnormalities in substance users. While the majority of substance users are polysubstance users, very little is known about the relation between GM volume abnormalities and polysubstance use.In this study we assessed the relation between GM volume, and the use of alcohol, tobacco, cocaine and cannabis as well as the total number of substances used, in a sample of 169 males: 15 non-substance users, 89 moderate drinkers, 27 moderate drinkers who also smoke tobacco, 13 moderate drinkers who also smoke tobacco and use cocaine, 10 heavy drinkers who smoke tobacco and use cocaine and 15 heavy drinkers who smoke tobacco, cannabis and use cocaine.Regression analyses showed that there was a negative relation between the number of substances used and volume of the dorsal medial prefrontal cortex (mPFC) and the ventral mPFC. Without controlling for the use of other substances, the volume of the dorsal mPFC was negatively associated with the use of alcohol, tobacco, and cocaine. After controlling for the use of other substances, a negative relation was found between tobacco and cocaine and volume of the thalami and ventrolateral PFC, respectively.These findings indicate that mPFC alterations may not be substance-specific, but rather related to the number of substances used, whereas, thalamic and ventrolateral PFC pathology is specifically associated with tobacco and cocaine use, respectively. These findings are important, as the differential alterations in GM volume may underlie different cognitive deficits associated with substance use disorders.
Drug and Alcohol Dep... arrow_drop_down Drug and Alcohol DependenceArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefDANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Drug and Alcohol DependenceArticle . 2018Data sources: DANS (Data Archiving and Networked Services)Drug and Alcohol DependenceArticle . 2018Data sources: DANS (Data Archiving and Networked Services)Drug and Alcohol DependenceArticle . 2018Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.drugalcdep.2018.03.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 39 citations 39 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Drug and Alcohol Dep... arrow_drop_down Drug and Alcohol DependenceArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefDANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Drug and Alcohol DependenceArticle . 2018Data sources: DANS (Data Archiving and Networked Services)Drug and Alcohol DependenceArticle . 2018Data sources: DANS (Data Archiving and Networked Services)Drug and Alcohol DependenceArticle . 2018Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.drugalcdep.2018.03.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 FrancePublisher:SAGE Publications Julien Guiraud; Giovanni Addolorato; Mariangela Antonelli; Henri-Jean Aubin; Andrea de Bejczy; Amine Benyamina; Roberto Cacciaglia; Fabio Caputo; Maurice Dematteis; Anna Ferrulli; Anna E Goudriaan; Antoni Gual; Otto-Michael Lesch; Icro Maremmani; Antonio Mirijello; David J Nutt; François Paille; Pascal Perney; Roch Poulnais; Quentin Raffaillac; Jürgen Rehm; Benjamin Rolland; Claudia Rotondo; Bruno Scherrer; Nicolas Simon; Katrin Skala; Bo Söderpalm; Lorenzo Somaini; Wolfgang H Sommer; Rainer Spanagel; Gabriele A Vassallo; Henriette Walter; Wim van den Brink;Background: Sodium oxybate (SMO) has been shown to be effective in the maintenance of abstinence (MoA) in alcohol-dependent patients in a series of small randomized controlled trials (RCTs). These results needed to be confirmed by a large trial investigating the treatment effect and its sustainability after medication discontinuation. Aims: To confirm the SMO effect on (sustained) MoA in detoxified alcohol-dependent patients. Methods: Large double-blind, randomized, placebo-controlled trial in detoxified adult alcohol-dependent outpatients (80% men) from 11 sites in four European countries. Patients were randomized to 6 months SMO (3.3–3.9 g/day) or placebo followed by a 6-month medication-free period. Primary outcome was the cumulative abstinence duration (CAD) during the 6-month treatment period defined as the number of days with no alcohol use. Secondary outcomes included CAD during the 12-month study period. Results: Of the 314 alcohol-dependent patients randomized, 154 received SMO and 160 received placebo. Based on the pre-specified fixed-effect two-way analysis of variance including the treatment-by-site interaction, SMO showed efficacy in CAD during the 6-month treatment period: mean difference +43.1 days, 95% confidence interval (17.6–68.5; p = 0.001). Since significant heterogeneity of effect across sites and unequal sample sizes among sites ( n = 3–66) were identified, a site-level random meta-analysis was performed with results supporting the pre-specified analysis: mean difference +32.4 days, p = 0.014. The SMO effect was sustained during the medication-free follow-up period. SMO was well-tolerated. Conclusions: Results of this large RCT in alcohol-dependent patients demonstrated a significant and clinically relevant sustained effect of SMO on CAD. Trial registration: ClinicalTrials.gov Identifier: NCT04648423
