Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
  • Access
    Clear
  • Type
  • Year range
  • Field of Science
  • Funder
  • SDG [Beta]
  • Country
    Clear
  • Language
  • Source
  • Research community
    Clear
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
149 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • Closed Access
  • NL
  • Aurora Universities Network

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Ghimire A.;
    Ghimire A.
    ORCID
    Harvested from ORCID Public Data File

    Ghimire A. in OpenAIRE
    orcid bw FRUNZO, LUIGI;
    FRUNZO, LUIGI
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    FRUNZO, LUIGI in OpenAIRE
    orcid Pontoni L.;
    Pontoni L.
    ORCID
    Harvested from ORCID Public Data File

    Pontoni L. in OpenAIRE
    D'ANTONIO, GIUSEPPE; +3 Authors

    The Biohydrogen Potential (BHP) of six different types of waste biomass typical for the Campania Region (Italy) was investigated. Anaerobic sludge pre-treated with the specific methanogenic inhibitor sodium 2-bromoethanesulfonic acid (BESA) was used as seed inoculum. The BESA pre-treatment yielded the highest BHP in BHP tests carried out with pre-treated anaerobic sludge using potato and pumpkin waste as the substrates, in comparison with aeration or heat shock pre-treatment. The BHP tests carried out with different complex waste biomass showed average BHP values in a decreasing order from potato and pumpkin wastes (171.1 ± 7.3 ml H2/g VS) to buffalo manure (135.6 ± 4.1 ml H2/g VS), dried blood (slaughter house waste, 87.6 ± 4.1 ml H2/g VS), fennel waste (58.1 ± 29.8 ml H2/g VS), olive pomace (54.9 ± 5.4 ml H2/g VS) and olive mill wastewater (46.0 ± 15.6 ml H2/g VS). The digestate was analyzed for major soluble metabolites to elucidate the different biochemical pathways in the BHP tests. These showed the H2 was produced via mixed type fermentation pathways.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Environme...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Environmental Management
    Article . 2015 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    130
    citations130
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Radu Brănisteanu; orcid Harry Aiking;
    Harry Aiking
    ORCID
    Harvested from ORCID Public Data File

    Harry Aiking in OpenAIRE

    To evaluate the balance between occupational and environmental exposure to suspended particulate matter (SPM) and polycyclic aromatic hydrocarbons (PAHs), comparison measurements were performed in a coal-fired power plant and the urban atmosphere from the town nearby.The analysis of SPM for PAH content was done according to a high-performance liquid chromatography (HPLC)-based method. The microscopic assessment was performed using scanning electron microscopy (SEM) by silver coverage of the samples derived by air filter.Contrary to expectations, the results showed low levels of particle-bound PAHs in the occupational environment (< 1 ng benzo(a)pyrene/m3 air) and high levels in urban air (range 80-1250 ng benzo(a)pyrene/m3). The SPM collected from the power plant exhibited non-respirable characteristics (particles larger than 10 microm), whereas urban SPM almost exclusively contained respirable airborne particles (<3 microm).The PAH burden, combined with the enhanced probability of respiratory absorption, confers a much greater hazard potential to the urban SPM. Under these conditions, in areas or countries in which old technologies remain in use, occupational exposure to SPM containing PAHs might represent a severe underestimation of the total risk as it does not take into account the background air pollution.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Archiv...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    International Archives of Occupational and Environmental Health
    Article . 1998 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    addClaim
    5
    citations5
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Archiv...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      International Archives of Occupational and Environmental Health
      Article . 1998 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Peter Nijkamp;
    Peter Nijkamp
    ORCID
    Harvested from ORCID Public Data File

    Peter Nijkamp in OpenAIRE
    orcid Kostas Bithas;
    Kostas Bithas
    ORCID
    Harvested from ORCID Public Data File

    Kostas Bithas in OpenAIRE
    Kostas Bithas; Clive Richardson; +1 Authors

    Taking GDP as the standard economic indicator for economic welfare, recent Resources-Economy studies indicate the “dematerialization” of the economy, the so-called decoupling effect. This conclusion seems to alleviate concerns over resource scarcity and limits to growth, and feeds optimism for green growth and sustainability prospects. However, the validity of GDP as the sole and unambiguous measure of the ultimate outcome of the economy has been severely disputed. There is nowadays increasing interest in broader welfare measurements that capture more aspects of economic output and hence constitute better approximations of well-being. The present paper provides an overview of the above discussion and sets out to explore the relevance of three alternative welfare indicators – the Human Development Index (HDI), the Index of Sustainable Economic Welfare (ISEW) and the Genuine Progress Indicator (GPI) – as a basis for evaluating the dependency of welfare and its major engine, the economy, on natural resources. Increasing welfare appears to require a disproportionate use of resources. Strong and increasing dependency on resources at the global level and in giant countries such as China and India may have serious implications for current sustainability policies and the United Nations Sustainable Development Goals.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Ecological Economicsarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Ecological Economics
    Article . 2020 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    56
    citations56
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Ecological Economicsarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Ecological Economics
      Article . 2020 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Ao Liu; Rong Liu; Feiya Lei; orcid Jiazheng Wang;
    Jiazheng Wang
    ORCID
    Harvested from ORCID Public Data File

    Jiazheng Wang in OpenAIRE
    +4 Authors

    Climate change is expected to alter the population dynamics of pioneer tree species and their planned use in sustainable forest management, but we have a limited understanding of how their demographic rates change in response to climate changes during ecological restoration. Based on 12 years of demographic data for a pioneer tree species (Pinus massoniana) censused in three plots that correspond to three stages of ecological restoration in southeastern China. We built integral projection models (IPMs) to assess vital rates (survival, growth, reproduction) and population growth in each plot, then evaluated demographic changes to simulated changes in seasonal mean temperature and precipitation in the current and previous census period. The plot representing the medium restoration stage had the highest population growth rate (λ = 0.983). Mean population survival probability increased with ecological restoration, and reproduction probability was significantly suppressed at the high restoration stage. Survival is always the most important vital rate for λ, and climate affects λ primarily via survival at each restoration stage. The current spring temperature was the most critical climate variable for λ in the low and medium restoration stages, and previous summer temperature was most critical in the high restoration stage. Simulated warming leads to a decrease in the stochastic population growth rate (λs) of P. massoniana in every stage. These findings suggest that during ecological restoration, P. massoniana responds to habitat change via modified demographic performance, thus altering its response to climate change. Despite diverse responses to climate change, the persistence of P. massoniana populations is facing a widespread threat of warming states at each restoration stages.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Forestry ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Forestry Research
    Article . 2025 . Peer-reviewed
    License: Springer Nature TDM
    Data sources: Crossref
    addClaim
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Forestry ...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Forestry Research
      Article . 2025 . Peer-reviewed
      License: Springer Nature TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Richard S.J. Tol;
    Richard S.J. Tol
    ORCID
    Harvested from ORCID Public Data File

    Richard S.J. Tol in OpenAIRE
    Samuel Frankhauser;

    Climate change is unique among the consequences of fossil fuel burning in its far reaching impact, both spatially and temporally. Earlier studies estimate the aggregated monetized damage due to climate change at 1.5 to 2.0% of world GDP (for 2 × CO2); the OECD would lose 1.0 to 1.5% of GDP; the developing countries 2.0 to 9.0%, according to these estimates. These figures are not comprehensive and highly uncertain. Newer studies increasingly emphasize adaptation, variability, extreme events, other (non-climate change) stress factors and the need for integrated assessment of damages. As a result, differences in impacts between regions and sectors have increased, the market impacts in developed countries tended to fall, and non-market impacts have become increasingly important. Marginal damages are more interesting from a policy point of view. Earlier estimates range from about US$5 to US$125 per tonne of carbon, with most estimates at the lower end of this range. These figures are based on polynomial functions in the level of climate change, but the rate of change may be equally important, as are the speed of adaptation, restoration and value adjustment. Furthermore, future vulnerability to climate change will be different from current vulnerability. On the whole, the market impacts fall (relatively) with economic growth while the non-market impacts rise (relatively) with growth.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Policyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy Policy
    Article . 1996 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    67
    citations67
    popularityTop 10%
    influenceTop 1%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Policyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy Policy
      Article . 1996 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Peter Nijkamp; E. Hinloopen; orcid J.A. Hartog;
    J.A. Hartog
    ORCID
    Harvested from ORCID Public Data File

    J.A. Hartog in OpenAIRE

    Abstract Three classes of qualitative multicriteria methods are dealt with in this paper. An empirical problem, the choice of the best site for a nuclear power plant, is used to investigate the extent to which the results of the analysis are influenced by the choice of specific methods. The conclusion is that a certain sensitivity is unavoidable but that the final ranking of the alternatives — on the basis of a set of good methods — is nevertheless reasonably stable.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Economicsarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy Economics
    Article . 1989 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    13
    citations13
    popularityTop 10%
    influenceTop 10%
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Economicsarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy Economics
      Article . 1989 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Stijn Brouwer;
    Stijn Brouwer
    ORCID
    Harvested from ORCID Public Data File

    Stijn Brouwer in OpenAIRE
    orcid Dave Huitema;
    Dave Huitema
    ORCID
    Harvested from ORCID Public Data File

    Dave Huitema in OpenAIRE
    orcid Dave Huitema;
    Dave Huitema
    ORCID
    Harvested from ORCID Public Data File