Université Grenoble ... arrow_drop_down Université Grenoble Alpes: HALArticle . 2022Full-Text: https://inserm.hal.science/inserm-04057658Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Full-Text: https://inserm.hal.science/inserm-04057658Data sources: Bielefeld Academic Search Engine (BASE)Université Jean Monnet – Saint-Etienne: HALArticle . 2022Full-Text: https://inserm.hal.science/inserm-04057658Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/02698811221104063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 8 citations 8 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Université Grenoble ... arrow_drop_down Université Grenoble Alpes: HALArticle . 2022Full-Text: https://inserm.hal.science/inserm-04057658Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Full-Text: https://inserm.hal.science/inserm-04057658Data sources: Bielefeld Academic Search Engine (BASE)Université Jean Monnet – Saint-Etienne: HALArticle . 2022Full-Text: https://inserm.hal.science/inserm-04057658Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/02698811221104063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 Australia, United Kingdom, FrancePublisher:American Association for the Advancement of Science (AAAS) Funded by:NSF | Molecular Analysis of Chl..., NSF | Starter Grant: Ecophysiol...NSF| Molecular Analysis of Chlamydomonas Mating-Type Locus ,NSF| Starter Grant: Ecophysiology of Marine Picoeukaryotic Primary ProducersWilliam Lanier; Igor V. Grigoriev; Inna Dubchak; Marie L. Cuvelier; Marie L. Cuvelier; Peter von Dassow; Ian T. Paulsen; Jonathan H. Badger; Carolyn A. Napoli; Elodie Foulon; Hervé Moreau; Aaron Poliakov; Chelle L. Gentemann; Stephane Rombauts; Bernard Henrissat; Jeremy Schmutz; Jeremy Schmutz; Eve Toulza; Elif Demir; Jasmyn Pangilinan; Meredith V. Everett; E. Virginia Armbrust; Jill E. Gready; Tania Wyss; Alex N. Zelensky; Ursula Goodenough; Susan Lucas; Alexandra Z. Worden; Erika Lindquist; Olivier Panaud; Klaus F. X. Mayer; Wenche Eikrem; Steven Robbens; Jae-Hyeok Lee; Jane Grimwood; Jane Grimwood; Thomas Mock; Robert Otillar; Sarah M. McDonald; Kemin Zhou; Debashish Bhattacharya; Benoît Piégu; Uwe John; Pedro M. Coutinho; Yves Van de Peer; Andrew E. Allen; Heidrun Gundlach; Andrea Aerts; Fabrice Not; Aasf Salamov; Melinda P. Simmons; Pierre Rouzé; Micaela S. Parker; Evelyne Derelle;Picoeukaryotes are a taxonomically diverse group of organisms less than 2 micrometers in diameter. Photosynthetic marine picoeukaryotes in the genus Micromonas thrive in ecosystems ranging from tropical to polar and could serve as sentinel organisms for biogeochemical fluxes of modern oceans during climate change. These broadly distributed primary producers belong to an anciently diverged sister clade to land plants. Although Micromonas isolates have high 18 S ribosomal RNA gene identity, we found that genomes from two isolates shared only 90% of their predicted genes. Their independent evolutionary paths were emphasized by distinct riboswitch arrangements as well as the discovery of intronic repeat elements in one isolate, and in metagenomic data, but not in other genomes. Divergence appears to have been facilitated by selection and acquisition processes that actively shape the repertoire of genes that are mutually exclusive between the two isolates differently than the core genes. Analyses of the Micromonas genomes offer valuable insights into ecological differentiation and the dynamic nature of early plant evolution.
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/38757Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2009Data sources: INRIA a CCSD electronic archive serverUniversity of East Anglia: UEA Digital RepositoryArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1167222&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 568 citations 568 popularity Top 1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/38757Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2009Data sources: INRIA a CCSD electronic archive serverUniversity of East Anglia: UEA Digital RepositoryArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1167222&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2016Embargo end date: 01 Jan 2015Publisher:Proceedings of the National Academy of Sciences Funded by:EC | PAPETS, EC | PHOTPROT, NWO | How Photosynthetic Membra... +1 projectsEC| PAPETS ,EC| PHOTPROT ,NWO| How Photosynthetic Membranes Switch ,NWO| Gasgestookte adsorptiewarmtepomp en (zon-)thermisch aangedreven adsorptiekoelerJ. Michael Gruber; Tomáš Mančal; Pavel Malý; Pavel Malý; Richard J. Cogdell; Rienk van Grondelle;Significance The excitation energy transfer in light-harvesting complexes is usually studied either by ultrafast bulk spectroscopy or by single-molecule spectroscopy. These methods are to a high degree complementary: Bulk spectroscopy measures ultrafast processes averaged over thousands of complexes, whereas single-molecule spectroscopy observes much slower dynamics in individual complexes. In this work, we combine these approaches using a recently developed ultrafast single-molecule spectroscopy technique. This enables us, for the first time (to our knowledge), to observe ultrafast energy relaxation with a rate around 100 fs in individual light-harvesting complexes. We determine the distribution of the relaxation times, observe changes of the relaxation time in one complex, and find how the relaxation depends on excitation wavelength.
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Proceedings of the National Academy of SciencesArticle . 2016 . Peer-reviewedData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2015License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1522265113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Proceedings of the National Academy of SciencesArticle . 2016 . Peer-reviewedData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2015License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1522265113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Springer Science and Business Media LLC van der Lucas Woude; Peter J. Beek; M Tolsma; Han Houdijk; Trienke IJmker; Andreas Daffertshofer; Claudine J. C. Lamoth;pmid: 26298647
pmc: PMC4546819
Holding a handrail or using a cane may decrease the energy cost of walking in stroke survivors. However, the factors underlying this decrease have not yet been previously identified. The purpose of the current study was to fill this void by investigating the effect of physical support (through handrail hold) and/or somatosensory input (through light touch contact with a handrail) on energy cost and accompanying changes in both step parameters and neuromuscular activity. Elucidating these aspects may provide useful insights into gait recovery post stroke.Fifteen stroke survivors participated in this study. Participants walked on a treadmill under three conditions: no handrail contact, light touch of the handrail, and firm handrail hold. During the trials we recorded oxygen consumption, center of pressure profiles, and bilateral activation of eight lower limb muscles. Effects of the three conditions on energy cost, step parameters and neuromuscular activation were compared statistically using conventional ANOVAs with repeated measures. In order to examine to which extent energy cost and step parameters/muscle activity are associated, we further employed a partial least squares regression analysis.Handrail hold resulted in a significant reduction in energy cost, whereas light touch contact did not. With handrail hold subjects took longer steps with smaller step width and improved step length symmetry, whereas light touch contact only resulted in a small but significant decrease in step width. The EMG analysis indicated a global drop in muscle activity, accompanied by an increased constancy in the timing of this activity, and a decreased co-activation with handrail hold, but not with light touch. The regression analysis revealed that increased stride time and length, improved step length symmetry, and decreased muscle activity were closely associated with the decreased energy cost during handrail hold.Handrail hold, but not light touch, altered step parameters and was accompanied by a global reduction in muscle activity, with improved timing constancy. This suggests that the use of a handrail allows for a more economic step pattern that requires less muscular activation without resulting in substantial neuromuscular re-organization. Handrail use may thus have beneficial effects on gait economy after stroke, which cannot be accomplished through enhanced somatosensory input alone.
Journal of NeuroEngi... arrow_drop_down Journal of NeuroEngineering and RehabilitationArticle . 2015Data sources: DANS (Data Archiving and Networked Services)Journal of NeuroEngineering and RehabilitationArticle . 2015Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s12984-015-0051-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of NeuroEngi... arrow_drop_down Journal of NeuroEngineering and RehabilitationArticle . 2015Data sources: DANS (Data Archiving and Networked Services)Journal of NeuroEngineering and RehabilitationArticle . 2015Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s12984-015-0051-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 ItalyPublisher:Frontiers Media SA Maya D. Lambreva; Paul J. D. Janssen; Viviana Scognamiglio; Cecilia Bartolucci; Amina Antonacci; Giuseppina Rea; Katia Buonasera; Nicolas Plumeré; Raoul N. Frese;pmid: 24971306
pmc: PMC4054791
The development of a sustainable bio-based economy has drawn much attention in recent years, and research to find smart solutions to the many inherent challenges has intensified. In nature, perhaps the best example of an authentic sustainable system is oxygenic photosynthesis. The biochemistry of this intricate process is empowered by solar radiation influx and performed by hierarchically organized complexes composed by photoreceptors, inorganic catalysts, and enzymes which define specific niches for optimizing light-to-energy conversion. The success of this process relies on its capability to exploit the almost inexhaustible reservoirs of sunlight, water, and carbon dioxide to transform photonic energy into chemical energy such as stored in adenosine triphosphate. Oxygenic photosynthesis is responsible for most of the oxygen, fossil fuels, and biomass on our planet. So, even after a few billion years of evolution, this process unceasingly supports life on earth, and probably soon also in outer-space, and inspires the development of enabling technologies for a sustainable global economy and ecosystem. The following review covers some of the major milestones reached in photosynthesis research, each reflecting lasting routes of innovation in agriculture, environmental protection, and clean energy production.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fchem.2014.00036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 78 citations 78 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fchem.2014.00036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 NetherlandsPublisher:Springer Science and Business Media LLC Funded by:NWO | Optimizing light-harvesti...NWO| Optimizing light-harvesting with directed evolutionAuthors: Volha U. Chukhutsina; Alfred R. Holzwarth; Roberta Croce;pmid: 30478711
pmc: PMC6509100
Photosynthesis starts when a pigment in the photosynthetic antennae absorbs a photon. The electronic excitation energy is then transferred through the network of light-harvesting pigments to special chlorophyll (Chl) molecules in the reaction centres, where electron transfer is initiated. Energy transfer and primary electron transfer processes take place on timescales ranging from femtoseconds to nanoseconds, and can be monitored in real time via time-resolved fluorescence spectroscopy. This method is widely used for measurements on unicellular photosynthetic organisms, isolated photosynthetic membranes, and individual complexes. Measurements on intact leaves remain a challenge due to their high structural heterogeneity, high scattering, and high optical density, which can lead to optical artefacts. However, detailed information on the dynamics of these early steps, and the underlying structure-function relationships, is highly informative and urgently required in order to get deeper insights into the physiological regulation mechanisms of primary photosynthesis. Here, we describe a current methodology of time-resolved fluorescence measurements on intact leaves in the picosecond to nanosecond time range. Principles of fluorescence measurements on intact leaves, possible sources of alterations of fluorescence kinetics and the ways to overcome them are addressed. We also describe how our understanding of the organisation and function of photosynthetic proteins and energy flow dynamics in intact leaves can be enriched through the application of time-resolved fluorescence spectroscopy on leaves. For that, an example of a measurement on Zea mays leaves is presented.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11120-018-0607-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11120-018-0607-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:Springer Science and Business Media LLC Funded by:UKRI | Integrated assessment of ..., UKRI | Euro-China GE: Dynamics o..., UKRI | Comparative assessment an...UKRI| Integrated assessment of the emission-health-socioeconomics nexus and air pollution mitigation solutions and interventions in Beijing (INHANCE) ,UKRI| Euro-China GE: Dynamics of Green Growth in European and Chinese Cities (DRAGON) ,UKRI| Comparative assessment and region-specific optimisation of GGRYin Long; Yoshikuni Yoshida; Haoran Zhang; Heran Zheng; Yuli Shan; Dabo Guan;pmid: 32661260
pmc: PMC7359347
AbstractIn the wake of the Fukushima nuclear disaster, Japan largely moved away from nuclear power generation and turned back towards an energy sector dominated by fossil fuels. As a result, the pace towards reaching emission reduction targets has largely slowed down. This situation indicates that higher emissions will continue to be generated if there is no appropriate and efficient measurement implemented to bridge the energy demand gap. To contribute adequate mitigation policies, a detailed inventory of both CO2 emissions and socioeconomic factors, both at the national and regional level, should be issued. Thereby, this work contributes to a time-series emission with a record of 47 prefectures in Japan as well as their associated socioeconomic features. The compiled emission inventory is based on three major fossil fuels and 26 sectors with careful emission allocations for regional electricity generation. This dataset is uniformly formatted and can be expected to provide vital information to set regional reduction allowances and sectoral reduction priorities.