    Dave Huitema in OpenAIRE

    Despite the fact that we currently witness an increasing interest in the study of the role of agency in policy dynamics, it remains in many respects a puzzle how policy change can be explained, let alone directed. This paper focusses intently on the concept, incidence, and strategic behaviour of policy entrepreneurs. By elucidating their strategic modus operandi, we aim to contribute to a better understanding of the strategies that individual change agents employ in their efforts to effect policy change, as well as to examine their contextual effectiveness. In addition to new data on the incidence and profile of policy entrepreneurs and the (contextual) conditions relating to the selection of strategies, this paper presents a novel typology of entrepreneurial strategies, linking these to circumstances under which they can be effective. Our paper concludes with a discussion on how our findings relate to the main theories of policy change, and what they mean for the larger democratic questions about accountability and legitimacy.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Regional Environment...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Regional Environmental Change
    Article . 2017 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    41
    citations41
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Regional Environment...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Regional Environmental Change
      Article . 2017 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Youshui Lu;
    Youshui Lu
    ORCID
    Harvested from ORCID Public Data File

    Youshui Lu in OpenAIRE
    Yue Li; Xiaojun Tang; Bowei Cai; +4 Authors

    As the first legally binding global agreement on climate change, the Paris Agreement aims to limit long-term global warming to less than 2 °C, preferably below 1.5 °C compared to pre-industrial levels. Road transport, as one of the primary sources of energy consumption and carbon emissions, has great potential for energy conservation and emission reduction in achieving the climate goals. However, current approaches cannot efficiently reduce road travel, making it challenging to decarbonize in the transport sector. Therefore, in this paper, we propose STRICTs, a blockchain-enabled motor vehicle restrictive and trading system based on the carbon emissions cap. STRICTs allows automated carbon emission auditing and carbon emission violation punishment without relying on third-party escrow. Through a decentralized enforcer, STRICTs also enables carbon permit trading reliably and transparently. Finally, we implement a proof-of-concept prototype of the system based on Hyperledger Fabric and conduct experiments for comprehensive performance evaluation through CO2 Emission by Vehicles dataset. The experiment results show the practically affordable performance of STRICTs.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Applied Energy
    Article . 2022 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    35
    citations35
    popularityTop 10%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Applied Energy
      Article . 2022 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Jos A.C. Verkleij; Petra M. Bleeker; Pedro M Teiga; Tjarda de Koe; +2 Authors

    A combination of metal immobilising agents and metal tolerant plants has been utilised in order to reduce the environmental impact of the acidic metal contaminated Jales mine spoil tips. The addition of Beringite (a modified aluminosilicate), steel shots (iron bearing material) and organic matter as spoil amendments resulted in changes in arsenate (As) concentrations and pH of spoil material and improved plant growth. The application of Beringite increased both pH and plant available As concentrations. A 4-year follow up of the spoil analysis demonstrated that the effect of the spoil treatments was stable following treatments, however, the effectiveness did not increase any more after 2 years. The use of metal tolerant grasses in combination with spoil treatments resulted in a rapid and effective revegetation of the As contaminated Jales mine spoils. Colonisation and reproduction of Agrostis castellana and Holcus lanatus was most successful when the substrate contained a combination of all three additives. Plant performances could be enhanced by supplementation of a phosphate fertiliser. The rapid reproduction of the two grass species makes them very suitable for revegetation purposes. Agrostis castellana and Holcus lanatus apparently exhibited a level of metal- and As-tolerance sufficient for survival on untreated spoil, but in the first stages of revegetation the use of spoil amendments was found to be essential. Organic matter in combination with Beringite and/or steel shots resulted in decreased As in the aboveground biomass, protecting possible grazers and predators from undesirable levels of As.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Science of The T...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    The Science of The Total Environment
    Article . 2002 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    67
    citations67
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Science of The T...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      The Science of The Total Environment
      Article . 2002 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Catherine Rivier; Soon Lee; Donne Schmidt; Fred J.H. Tilders;

    Prenatal exposure to ethanol (E) enhances the offspring's ACTH and corticosterone responses to stressors. Here, we determined the role of increased pituitary responsiveness and/or PVN neuronal activity in this phenomenon. Pregnant rats were exposed to E vapors during days 7-18 of gestation, and we compared the responses of their 55- to 60-day-old offspring (E rats) to those of control (C) dams. PVN mRNA levels of the immediate early genes (IEGs) c-fos and NGFI-B, which were low under basal conditions in all groups, showed a peak response 15 min after shocks and 45 min after LPS treatment. These responses were significantly enhanced in E, compared to C offspring of both genders. CRF, but not VP hnRNA levels were also significantly higher in the PVN of shocked E offspring. Resting median eminence content of CRF and VP, and pituitary responsiveness to CRF, were unchanged, while responsiveness to VP was marginally increased in females. These results indicate that prenatal alcohol selectively augments the neuronal activity of hypothalamic CRF perikarya.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Molecular and Cellul...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Molecular and Cellular Neuroscience
    Article . 2000 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    78
    citations78
    popularityTop 10%
    influenceTop 10%
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Molecular and Cellul...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Molecular and Cellular Neuroscience
      Article . 2000 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right
Powered by OpenAIRE graph