University of East A... arrow_drop_down University of East Anglia: UEA Digital RepositoryArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-020-0571-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 3visibility views 3 download downloads 2 Powered bymore_vert University of East A... arrow_drop_down University of East Anglia: UEA Digital RepositoryArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-020-0571-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Springer Science and Business Media LLC Funded by:[no funder available]Pen-Nan Liao; Christoph-Peter Holleboom; Peter Walla; Marco Negretti; Daniel A. Gacek; Roberta Croce;We present a comparison of the energy transfer between carotenoid dark states and chlorophylls for the minor complexes CP24 and CP29. To elucidate the potential involvement of certain carotenoid-chlorophyll coupling sites in fluorescence quenching of distinct complexes, varying carotenoid compositions and mutants lacking chlorophylls at specific binding sites were examined. Energy transfers between carotenoid dark states and chlorophylls were compared using the coupling parameter, [Formula: see text], which is calculated from the chlorophyll fluorescence observed after preferential carotenoid two-photon excitation. In CP24, artificial reconstitution with zeaxanthin leads to a significant reduction in the chlorophyll fluorescence quantum yield, [Formula: see text], and a considerable increase in [Formula: see text]. Similar effects of zeaxanthin were also observed in certain samples of CP29. In CP29, also the replacement of violaxanthin by the sole presence of lutein results in a significant quenching and increased [Formula: see text]. In contrast, the replacement of violaxanthin by lutein in CP24 is not significantly increasing [Formula: see text]. In general, these findings provide evidence that modification of the electronic coupling between carotenoid dark states and chlorophylls by changing carotenoids at distinct sites can significantly influence the quenching of these minor proteins, particularly when zeaxanthin or lutein is used. The absence of Chl612 in CP24 and of Chl612 or Chl603 in CP29 has a considerably smaller effect on [Formula: see text] and [Formula: see text] than the influence of some carotenoids reported above. However, in CP29 our results indicate slightly dequenching and decreased [Formula: see text] when these chlorophylls are absent. This might indicate that both, Chl612 and Chl603 are involved in carotenoid-dependent quenching in isolated CP29.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11120-019-00676-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11120-019-00676-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2020 Belgium, Netherlands, France, United KingdomPublisher:Copernicus GmbH Frédéric Chevallier; Pierre Regnier; Julia Pongratz; Atul K. Jain; Roxana Petrescu; Robert J. Scholes; Pep Canadell; Masayuki Kondo; Hui Yang; Marielle Saunois; Bo Zheng; Wouter Peters; Wouter Peters; Benjamin Poulter; Benjamin Poulter; Benjamin Poulter; Matthew W. Jones; Hanqin Tian; Xuhui Wang; Shilong Piao; Shilong Piao; Ronny Lauerwald; Ronny Lauerwald; Ingrid T. Luijkx; Anatoli Shvidenko; Anatoli Shvidenko; Gustaf Hugelius; Celso von Randow; Chunjing Qiu; Robert B. Jackson; Robert B. Jackson; Prabir K. Patra; Philippe Ciais; Ana Bastos;Abstract. Regional land carbon budgets provide insights on the spatial distribution of the land uptake of atmospheric carbon dioxide, and can be used to evaluate carbon cycle models and to define baselines for land-based additional mitigation efforts. The scientific community has been involved in providing observation-based estimates of regional carbon budgets either by downscaling atmospheric CO2 observations into surface fluxes with atmospheric inversions, by using inventories of carbon stock changes in terrestrial ecosystems, by upscaling local field observations such as flux towers with gridded climate and remote sensing fields or by integrating data-driven or process-oriented terrestrial carbon cycle models. The first coordinated attempt to collect regional carbon budgets for nine regions covering the entire globe in the RECCAP-1 project has delivered estimates for the decade 2000–2009, but these budgets were not comparable between regions, due to different definitions and component fluxes reported or omitted. The recent recognition of lateral fluxes of carbon by human activities and rivers, that connect CO2 uptake in one area with its release in another also requires better definition and protocols to reach harmonized regional budgets that can be summed up to the globe and compared with the atmospheric CO2 growth rate and inversion results. In this study, for the international initiative RECCAP-2 coordinated by the Global Carbon Project, which aims as an update of regional carbon budgets over the last two decades based on observations, for 10 regions covering the globe, with a better harmonization that the precursor project, we provide recommendations for using atmospheric inversions results to match bottom-up carbon accounting and models, and we define the different component fluxes of the net land atmosphere carbon exchange that should be reported by each research group in charge of each region. Special attention is given to lateral fluxes, inland water fluxes and land use fluxes.
Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Full-Text: https://hal.science/hal-03604087Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-03604087Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/gmd-20...Article . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefGeoscientific Model Development (GMD)Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefWageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmd-2020-259&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 46 citations 46 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
visibility 7visibility views 7 download downloads 13 Powered bymore_vert Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Full-Text: https://hal.science/hal-03604087Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-03604087Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/gmd-20...Article . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefGeoscientific Model Development (GMD)Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefWageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmd-2020-259&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Kaag, A.M.; Schulte, M.H.J.; Jansen, J.M; van Wingen, G.; Homberg, J.R.; van den Brink, W.; Wiers, R.W.; Schmaal, L.; Goudriaan, A.E.; Goudriaan, A.E.; Reneman, L.;Neuroimaging studies have demonstrated gray matter (GM) volume abnormalities in substance users. While the majority of substance users are polysubstance users, very little is known about the relation between GM volume abnormalities and polysubstance use.In this study we assessed the relation between GM volume, and the use of alcohol, tobacco, cocaine and cannabis as well as the total number of substances used, in a sample of 169 males: 15 non-substance users, 89 moderate drinkers, 27 moderate drinkers who also smoke tobacco, 13 moderate drinkers who also smoke tobacco and use cocaine, 10 heavy drinkers who smoke tobacco and use cocaine and 15 heavy drinkers who smoke tobacco, cannabis and use cocaine.Regression analyses showed that there was a negative relation between the number of substances used and volume of the dorsal medial prefrontal cortex (mPFC) and the ventral mPFC. Without controlling for the use of other substances, the volume of the dorsal mPFC was negatively associated with the use of alcohol, tobacco, and cocaine. After controlling for the use of other substances, a negative relation was found between tobacco and cocaine and volume of the thalami and ventrolateral PFC, respectively.These findings indicate that mPFC alterations may not be substance-specific, but rather related to the number of substances used, whereas, thalamic and ventrolateral PFC pathology is specifically associated with tobacco and cocaine use, respectively. These findings are important, as the differential alterations in GM volume may underlie different cognitive deficits associated with substance use disorders.
Drug and Alcohol Dep... arrow_drop_down Drug and Alcohol DependenceArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefDANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Drug and Alcohol DependenceArticle . 2018Data sources: DANS (Data Archiving and Networked Services)Drug and Alcohol DependenceArticle . 2018Data sources: DANS (Data Archiving and Networked Services)Drug and Alcohol DependenceArticle . 2018Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.drugalcdep.2018.03.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 39 citations 39 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Drug and Alcohol Dep... arrow_drop_down Drug and Alcohol DependenceArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefDANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Drug and Alcohol DependenceArticle . 2018Data sources: DANS (Data Archiving and Networked Services)Drug and Alcohol DependenceArticle . 2018Data sources: DANS (Data Archiving and Networked Services)Drug and Alcohol DependenceArticle . 2018Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.drugalcdep.2018.03.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 FrancePublisher:SAGE Publications Julien Guiraud; Giovanni Addolorato; Mariangela Antonelli; Henri-Jean Aubin; Andrea de Bejczy; Amine Benyamina; Roberto Cacciaglia; Fabio Caputo; Maurice Dematteis; Anna Ferrulli; Anna E Goudriaan; Antoni Gual; Otto-Michael Lesch; Icro Maremmani; Antonio Mirijello; David J Nutt; François Paille; Pascal Perney; Roch Poulnais; Quentin Raffaillac; Jürgen Rehm; Benjamin Rolland; Claudia Rotondo; Bruno Scherrer; Nicolas Simon; Katrin Skala; Bo Söderpalm; Lorenzo Somaini; Wolfgang H Sommer; Rainer Spanagel; Gabriele A Vassallo; Henriette Walter; Wim van den Brink;Background: Sodium oxybate (SMO) has been shown to be effective in the maintenance of abstinence (MoA) in alcohol-dependent patients in a series of small randomized controlled trials (RCTs). These results needed to be confirmed by a large trial investigating the treatment effect and its sustainability after medication discontinuation. Aims: To confirm the SMO effect on (sustained) MoA in detoxified alcohol-dependent patients. Methods: Large double-blind, randomized, placebo-controlled trial in detoxified adult alcohol-dependent outpatients (80% men) from 11 sites in four European countries. Patients were randomized to 6 months SMO (3.3–3.9 g/day) or placebo followed by a 6-month medication-free period. Primary outcome was the cumulative abstinence duration (CAD) during the 6-month treatment period defined as the number of days with no alcohol use. Secondary outcomes included CAD during the 12-month study period. Results: Of the 314 alcohol-dependent patients randomized, 154 received SMO and 160 received placebo. Based on the pre-specified fixed-effect two-way analysis of variance including the treatment-by-site interaction, SMO showed efficacy in CAD during the 6-month treatment period: mean difference +43.1 days, 95% confidence interval (17.6–68.5; p = 0.001). Since significant heterogeneity of effect across sites and unequal sample sizes among sites ( n = 3–66) were identified, a site-level random meta-analysis was performed with results supporting the pre-specified analysis: mean difference +32.4 days, p = 0.014. The SMO effect was sustained during the medication-free follow-up period. SMO was well-tolerated. Conclusions: Results of this large RCT in alcohol-dependent patients demonstrated a significant and clinically relevant sustained effect of SMO on CAD. Trial registration: ClinicalTrials.gov Identifier: NCT04648423
Université Grenoble ... arrow_drop_down Université Grenoble Alpes: HALArticle . 2022Full-Text: https://inserm.hal.science/inserm-04057658Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Full-Text: https://inserm.hal.science/inserm-04057658Data sources: Bielefeld Academic Search Engine (BASE)Université Jean Monnet – Saint-Etienne: HALArticle . 2022Full-Text: https://inserm.hal.science/inserm-04057658Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/02698811221104063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 8 citations 8 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Université Grenoble ... arrow_drop_down Université Grenoble Alpes: HALArticle . 2022Full-Text: https://inserm.hal.science/inserm-04057658Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Full-Text: https://inserm.hal.science/inserm-04057658Data sources: Bielefeld Academic Search Engine (BASE)Université Jean Monnet – Saint-Etienne: HALArticle . 2022Full-Text: https://inserm.hal.science/inserm-04057658Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/02698811221104063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 Australia, United Kingdom, FrancePublisher:American Association for the Advancement of Science (AAAS) Funded by:NSF | Molecular Analysis of Chl..., NSF | Starter Grant: Ecophysiol...NSF| Molecular Analysis of Chlamydomonas Mating-Type Locus ,NSF| Starter Grant: Ecophysiology of Marine Picoeukaryotic Primary ProducersWilliam Lanier; Igor V. Grigoriev; Inna Dubchak; Marie L. Cuvelier; Marie L. Cuvelier; Peter von Dassow; Ian T. Paulsen; Jonathan H. Badger; Carolyn A. Napoli; Elodie Foulon; Hervé Moreau; Aaron Poliakov; Chelle L. Gentemann; Stephane Rombauts; Bernard Henrissat; Jeremy Schmutz; Jeremy Schmutz; Eve Toulza; Elif Demir; Jasmyn Pangilinan; Meredith V. Everett; E. Virginia Armbrust; Jill E. Gready; Tania Wyss; Alex N. Zelensky; Ursula Goodenough; Susan Lucas; Alexandra Z. Worden; Erika Lindquist; Olivier Panaud; Klaus F. X. Mayer; Wenche Eikrem; Steven Robbens; Jae-Hyeok Lee; Jane Grimwood; Jane Grimwood; Thomas Mock; Robert Otillar; Sarah M. McDonald; Kemin Zhou; Debashish Bhattacharya; Benoît Piégu; Uwe John; Pedro M. Coutinho; Yves Van de Peer; Andrew E. Allen; Heidrun Gundlach; Andrea Aerts; Fabrice Not; Aasf Salamov; Melinda P. Simmons; Pierre Rouzé; Micaela S. Parker; Evelyne Derelle;Picoeukaryotes are a taxonomically diverse group of organisms less than 2 micrometers in diameter. Photosynthetic marine picoeukaryotes in the genus Micromonas thrive in ecosystems ranging from tropical to polar and could serve as sentinel organisms for biogeochemical fluxes of modern oceans during climate change. These broadly distributed primary producers belong to an anciently diverged sister clade to land plants. Although Micromonas isolates have high 18 S ribosomal RNA gene identity, we found that genomes from two isolates shared only 90% of their predicted genes. Their independent evolutionary paths were emphasized by distinct riboswitch arrangements as well as the discovery of intronic repeat elements in one isolate, and in metagenomic data, but not in other genomes. Divergence appears to have been facilitated by selection and acquisition processes that actively shape the repertoire of genes that are mutually exclusive between the two isolates differently than the core genes. Analyses of the Micromonas genomes offer valuable insights into ecological differentiation and the dynamic nature of early plant evolution.
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/38757Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2009Data sources: INRIA a CCSD electronic archive serverUniversity of East Anglia: UEA Digital RepositoryArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1167222&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 568 citations 568 popularity Top 1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/38757Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2009Data sources: INRIA a CCSD electronic archive serverUniversity of East Anglia: UEA Digital RepositoryArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1167222&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2016Embargo end date: 01 Jan 2015Publisher:Proceedings of the National Academy of Sciences Funded by:EC | PAPETS, EC | PHOTPROT, NWO | How Photosynthetic Membra... +1 projectsEC| PAPETS ,EC| PHOTPROT ,NWO| How Photosynthetic Membranes Switch ,NWO| Gasgestookte adsorptiewarmtepomp en (zon-)thermisch aangedreven adsorptiekoelerJ. Michael Gruber; Tomáš Mančal; Pavel Malý; Pavel Malý; Richard J. Cogdell; Rienk van Grondelle;Significance The excitation energy transfer in light-harvesting complexes is usually studied either by ultrafast bulk spectroscopy or by single-molecule spectroscopy. These methods are to a high degree complementary: Bulk spectroscopy measures ultrafast processes averaged over thousands of complexes, whereas single-molecule spectroscopy observes much slower dynamics in individual complexes. In this work, we combine these approaches using a recently developed ultrafast single-molecule spectroscopy technique. This enables us, for the first time (to our knowledge), to observe ultrafast energy relaxation with a rate around 100 fs in individual light-harvesting complexes. We determine the distribution of the relaxation times, observe changes of the relaxation time in one complex, and find how the relaxation depends on excitation wavelength.
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Proceedings of the National Academy of SciencesArticle . 2016 . Peer-reviewedData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2015License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1522265113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Proceedings of the National Academy of SciencesArticle . 2016 . Peer-reviewedData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2015License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1522265113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Springer Science and Business Media LLC van der Lucas Woude; Peter J. Beek; M Tolsma; Han Houdijk; Trienke IJmker; Andreas Daffertshofer; Claudine J. C. Lamoth;pmid: 26298647
pmc: PMC4546819
Holding a handrail or using a cane may decrease the energy cost of walking in stroke survivors. However, the factors underlying this decrease have not yet been previously identified. The purpose of the current study was to fill this void by investigating the effect of physical support (through handrail hold) and/or somatosensory input (through light touch contact with a handrail) on energy cost and accompanying changes in both step parameters and neuromuscular activity. Elucidating these aspects may provide useful insights into gait recovery post stroke.Fifteen stroke survivors participated in this study. Participants walked on a treadmill under three conditions: no handrail contact, light touch of the handrail, and firm handrail hold. During the trials we recorded oxygen consumption, center of pressure profiles, and bilateral activation of eight lower limb muscles. Effects of the three conditions on energy cost, step parameters and neuromuscular activation were compared statistically using conventional ANOVAs with repeated measures. In order to examine to which extent energy cost and step parameters/muscle activity are associated, we further employed a partial least squares regression analysis.Handrail hold resulted in a significant reduction in energy cost, whereas light touch contact did not. With handrail hold subjects took longer steps with smaller step width and improved step length symmetry, whereas light touch contact only resulted in a small but significant decrease in step width. The EMG analysis indicated a global drop in muscle activity, accompanied by an increased constancy in the timing of this activity, and a decreased co-activation with handrail hold, but not with light touch. The regression analysis revealed that increased stride time and length, improved step length symmetry, and decreased muscle activity were closely associated with the decreased energy cost during handrail hold.Handrail hold, but not light touch, altered step parameters and was accompanied by a global reduction in muscle activity, with improved timing constancy. This suggests that the use of a handrail allows for a more economic step pattern that requires less muscular activation without resulting in substantial neuromuscular re-organization. Handrail use may thus have beneficial effects on gait economy after stroke, which cannot be accomplished through enhanced somatosensory input alone.
Journal of NeuroEngi... arrow_drop_down Journal of NeuroEngineering and RehabilitationArticle . 2015Data sources: DANS (Data Archiving and Networked Services)Journal of NeuroEngineering and RehabilitationArticle . 2015Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s12984-015-0051-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of NeuroEngi... arrow_drop_down Journal of NeuroEngineering and RehabilitationArticle . 2015Data sources: DANS (Data Archiving and Networked Services)Journal of NeuroEngineering and RehabilitationArticle . 2015Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s12984-015-0051-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 ItalyPublisher:Frontiers Media SA Maya D. Lambreva; Paul J. D. Janssen; Viviana Scognamiglio; Cecilia Bartolucci; Amina Antonacci; Giuseppina Rea; Katia Buonasera; Nicolas Plumeré; Raoul N. Frese;pmid: 24971306
pmc: PMC4054791
The development of a sustainable bio-based economy has drawn much attention in recent years, and research to find smart solutions to the many inherent challenges has intensified. In nature, perhaps the best example of an authentic sustainable system is oxygenic photosynthesis. The biochemistry of this intricate process is empowered by solar radiation influx and performed by hierarchically organized complexes composed by photoreceptors, inorganic catalysts, and enzymes which define specific niches for optimizing light-to-energy conversion. The success of this process relies on its capability to exploit the almost inexhaustible reservoirs of sunlight, water, and carbon dioxide to transform photonic energy into chemical energy such as stored in adenosine triphosphate. Oxygenic photosynthesis is responsible for most of the oxygen, fossil fuels, and biomass on our planet. So, even after a few billion years of evolution, this process unceasingly supports life on earth, and probably soon also in outer-space, and inspires the development of enabling technologies for a sustainable global economy and ecosystem. The following review covers some of the major milestones reached in photosynthesis research, each reflecting lasting routes of innovation in agriculture, environmental protection, and clean energy production.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fchem.2014.00036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 78 citations 78 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fchem.2014.00036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 NetherlandsPublisher:Springer Science and Business Media LLC Funded by:NWO | Optimizing light-harvesti...NWO| Optimizing light-harvesting with directed evolutionAuthors: Volha U. Chukhutsina; Alfred R. Holzwarth; Roberta Croce;pmid: 30478711
pmc: PMC6509100
Photosynthesis starts when a pigment in the photosynthetic antennae absorbs a photon. The electronic excitation energy is then transferred through the network of light-harvesting pigments to special chlorophyll (Chl) molecules in the reaction centres, where electron transfer is initiated. Energy transfer and primary electron transfer processes take place on timescales ranging from femtoseconds to nanoseconds, and can be monitored in real time via time-resolved fluorescence spectroscopy. This method is widely used for measurements on unicellular photosynthetic organisms, isolated photosynthetic membranes, and individual complexes. Measurements on intact leaves remain a challenge due to their high structural heterogeneity, high scattering, and high optical density, which can lead to optical artefacts. However, detailed information on the dynamics of these early steps, and the underlying structure-function relationships, is highly informative and urgently required in order to get deeper insights into the physiological regulation mechanisms of primary photosynthesis. Here, we describe a current methodology of time-resolved fluorescence measurements on intact leaves in the picosecond to nanosecond time range. Principles of fluorescence measurements on intact leaves, possible sources of alterations of fluorescence kinetics and the ways to overcome them are addressed. We also describe how our understanding of the organisation and function of photosynthetic proteins and energy flow dynamics in intact leaves can be enriched through the application of time-resolved fluorescence spectroscopy on leaves. For that, an example of a measurement on Zea mays leaves is presented.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11120-018-0607-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11120-018-0607-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:Springer Science and Business Media LLC Funded by:UKRI | Integrated assessment of ..., UKRI | Euro-China GE: Dynamics o..., UKRI | Comparative assessment an...UKRI| Integrated assessment of the emission-health-socioeconomics nexus and air pollution mitigation solutions and interventions in Beijing (INHANCE) ,UKRI| Euro-China GE: Dynamics of Green Growth in European and Chinese Cities (DRAGON) ,UKRI| Comparative assessment and region-specific optimisation of GGRYin Long; Yoshikuni Yoshida; Haoran Zhang; Heran Zheng; Yuli Shan; Dabo Guan;pmid: 32661260
pmc: PMC7359347
AbstractIn the wake of the Fukushima nuclear disaster, Japan largely moved away from nuclear power generation and turned back towards an energy sector dominated by fossil fuels. As a result, the pace towards reaching emission reduction targets has largely slowed down. This situation indicates that higher emissions will continue to be generated if there is no appropriate and efficient measurement implemented to bridge the energy demand gap. To contribute adequate mitigation policies, a detailed inventory of both CO2 emissions and socioeconomic factors, both at the national and regional level, should be issued. Thereby, this work contributes to a time-series emission with a record of 47 prefectures in Japan as well as their associated socioeconomic features. The compiled emission inventory is based on three major fossil fuels and 26 sectors with careful emission allocations for regional electricity generation. This dataset is uniformly formatted and can be expected to provide vital information to set regional reduction allowances and sectoral reduction priorities.
University of East A... arrow_drop_down University of East Anglia: UEA Digital RepositoryArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-020-0571-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 3visibility views 3 download downloads 2 Powered bymore_vert University of East A... arrow_drop_down University of East Anglia: UEA Digital RepositoryArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-020-0571-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Springer Science and Business Media LLC Funded by:[no funder available]Pen-Nan Liao; Christoph-Peter Holleboom; Peter Walla; Marco Negretti; Daniel A. Gacek; Roberta Croce;We present a comparison of the energy transfer between carotenoid dark states and chlorophylls for the minor complexes CP24 and CP29. To elucidate the potential involvement of certain carotenoid-chlorophyll coupling sites in fluorescence quenching of distinct complexes, varying carotenoid compositions and mutants lacking chlorophylls at specific binding sites were examined. Energy transfers between carotenoid dark states and chlorophylls were compared using the coupling parameter, [Formula: see text], which is calculated from the chlorophyll fluorescence observed after preferential carotenoid two-photon excitation. In CP24, artificial reconstitution with zeaxanthin leads to a significant reduction in the chlorophyll fluorescence quantum yield, [Formula: see text], and a considerable increase in [Formula: see text]. Similar effects of zeaxanthin were also observed in certain samples of CP29. In CP29, also the replacement of violaxanthin by the sole presence of lutein results in a significant quenching and increased [Formula: see text]. In contrast, the replacement of violaxanthin by lutein in CP24 is not significantly increasing [Formula: see text]. In general, these findings provide evidence that modification of the electronic coupling between carotenoid dark states and chlorophylls by changing carotenoids at distinct sites can significantly influence the quenching of these minor proteins, particularly when zeaxanthin or lutein is used. The absence of Chl612 in CP24 and of Chl612 or Chl603 in CP29 has a considerably smaller effect on [Formula: see text] and [Formula: see text] than the influence of some carotenoids reported above. However, in CP29 our results indicate slightly dequenching and decreased [Formula: see text] when these chlorophylls are absent. This might indicate that both, Chl612 and Chl603 are involved in carotenoid-dependent quenching in isolated CP29.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11120-019-00676-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11120-019-00676-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu