- home
- Advanced Search
- Energy Research
- 11. Sustainability
- 8. Economic growth
- 1. No poverty
- PL
- UA
- Aurora Universities Network
- Energy Research
- 11. Sustainability
- 8. Economic growth
- 1. No poverty
- PL
- UA
- Aurora Universities Network
description Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:Copernicus GmbH Funded by:EC | METLAKE, EC | VERIFY, EC | IMBALANCE-P +4 projectsEC| METLAKE ,EC| VERIFY ,EC| IMBALANCE-P ,EC| CHE ,RCN| Integrated Carbon Observation System (ICOS)-Norway and Ocean Thematic Centre (OTC) ,EC| VISUALMEDIA ,AKA| Novel soil management practices - key for sustainable bioeconomy and climate change mitigation -SOMPA / Consortium: SOMPAAna Maria Roxana Petrescu; Chunjing Qiu; Philippe Ciais; Rona L. Thompson; Philippe Peylin; Matthew J. McGrath; Efisio Solazzo; Greet Janssens‐Maenhout; Francesco N. Tubiello; P. Bergamaschi; D. Brunner; Glen P. Peters; L. Höglund-Isaksson; Pierre Regnier; Ronny Lauerwald; David Bastviken; Aki Tsuruta; Wilfried Winiwarter; Prabir K. Patra; Matthias Kuhnert; Gabriel D. Orregioni; Monica Crippa; Marielle Saunois; Lucia Perugini; Tiina Markkanen; Tuula Aalto; Christine Groot Zwaaftink; Yuanzhi Yao; Chris Wilson; Giulia Conchedda; Dirk Günther; Adrian Leip; Pete Smith; Jean‐Matthieu Haussaire; Antti Leppänen; Alistair J. Manning; Joe McNorton; Patrick Brockmann; A.J. Dolman;Abstract. Reliable quantification of the sources and sinks of greenhouse gases, together with trends and uncertainties, is essential to monitoring the progress in mitigating anthropogenic emissions under the Paris Agreement. This study provides a consolidated synthesis of CH4 and N2O emissions with consistently derived state-of-the-art bottom-up (BU) and top-down (TD) data sources for the European Union and UK (EU27+UK). We integrate recent emission inventory data, ecosystem process-based model results, and inverse modelling estimates over the period 1990–2018. BU and TD products are compared with European National GHG Inventories (NGHGI) reported to the UN climate convention secretariat UNFCCC in 2019. For uncertainties, we used for NGHGI the standard deviation obtained by varying parameters of inventory calculations, reported by the Member States following the IPCC guidelines recommendations. For atmospheric inversion models (TD) or other inventory datasets (BU), we defined uncertainties from the spread between different model estimates or model specific uncertainties when reported. In comparing NGHGI with other approaches, a key source of bias is the activities included, e.g. anthropogenic versus anthropogenic plus natural fluxes. In inversions, the separation between anthropogenic and natural emissions is sensitive to the geospatial prior distribution of emissions. Over the 2011–2015 period, which is the common denominator of data availability between all sources, the anthropogenic BU approaches are directly comparable, reporting mean emissions of 20.8 Tg CH4 yr−1 (EDGAR v5.0) and 19.0 Tg CH4 yr−1 (GAINS), consistent with the NGHGI estimates of 18.9 ± 1.7 Tg CH4 yr−1. TD total inversions estimates give higher emission estimates, as they also include natural emissions. Over the same period regional TD inversions with higher resolution atmospheric transport models give a mean emission of 28.8 Tg CH4 yr−1. Coarser resolution global TD inversions are consistent with regional TD inversions, for global inversions with GOSAT satellite data (23.3 Tg CH4yr−1) and surface network (24.4 Tg CH4 yr−1). The magnitude of natural peatland emissions from the JSBACH-HIMMELI model, natural rivers and lakes emissions and geological sources together account for the gap between NGHGI and inversions and account for 5.2 Tg CH4 yr−1. For N2O emissions, over the 2011–2015 period, both BU approaches (EDGAR v5.0 and GAINS) give a mean value of anthropogenic emissions of 0.8 and 0.9 Tg N2O yr−1 respectively, agreeing with the NGHGI data (0.9 ± 0.6 Tg N2O yr−1). Over the same period, the average of the three total TD global and regional inversions was 1.3 ± 0.4 and 1.3 ± 0.1 Tg N2O yr−1 respectively, compared to 0.9 Tg N2O yr−1 from the BU data. The TU and BU comparison method defined in this study can be operationalized for future yearly updates for the calculation of CH4 and N2O budgets both at EU+UK scale and at national scale. The referenced datasets related to figures are visualized at https://doi.org/10.5281/zenodo.4288969 (Petrescu et al., 2020).
https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/essd-2...Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2020-367&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/essd-2...Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2020-367&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Dries L. T. Hegger; Piotr Matczak; Maria Kaufmann; C. Larrue; Thomas Schellenberger; Mark Wiering; Hannelore Mees; Wessel Ganzevoort;handle: 2066/175957
Abstract Floods are challenging the resilience of societies all over the world. In many countries there are discussions on diversifying the strategies for flood risk management, which implies some sort of policy change. To understand the possibilities of such change, a thorough understanding of the forces of stability and change of underlying governance arrangements is required. It follows from the path dependency literature that countries which rely strongly on flood infrastructures, as part of flood defense strategies, would be more path dependent. Consequently there is a higher chance to find more incremental change in these countries than in countries that have a more diversified set of strategies. However, comparative and detailed empirical studies that may help scrutinize this assumption are lacking. To address this knowledge gap, this paper investigates how six European countries (Belgium, England, France, The Netherlands, Poland and Sweden) essentially differ with regard to their governance of flood risks. To analyze stability and change, we focus on how countries are responding to certain societal and ecological driving forces (ecological turn; climate change discourses; European policies; and the increasing prevalence of economic rationalizations) that potentially affect the institutional arrangements for flood risk governance. Taking both the variety of flood risk governance in countries and their responses to driving forces into account, we can clarify the conditions of stability or change of flood risk governance arrangements more generally. The analysis shows that the national-level impact of driving forces is strongly influenced by the flood risk governance arrangements in the six countries. Path dependencies are indeed visible in countries with high investments in flood infrastructure accompanied by strongly institutionalized governance arrangements (Poland, the Netherlands) but not only there. Also more diversified countries that are less dependent on flood infrastructure and flood defense only (England) show path dependencies and mostly incremental change. More substantial changes are visible in countries that show moderate diversification of strategies (Belgium, France) or countries that ‘have no strong path yet’ in comprehensive flood risk governance (Sweden). This suggests that policy change can be expected when there is both the internal need and will to change and a barrage of (external) driving forces pushing for change.
Global Environmental... arrow_drop_down Global Environmental ChangeArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefGlobal Environmental ChangeArticle . 2017Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloenvcha.2017.02.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 62 citations 62 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Environmental... arrow_drop_down Global Environmental ChangeArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefGlobal Environmental ChangeArticle . 2017Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloenvcha.2017.02.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:BMJ Norbert Scherbaum; Angela Buchholz; Hans-Helmut König; Judith Dams; Ludwig Kraus; Jens Reimer; Alexander Konnopka;ObjectivesHeavy alcohol use can cause somatic and mental diseases, affects patients’ social life and is associated with social isolation, unemployment and reduced quality of life. Therefore, societal costs of alcohol dependence are expected to be high. The aim of this study was to estimate excess costs of patients with alcohol dependence diagnosed using theDiagnostic and Statistical Manual of Mental Disorders, 4th Edition criteria compared with individuals without alcohol dependence in Germany.DesignIn a secondary analysis, baseline data of patients with alcohol dependence enrolled in a randomised controlled trial (German Clinical Trials Register DRS00005035) were compared with data collected via a telephone survey from individuals without alcohol dependence and that had been matched by entropy balancing. Health service use was evaluated retrospectively for a 6-month period.SettingsFour German psychiatric university clinics (patients with alcohol dependence) and the German general adult population (individuals without alcohol dependence).Participantsn=236 adult patients with alcohol dependence and n=4687 adult individuals without alcohol dependence.Primary and secondary outcome measuresThe excess costs of health service use, absenteeism and unemployment of patients with alcohol dependence were calculated and compared with individuals without alcohol dependence. In subgroup analyses, the associations between excess cost and gender, comorbidities and the duration of disease were investigated.ResultsTotal 6-month excess costs of €11 839 (95% CI €11 529 to €12 147) were caused by direct excess costs of €4349 (95% CI €4129 to €4566) and indirect costs of €7490 (95% CI €5124 to €9856). In particular, costs of inpatient treatment, formal long-term care, absenteeism and unemployment were high.ConclusionsAlcohol dependence causes substantial direct and indirect excess costs. Cost-effective interventions to prevent and treat alcohol dependence are urgently needed.Trial registration numberDRKS00005035.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1136/bmjopen-2017-020563&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1136/bmjopen-2017-020563&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Springer Science and Business Media LLC Veronica De Micco; Chiara Amitrano; Felice Mastroleo; Giovanna Aronne; Alberto Battistelli; Eugénie Carnero-Díaz; Stefania De Pascale; Gisela Detrell; Claude‐Gilles Dussap; Ramon Ganigué; Øyvind M. Jakobsen; Lucie Poulet; Rob Van Houdt; Cyprien Verseux; Siegfried E. Vlaeminck; Ronnie Willaert; Natalie Leys;pmid: 37620398
pmc: PMC10449850
AbstractLong-term human space exploration missions require environmental control and closed Life Support Systems (LSS) capable of producing and recycling resources, thus fulfilling all the essential metabolic needs for human survival in harsh space environments, both during travel and on orbital/planetary stations. This will become increasingly necessary as missions reach farther away from Earth, thereby limiting the technical and economic feasibility of resupplying resources from Earth. Further incorporation of biological elements into state-of-the-art (mostly abiotic) LSS, leading to bioregenerative LSS (BLSS), is needed for additional resource recovery, food production, and waste treatment solutions, and to enable more self-sustainable missions to the Moon and Mars. There is a whole suite of functions crucial to sustain human presence in Low Earth Orbit (LEO) and successful settlement on Moon or Mars such as environmental control, air regeneration, waste management, water supply, food production, cabin/habitat pressurization, radiation protection, energy supply, and means for transportation, communication, and recreation. In this paper, we focus on air, water and food production, and waste management, and address some aspects of radiation protection and recreation. We briefly discuss existing knowledge, highlight open gaps, and propose possible future experiments in the short-, medium-, and long-term to achieve the targets of crewed space exploration also leading to possible benefits on Earth.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41526-023-00317-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41526-023-00317-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Roman Suligowski; Francisco Jesus Fernandez-Morales; Bartosz Szeląg; Jakub Drewnowski; +2 AuthorsRoman Suligowski; Francisco Jesus Fernandez-Morales; Bartosz Szeląg; Jakub Drewnowski; Francesco De Paola; Łukasz Bąk;This paper presents a probabilistic methodology that allows the study of the interactions between changes in rainfall dynamics and impervious areas in urban catchment on a long- and short-term basis. The proposed probabilistic model predict future storm overflows while taking into account the dynamics of changes in impervious areas and rainfall. In this model, a logistic regression method was used to simulate overflow resulting from precipitation events based on average rainfall intensity and impervious area. The adopted approach is universal (as it can be used in other urban catchments) and is a significant simplification of classic solutions; a hydrodynamic model is used to analyse the operation of the overflow. For the rainfall simulations, a rainfall generator based on the Monte Carlo method was used. In this method, a modification that allows the simulation of changes taking place in rainfall dynamics, including the effects of climate change, was introduced. This method provides the opportunity to expand and modify probabilistic models in which outflow from the catchment is modelled to predict the functioning of reservoirs and to design sewer networks that have the ability to deal with future rainfall dynamics, including moderate, strong, and violent downpours according to the Sumner scale. To verify the simulation results with a probabilistic model, an innovative concept using a hydrodynamic model was considered. This verification considers the changes in the impervious area in the period covered by the simulations and is limited using standard calculation procedures. In practice, the model presented in this work creates opportunities for defining the concept of sustainable development in urban catchments while taking into account the factors mentioned above. From the perspective of landscaping, this is important because it creates the opportunity to limit the impacts of climate change and area urbanization on the receiving waters. Este artículo presenta una metodología probabilística que permite el estudio de las interacciones entre cambios en la dinámica de lluvias y áreas impermeables en cuencas urbanas a largo y corto plazo. El modelo probabilístico propuesto predice futuros desbordamientos de tormentas teniendo en cuenta la dinámica de los cambios en las áreas impermeables y la lluvia. En este modelo, se utilizó un método de regresión logística para simular el desbordamiento resultante de eventos de precipitación en función de la intensidad de lluvia promedio y el área impermeable. El enfoque adoptado es universal (ya que puede ser utilizado en otras cuencas urbanas) y es una simplificación significativa de las soluciones clásicas; se utiliza un modelo hidrodinámico para analizar el funcionamiento del rebosadero. Para las simulaciones de lluvia, se utilizó un generador de lluvia basado en el método Monte Carlo . En este método se introdujo una modificación que permite simular los cambios que se están produciendo en la dinámica de las lluvias, incluyendo los efectos del cambio climático . Este método brinda la oportunidad de ampliar y modificar modelos probabilísticos en los que se modela el caudal de salida de la cuenca para predecir el funcionamiento de los embalses y diseñar redes de alcantarillado que tengan la capacidad de lidiar con la dinámica futura de las precipitaciones, incluidos aguaceros moderados, fuertes y violentos según a la escala Sumner. Para verificar los resultados de la simulación con un modelo probabilístico, se consideró un concepto innovador utilizando un modelo hidrodinámico. Esta verificación considera los cambios en el área impermeable en el período cubierto por las simulaciones y se limita utilizando procedimientos de cálculo estándar. En la práctica, el modelo presentado en este trabajo crea oportunidades para definir el concepto de desarrollo sostenible en cuencas urbanas teniendo en cuenta los factores mencionados anteriormente. Desde la perspectiva del paisajismo, esto es importante porque crea la oportunidad de limitar los impactos del cambio climático y la urbanización del área en las aguas receptoras.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jhydrol.2021.126275&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jhydrol.2021.126275&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Embargo end date: 01 Jan 2022 Switzerland, United Kingdom, SwitzerlandPublisher:Elsevier BV Nadav Peleg; Nikolina Ban; Michael J. Gibson; Albert S. Chen; Athanasios Paschalis; Paolo Burlando; João P. Leitão;handle: 10044/1/98096
Synthetic design storms are often used to plan new drainage systems or assess flood impacts on infrastructure. To simulate extreme rainfall events under climate change, design storms can be modified to match a different return frequency of extreme rainfall events as well as a modified temporal distribution of rainfall intensities. However, the same magnitude of change to the rainfall intensities is often applied in space. Several hydrological applications are limited by this. Climate change impacts on urban pluvial floods, for example, require the use of 2D design storms (rainfall fields) at sub-kilometer and sub-hourly scales. Recent kilometer scale climate models, also known as convection-permitting climate models (CPM), provide rainfall outputs at a high spatial resolution, although rainfall simulations are still restricted to a limited number of climate scenarios and time periods. We nevertheless explored the potential use of rainfall data obtained from these models for hydrological flood impact studies by introducing a method of spatial quantile mapping (SQM). To demonstrate the new methodology, we extracted high-resolution rainfall simulations from a CPM for four domains representing different urban areas in Switzerland. Extreme storms that are plausible under the present climate conditions were simulated with a 2D stochastic rainfall model. Based on the CPM-informed stochastically generated rainfall fields, we modified the design storms to fit the future climate scenario using three different methods: the SQM, a uniform quantile mapping, and a uniform adjustment based on a rainfall–temperature relationship. Throughout all storms, the temporal distribution of rainfall was the same. Using a flood model, we assessed the impact of different rainfall adjustment methods on urban flooding. Significant differences were found in the flood water depths and areas between the three methods. In general, the SQM method results in a higher flood impact than the storms that were modified otherwise. The results suggest that spatial storm profiles may need to be re-adjusted when assessing flood impacts. Advances in Water Resources, 166 ISSN:0309-1708 ISSN:1872-9657
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/10044/1/98096Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.advwatres.2022.104258&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 11visibility views 11 download downloads 14 Powered bymore_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/10044/1/98096Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.advwatres.2022.104258&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Juudit Ottelin; Juudit Ottelin; Kamyar Hasanzadeh; Michał Czepkiewicz; Michał Czepkiewicz; Sanna Ala-Mantila; Sanna Ala-Mantila; Marketta Kyttä; Jukka Heinonen;Abstract The inverse relationship between urban density and greenhouse gas (GHG) emissions caused by driving is well established. However, at the same time the few existing studies have observed higher levels of long-distance travel and particularly air travel in the same densely built parts of urban regions. This may lead to GHG emissions reduction in local travel offset by the concomitant increase in long-distance travel. With this study we aim to identify the main factors involved in differences in local, national and long-distance travel patterns and the resulting GHG emissions, with a special focus on the role of the different urban zones in the Helsinki Metropolitan Area (HMA) in Finland. We used a softGIS survey to collect data on the personal travel of young adults living in HMA. SoftGIS methodology provides the opportunity to obtain detailed spatial data on participants' residential locations, travel destinations, and destination characteristics such as travel modes, frequencies and trip purposes. Special attention was paid to national and international trips, for which data were collected over 12 months, a period long enough to capture actual travel patterns. GHG emissions were assessed with a wide scope life cycle assessment (LCA) approach, including vehicles and infrastructure, and the results were elaborated with a two-part regression model on participation in travel and amount of GHG emissions. The study found that the residential location was associated with travel emissions on all scales, and independently from major socioeconomic characteristics. Residents of centrally located and densely built urban zones have on average lower emissions from local travel but higher emissions from international travel than residents of car-oriented suburban zones, and the association holds true after controlling for income, education level and household type. Differences in emissions from local travel between most central and most suburban zones were almost completely offset by differences in emissions from international travel. International long-distance trips were a dominant source of travel-related GHG emissions in all urban zones, particularly due to plane flights.
Journal of Transport... arrow_drop_down Journal of Transport GeographyArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jtrangeo.2018.02.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 53 citations 53 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Transport... arrow_drop_down Journal of Transport GeographyArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jtrangeo.2018.02.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 SwitzerlandPublisher:Proceedings of the National Academy of Sciences Ellis, Erle C.; Kaplan, Jed O.; Fuller, Dorian Q.; Vavrus, Steve; Goldewijk, Kees Klein; Verburg, Peter H.;pmid: 23630271
pmc: PMC3657770
Human use of land has transformed ecosystem pattern and process across most of the terrestrial biosphere, a global change often described as historically recent and potentially catastrophic for both humanity and the biosphere. Interdisciplinary paleoecological, archaeological, and historical studies challenge this view, indicating that land use has been extensive and sustained for millennia in some regions and that recent trends may represent as much a recovery as an acceleration. Here we synthesize recent scientific evidence and theory on the emergence, history, and future of land use as a process transforming the Earth System and use this to explain why relatively small human populations likely caused widespread and profound ecological changes more than 3,000 y ago, whereas the largest and wealthiest human populations in history are using less arable land per person every decade. Contrasting two spatially explicit global reconstructions of land-use history shows that reconstructions incorporating adaptive changes in land-use systems over time, including land-use intensification, offer a more spatially detailed and plausible assessment of our planet's history, with a biosphere and perhaps even climate long ago affected by humans. Although land-use processes are now shifting rapidly from historical patterns in both type and scale, integrative global land-use models that incorporate dynamic adaptations in human–environment relationships help to advance our understanding of both past and future land-use changes, including their sustainability and potential global effects.
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2013Data sources: DANS (Data Archiving and Networked Services)Proceedings of the National Academy of SciencesArticle . 2013 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1217241110&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 614 citations 614 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 3visibility views 3 Powered bymore_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2013Data sources: DANS (Data Archiving and Networked Services)Proceedings of the National Academy of SciencesArticle . 2013 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1217241110&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 France, France, United States, United KingdomPublisher:Elsevier BV Funded by:EC | eLTEREC| eLTERJan Dick; Daniel E. Orenstein; Jennifer M. Holzer; Christoph Wohner; Anne-Laure Achard; Christopher Andrews; Noa Avriel-Avni; Pedro Beja; Nadège Blond; Javier Cabello; Chiling Chen; Ricardo Díaz-Delgado; Georgios V. Giannakis; Simone Gingrich; Zita Izakovicova; Kinga Krauze; Nicolas Lamouroux; Stefan Leca; Viesturs Melecis; Kertész Miklós; Maria Mimikou; Georg Niedrist; Christophe Piscart; Carmen Postolache; Alexander Psomas; Margarida Santos-Reis; Ulrike Tappeiner; Kristin Vanderbilt; Gunther Van Ryckegem;pmid: 29890590
With an overarching goal of addressing global and regional sustainability challenges, Long Term Socio-Ecological Research Platforms (LTSER) aim to conduct place-based research, to collect and synthesize both environmental and socio-economic data, and to involve a broader stakeholder pool to set the research agenda. To date there have been few studies examining the output from LTSER platforms. In this study we enquire if the socio-ecological research from 25 self-selected LTSER platforms of the International Long-Term Ecological Research (ILTER) network has produced research products which fulfil the aims and ambitions of the paradigm shift from ecological to socio-ecological research envisaged at the turn of the century. In total we assessed 4983 publically available publications, of which 1112 were deemed relevant to the socio-ecological objectives of the platform. A series of 22 questions were scored for each publication, assessing relevance of responses in terms of the disciplinary focus of research, consideration of human health and well-being, degree of stakeholder engagement, and other relevant variables. The results reflected the diverse origins of the individual platforms and revealed a wide range in foci, temporal periods and quantity of output from participating platforms, supporting the premise that there is a growing trend in socio-ecological research at long-term monitoring platforms. Our review highlights the challenges of realizing the top-down goal to harmonize international network activities and objectives and the need for bottom-up, self-definition for research platforms. This provides support for increasing the consistency of LTSER research while preserving the diversity of regional experiences.
Hyper Article en Lig... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Full-Text: https://univ-rennes.hal.science/hal-01769658Data sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Article . 2018Full-Text: https://univ-rennes.hal.science/hal-01769658Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefFlorida International University: Digital Commons@FIUArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2017.11.324&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 50 citations 50 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 7visibility views 7 Powered bymore_vert Hyper Article en Lig... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Full-Text: https://univ-rennes.hal.science/hal-01769658Data sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Article . 2018Full-Text: https://univ-rennes.hal.science/hal-01769658Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefFlorida International University: Digital Commons@FIUArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2017.11.324&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Denmark, France, United Kingdom, Italy, France, United Kingdom, SpainPublisher:Elsevier BV Funded by:EC | RENATURE, EC | RAMSESEC| RENATURE ,EC| RAMSESAuthors: Eliška Krkoška Lorencová; Orsolya Fülöp; Filomena Pietrapertosa; Jon Marco Church; +27 AuthorsEliška Krkoška Lorencová; Orsolya Fülöp; Filomena Pietrapertosa; Jon Marco Church; Davide Geneletti; Hans Orru; Hans Orru; Niki Artemis Spyridaki; Stelios Grafakos; Monica Salvia; Diana Reckien; Richard Dawson; Kati Orru; Johannes Flacke; Aoife Foley; Anna Krook-Riekkola; Mario V. Balzan; Anja Wejs; Sofia Simoes; Valentina D'Alonzo; Marko Matosović; Paris A. Fokaides; Sergiu Vasilie; Sonia De Gregorio-Hurtado; Byron Ioannou; Efren Feliu; Oliver Heidrich; Cristiana Nador; Alexandros Flamos; Marta Olazabal; Ivan Paspaldzhiev;handle: 1765/106232
The Paris Agreement aims to limit global mean temperature rise this century to well below 2 °C above pre-industrial levels. This target has wide-ranging implications for Europe and its cities, which are the source of substantial greenhouse gas emissions. This paper reports the state of local planning for climate change by collecting and analysing information about local climate mitigation and adaptation plans across 885 urban areas of the EU-28. A typology and framework for analysis was developed that classifies local climate plans in terms of their alignment with spatial (local, national and international) and other climate related policies. Out of eight types of local climate plans identified in total we document three types of stand-alone local climate plans classified as type A1 (autonomously produced plans), A2 (plans produced to comply with national regulations) or A3 (plans developed for international climate networks). There is wide variation among countries in the prevalence of local climate plans, with generally more plans developed by central and northern European cities. Approximately 66% of EU cities have a type A1, A2, or A3 mitigation plan, 26% an adaptation plan, and 17% a joint adaptation and mitigation plan, while about 33% lack any form of stand-alone local climate plan (i.e. what we classify as A1, A2, A3 plans). Mitigation plans are more numerous than adaptation plans, but planning for mitigation does not always precede planning for adaptation. Our analysis reveals that city size, national legislation, and international networks can influence the development of local climate plans. We found that size does matter as about 80% of the cities with above 500,000 inhabitants have a comprehensive and stand-alone mitigation and/or an adaptation plan (A1). Cities in four countries with national climate legislation (A2), i.e. Denmark, France, Slovakia and the United Kingdom, are nearly twice as likely to produce local mitigation plans, and five times more likely to produce local adaptation plans, compared to cities in countries without such legislation. A1 and A2 mitigation plans are particularly numerous in Denmark, Poland, Germany, and Finland; while A1 and A2 adaptation plans are prevalent in Denmark, Finland, UK and France. The integration of adaptation and mitigation is country-specific and can mainly be observed in two countries where local climate plans are compulsory, i.e. France and the UK. Finally, local climate plans produced for international climate networks (A3) are mostly found in the many countries where autonomous (type A1) plans are less common. This is the most comprehensive analysis of local climate planning to date. The findings are of international importance as they will inform and support decision-making towards climate planning and policy development at national, EU and global level being based on the most comprehensive and up-to-date knowledge of local climate planning available to date.
Journal of Cleaner P... arrow_drop_down https://hdl.handle.net/1765/10...Article . 2018Data sources: DANS (Data Archiving and Networked Services)Université de Reims Champagne-Ardenne: Archives Ouvertes (HAL)Article . 2018License: CC BY NC NDFull-Text: https://hal.science/hal-01756463Data sources: Bielefeld Academic Search Engine (BASE)Journal of Cleaner ProductionArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTAQueen's University Belfast Research PortalArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Journal of Cleaner ProductionArticle . 2018 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2018.03.220&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 417 citations 417 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Journal of Cleaner P... arrow_drop_down https://hdl.handle.net/1765/10...Article . 2018Data sources: DANS (Data Archiving and Networked Services)Université de Reims Champagne-Ardenne: Archives Ouvertes (HAL)Article . 2018License: CC BY NC NDFull-Text: https://hal.science/hal-01756463Data sources: Bielefeld Academic Search Engine (BASE)Journal of Cleaner ProductionArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTAQueen's University Belfast Research PortalArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Journal of Cleaner ProductionArticle . 2018 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2018.03.220&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:Copernicus GmbH Funded by:EC | METLAKE, EC | VERIFY, EC | IMBALANCE-P +4 projectsEC| METLAKE ,EC| VERIFY ,EC| IMBALANCE-P ,EC| CHE ,RCN| Integrated Carbon Observation System (ICOS)-Norway and Ocean Thematic Centre (OTC) ,EC| VISUALMEDIA ,AKA| Novel soil management practices - key for sustainable bioeconomy and climate change mitigation -SOMPA / Consortium: SOMPAAna Maria Roxana Petrescu; Chunjing Qiu; Philippe Ciais; Rona L. Thompson; Philippe Peylin; Matthew J. McGrath; Efisio Solazzo; Greet Janssens‐Maenhout; Francesco N. Tubiello; P. Bergamaschi; D. Brunner; Glen P. Peters; L. Höglund-Isaksson; Pierre Regnier; Ronny Lauerwald; David Bastviken; Aki Tsuruta; Wilfried Winiwarter; Prabir K. Patra; Matthias Kuhnert; Gabriel D. Orregioni; Monica Crippa; Marielle Saunois; Lucia Perugini; Tiina Markkanen; Tuula Aalto; Christine Groot Zwaaftink; Yuanzhi Yao; Chris Wilson; Giulia Conchedda; Dirk Günther; Adrian Leip; Pete Smith; Jean‐Matthieu Haussaire; Antti Leppänen; Alistair J. Manning; Joe McNorton; Patrick Brockmann; A.J. Dolman;Abstract. Reliable quantification of the sources and sinks of greenhouse gases, together with trends and uncertainties, is essential to monitoring the progress in mitigating anthropogenic emissions under the Paris Agreement. This study provides a consolidated synthesis of CH4 and N2O emissions with consistently derived state-of-the-art bottom-up (BU) and top-down (TD) data sources for the European Union and UK (EU27+UK). We integrate recent emission inventory data, ecosystem process-based model results, and inverse modelling estimates over the period 1990–2018. BU and TD products are compared with European National GHG Inventories (NGHGI) reported to the UN climate convention secretariat UNFCCC in 2019. For uncertainties, we used for NGHGI the standard deviation obtained by varying parameters of inventory calculations, reported by the Member States following the IPCC guidelines recommendations. For atmospheric inversion models (TD) or other inventory datasets (BU), we defined uncertainties from the spread between different model estimates or model specific uncertainties when reported. In comparing NGHGI with other approaches, a key source of bias is the activities included, e.g. anthropogenic versus anthropogenic plus natural fluxes. In inversions, the separation between anthropogenic and natural emissions is sensitive to the geospatial prior distribution of emissions. Over the 2011–2015 period, which is the common denominator of data availability between all sources, the anthropogenic BU approaches are directly comparable, reporting mean emissions of 20.8 Tg CH4 yr−1 (EDGAR v5.0) and 19.0 Tg CH4 yr−1 (GAINS), consistent with the NGHGI estimates of 18.9 ± 1.7 Tg CH4 yr−1. TD total inversions estimates give higher emission estimates, as they also include natural emissions. Over the same period regional TD inversions with higher resolution atmospheric transport models give a mean emission of 28.8 Tg CH4 yr−1. Coarser resolution global TD inversions are consistent with regional TD inversions, for global inversions with GOSAT satellite data (23.3 Tg CH4yr−1) and surface network (24.4 Tg CH4 yr−1). The magnitude of natural peatland emissions from the JSBACH-HIMMELI model, natural rivers and lakes emissions and geological sources together account for the gap between NGHGI and inversions and account for 5.2 Tg CH4 yr−1. For N2O emissions, over the 2011–2015 period, both BU approaches (EDGAR v5.0 and GAINS) give a mean value of anthropogenic emissions of 0.8 and 0.9 Tg N2O yr−1 respectively, agreeing with the NGHGI data (0.9 ± 0.6 Tg N2O yr−1). Over the same period, the average of the three total TD global and regional inversions was 1.3 ± 0.4 and 1.3 ± 0.1 Tg N2O yr−1 respectively, compared to 0.9 Tg N2O yr−1 from the BU data. The TU and BU comparison method defined in this study can be operationalized for future yearly updates for the calculation of CH4 and N2O budgets both at EU+UK scale and at national scale. The referenced datasets related to figures are visualized at https://doi.org/10.5281/zenodo.4288969 (Petrescu et al., 2020).
https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/essd-2...Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2020-367&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/essd-2...Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2020-367&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Dries L. T. Hegger; Piotr Matczak; Maria Kaufmann; C. Larrue; Thomas Schellenberger; Mark Wiering; Hannelore Mees; Wessel Ganzevoort;handle: 2066/175957
Abstract Floods are challenging the resilience of societies all over the world. In many countries there are discussions on diversifying the strategies for flood risk management, which implies some sort of policy change. To understand the possibilities of such change, a thorough understanding of the forces of stability and change of underlying governance arrangements is required. It follows from the path dependency literature that countries which rely strongly on flood infrastructures, as part of flood defense strategies, would be more path dependent. Consequently there is a higher chance to find more incremental change in these countries than in countries that have a more diversified set of strategies. However, comparative and detailed empirical studies that may help scrutinize this assumption are lacking. To address this knowledge gap, this paper investigates how six European countries (Belgium, England, France, The Netherlands, Poland and Sweden) essentially differ with regard to their governance of flood risks. To analyze stability and change, we focus on how countries are responding to certain societal and ecological driving forces (ecological turn; climate change discourses; European policies; and the increasing prevalence of economic rationalizations) that potentially affect the institutional arrangements for flood risk governance. Taking both the variety of flood risk governance in countries and their responses to driving forces into account, we can clarify the conditions of stability or change of flood risk governance arrangements more generally. The analysis shows that the national-level impact of driving forces is strongly influenced by the flood risk governance arrangements in the six countries. Path dependencies are indeed visible in countries with high investments in flood infrastructure accompanied by strongly institutionalized governance arrangements (Poland, the Netherlands) but not only there. Also more diversified countries that are less dependent on flood infrastructure and flood defense only (England) show path dependencies and mostly incremental change. More substantial changes are visible in countries that show moderate diversification of strategies (Belgium, France) or countries that ‘have no strong path yet’ in comprehensive flood risk governance (Sweden). This suggests that policy change can be expected when there is both the internal need and will to change and a barrage of (external) driving forces pushing for change.
Global Environmental... arrow_drop_down Global Environmental ChangeArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefGlobal Environmental ChangeArticle . 2017Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloenvcha.2017.02.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 62 citations 62 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Environmental... arrow_drop_down Global Environmental ChangeArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefGlobal Environmental ChangeArticle . 2017Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloenvcha.2017.02.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:BMJ Norbert Scherbaum; Angela Buchholz; Hans-Helmut König; Judith Dams; Ludwig Kraus; Jens Reimer; Alexander Konnopka;ObjectivesHeavy alcohol use can cause somatic and mental diseases, affects patients’ social life and is associated with social isolation, unemployment and reduced quality of life. Therefore, societal costs of alcohol dependence are expected to be high. The aim of this study was to estimate excess costs of patients with alcohol dependence diagnosed using theDiagnostic and Statistical Manual of Mental Disorders, 4th Edition criteria compared with individuals without alcohol dependence in Germany.DesignIn a secondary analysis, baseline data of patients with alcohol dependence enrolled in a randomised controlled trial (German Clinical Trials Register DRS00005035) were compared with data collected via a telephone survey from individuals without alcohol dependence and that had been matched by entropy balancing. Health service use was evaluated retrospectively for a 6-month period.SettingsFour German psychiatric university clinics (patients with alcohol dependence) and the German general adult population (individuals without alcohol dependence).Participantsn=236 adult patients with alcohol dependence and n=4687 adult individuals without alcohol dependence.Primary and secondary outcome measuresThe excess costs of health service use, absenteeism and unemployment of patients with alcohol dependence were calculated and compared with individuals without alcohol dependence. In subgroup analyses, the associations between excess cost and gender, comorbidities and the duration of disease were investigated.ResultsTotal 6-month excess costs of €11 839 (95% CI €11 529 to €12 147) were caused by direct excess costs of €4349 (95% CI €4129 to €4566) and indirect costs of €7490 (95% CI €5124 to €9856). In particular, costs of inpatient treatment, formal long-term care, absenteeism and unemployment were high.ConclusionsAlcohol dependence causes substantial direct and indirect excess costs. Cost-effective interventions to prevent and treat alcohol dependence are urgently needed.Trial registration numberDRKS00005035.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1136/bmjopen-2017-020563&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1136/bmjopen-2017-020563&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Springer Science and Business Media LLC Veronica De Micco; Chiara Amitrano; Felice Mastroleo; Giovanna Aronne; Alberto Battistelli; Eugénie Carnero-Díaz; Stefania De Pascale; Gisela Detrell; Claude‐Gilles Dussap; Ramon Ganigué; Øyvind M. Jakobsen; Lucie Poulet; Rob Van Houdt; Cyprien Verseux; Siegfried E. Vlaeminck; Ronnie Willaert; Natalie Leys;pmid: 37620398
pmc: PMC10449850
AbstractLong-term human space exploration missions require environmental control and closed Life Support Systems (LSS) capable of producing and recycling resources, thus fulfilling all the essential metabolic needs for human survival in harsh space environments, both during travel and on orbital/planetary stations. This will become increasingly necessary as missions reach farther away from Earth, thereby limiting the technical and economic feasibility of resupplying resources from Earth. Further incorporation of biological elements into state-of-the-art (mostly abiotic) LSS, leading to bioregenerative LSS (BLSS), is needed for additional resource recovery, food production, and waste treatment solutions, and to enable more self-sustainable missions to the Moon and Mars. There is a whole suite of functions crucial to sustain human presence in Low Earth Orbit (LEO) and successful settlement on Moon or Mars such as environmental control, air regeneration, waste management, water supply, food production, cabin/habitat pressurization, radiation protection, energy supply, and means for transportation, communication, and recreation. In this paper, we focus on air, water and food production, and waste management, and address some aspects of radiation protection and recreation. We briefly discuss existing knowledge, highlight open gaps, and propose possible future experiments in the short-, medium-, and long-term to achieve the targets of crewed space exploration also leading to possible benefits on Earth.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41526-023-00317-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41526-023-00317-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Roman Suligowski; Francisco Jesus Fernandez-Morales; Bartosz Szeląg; Jakub Drewnowski; +2 AuthorsRoman Suligowski; Francisco Jesus Fernandez-Morales; Bartosz Szeląg; Jakub Drewnowski; Francesco De Paola; Łukasz Bąk;This paper presents a probabilistic methodology that allows the study of the interactions between changes in rainfall dynamics and impervious areas in urban catchment on a long- and short-term basis. The proposed probabilistic model predict future storm overflows while taking into account the dynamics of changes in impervious areas and rainfall. In this model, a logistic regression method was used to simulate overflow resulting from precipitation events based on average rainfall intensity and impervious area. The adopted approach is universal (as it can be used in other urban catchments) and is a significant simplification of classic solutions; a hydrodynamic model is used to analyse the operation of the overflow. For the rainfall simulations, a rainfall generator based on the Monte Carlo method was used. In this method, a modification that allows the simulation of changes taking place in rainfall dynamics, including the effects of climate change, was introduced. This method provides the opportunity to expand and modify probabilistic models in which outflow from the catchment is modelled to predict the functioning of reservoirs and to design sewer networks that have the ability to deal with future rainfall dynamics, including moderate, strong, and violent downpours according to the Sumner scale. To verify the simulation results with a probabilistic model, an innovative concept using a hydrodynamic model was considered. This verification considers the changes in the impervious area in the period covered by the simulations and is limited using standard calculation procedures. In practice, the model presented in this work creates opportunities for defining the concept of sustainable development in urban catchments while taking into account the factors mentioned above. From the perspective of landscaping, this is important because it creates the opportunity to limit the impacts of climate change and area urbanization on the receiving waters. Este artículo presenta una metodología probabilística que permite el estudio de las interacciones entre cambios en la dinámica de lluvias y áreas impermeables en cuencas urbanas a largo y corto plazo. El modelo probabilístico propuesto predice futuros desbordamientos de tormentas teniendo en cuenta la dinámica de los cambios en las áreas impermeables y la lluvia. En este modelo, se utilizó un método de regresión logística para simular el desbordamiento resultante de eventos de precipitación en función de la intensidad de lluvia promedio y el área impermeable. El enfoque adoptado es universal (ya que puede ser utilizado en otras cuencas urbanas) y es una simplificación significativa de las soluciones clásicas; se utiliza un modelo hidrodinámico para analizar el funcionamiento del rebosadero. Para las simulaciones de lluvia, se utilizó un generador de lluvia basado en el método Monte Carlo . En este método se introdujo una modificación que permite simular los cambios que se están produciendo en la dinámica de las lluvias, incluyendo los efectos del cambio climático . Este método brinda la oportunidad de ampliar y modificar modelos probabilísticos en los que se modela el caudal de salida de la cuenca para predecir el funcionamiento de los embalses y diseñar redes de alcantarillado que tengan la capacidad de lidiar con la dinámica futura de las precipitaciones, incluidos aguaceros moderados, fuertes y violentos según a la escala Sumner. Para verificar los resultados de la simulación con un modelo probabilístico, se consideró un concepto innovador utilizando un modelo hidrodinámico. Esta verificación considera los cambios en el área impermeable en el período cubierto por las simulaciones y se limita utilizando procedimientos de cálculo estándar. En la práctica, el modelo presentado en este trabajo crea oportunidades para definir el concepto de desarrollo sostenible en cuencas urbanas teniendo en cuenta los factores mencionados anteriormente. Desde la perspectiva del paisajismo, esto es importante porque crea la oportunidad de limitar los impactos del cambio climático y la urbanización del área en las aguas receptoras.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jhydrol.2021.126275&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jhydrol.2021.126275&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Embargo end date: 01 Jan 2022 Switzerland, United Kingdom, SwitzerlandPublisher:Elsevier BV Nadav Peleg; Nikolina Ban; Michael J. Gibson; Albert S. Chen; Athanasios Paschalis; Paolo Burlando; João P. Leitão;handle: 10044/1/98096
Synthetic design storms are often used to plan new drainage systems or assess flood impacts on infrastructure. To simulate extreme rainfall events under climate change, design storms can be modified to match a different return frequency of extreme rainfall events as well as a modified temporal distribution of rainfall intensities. However, the same magnitude of change to the rainfall intensities is often applied in space. Several hydrological applications are limited by this. Climate change impacts on urban pluvial floods, for example, require the use of 2D design storms (rainfall fields) at sub-kilometer and sub-hourly scales. Recent kilometer scale climate models, also known as convection-permitting climate models (CPM), provide rainfall outputs at a high spatial resolution, although rainfall simulations are still restricted to a limited number of climate scenarios and time periods. We nevertheless explored the potential use of rainfall data obtained from these models for hydrological flood impact studies by introducing a method of spatial quantile mapping (SQM). To demonstrate the new methodology, we extracted high-resolution rainfall simulations from a CPM for four domains representing different urban areas in Switzerland. Extreme storms that are plausible under the present climate conditions were simulated with a 2D stochastic rainfall model. Based on the CPM-informed stochastically generated rainfall fields, we modified the design storms to fit the future climate scenario using three different methods: the SQM, a uniform quantile mapping, and a uniform adjustment based on a rainfall–temperature relationship. Throughout all storms, the temporal distribution of rainfall was the same. Using a flood model, we assessed the impact of different rainfall adjustment methods on urban flooding. Significant differences were found in the flood water depths and areas between the three methods. In general, the SQM method results in a higher flood impact than the storms that were modified otherwise. The results suggest that spatial storm profiles may need to be re-adjusted when assessing flood impacts. Advances in Water Resources, 166 ISSN:0309-1708 ISSN:1872-9657
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/10044/1/98096Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.advwatres.2022.104258&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 11visibility views 11 download downloads 14 Powered bymore_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/10044/1/98096Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.advwatres.2022.104258&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Juudit Ottelin; Juudit Ottelin; Kamyar Hasanzadeh; Michał Czepkiewicz; Michał Czepkiewicz; Sanna Ala-Mantila; Sanna Ala-Mantila; Marketta Kyttä; Jukka Heinonen;Abstract The inverse relationship between urban density and greenhouse gas (GHG) emissions caused by driving is well established. However, at the same time the few existing studies have observed higher levels of long-distance travel and particularly air travel in the same densely built parts of urban regions. This may lead to GHG emissions reduction in local travel offset by the concomitant increase in long-distance travel. With this study we aim to identify the main factors involved in differences in local, national and long-distance travel patterns and the resulting GHG emissions, with a special focus on the role of the different urban zones in the Helsinki Metropolitan Area (HMA) in Finland. We used a softGIS survey to collect data on the personal travel of young adults living in HMA. SoftGIS methodology provides the opportunity to obtain detailed spatial data on participants' residential locations, travel destinations, and destination characteristics such as travel modes, frequencies and trip purposes. Special attention was paid to national and international trips, for which data were collected over 12 months, a period long enough to capture actual travel patterns. GHG emissions were assessed with a wide scope life cycle assessment (LCA) approach, including vehicles and infrastructure, and the results were elaborated with a two-part regression model on participation in travel and amount of GHG emissions. The study found that the residential location was associated with travel emissions on all scales, and independently from major socioeconomic characteristics. Residents of centrally located and densely built urban zones have on average lower emissions from local travel but higher emissions from international travel than residents of car-oriented suburban zones, and the association holds true after controlling for income, education level and household type. Differences in emissions from local travel between most central and most suburban zones were almost completely offset by differences in emissions from international travel. International long-distance trips were a dominant source of travel-related GHG emissions in all urban zones, particularly due to plane flights.
Journal of Transport... arrow_drop_down Journal of Transport GeographyArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jtrangeo.2018.02.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 53 citations 53 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Transport... arrow_drop_down Journal of Transport GeographyArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jtrangeo.2018.02.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 SwitzerlandPublisher:Proceedings of the National Academy of Sciences Ellis, Erle C.; Kaplan, Jed O.; Fuller, Dorian Q.; Vavrus, Steve; Goldewijk, Kees Klein; Verburg, Peter H.;pmid: 23630271
pmc: PMC3657770
Human use of land has transformed ecosystem pattern and process across most of the terrestrial biosphere, a global change often described as historically recent and potentially catastrophic for both humanity and the biosphere. Interdisciplinary paleoecological, archaeological, and historical studies challenge this view, indicating that land use has been extensive and sustained for millennia in some regions and that recent trends may represent as much a recovery as an acceleration. Here we synthesize recent scientific evidence and theory on the emergence, history, and future of land use as a process transforming the Earth System and use this to explain why relatively small human populations likely caused widespread and profound ecological changes more than 3,000 y ago, whereas the largest and wealthiest human populations in history are using less arable land per person every decade. Contrasting two spatially explicit global reconstructions of land-use history shows that reconstructions incorporating adaptive changes in land-use systems over time, including land-use intensification, offer a more spatially detailed and plausible assessment of our planet's history, with a biosphere and perhaps even climate long ago affected by humans. Although land-use processes are now shifting rapidly from historical patterns in both type and scale, integrative global land-use models that incorporate dynamic adaptations in human–environment relationships help to advance our understanding of both past and future land-use changes, including their sustainability and potential global effects.
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2013Data sources: DANS (Data Archiving and Networked Services)Proceedings of the National Academy of SciencesArticle . 2013 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1217241110&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 614 citations 614 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 3visibility views 3 Powered bymore_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2013Data sources: DANS (Data Archiving and Networked Services)Proceedings of the National Academy of SciencesArticle . 2013 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1217241110&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 France, France, United States, United KingdomPublisher:Elsevier BV Funded by:EC | eLTEREC| eLTERJan Dick; Daniel E. Orenstein; Jennifer M. Holzer; Christoph Wohner; Anne-Laure Achard; Christopher Andrews; Noa Avriel-Avni; Pedro Beja; Nadège Blond; Javier Cabello; Chiling Chen; Ricardo Díaz-Delgado; Georgios V. Giannakis; Simone Gingrich; Zita Izakovicova; Kinga Krauze; Nicolas Lamouroux; Stefan Leca; Viesturs Melecis; Kertész Miklós; Maria Mimikou; Georg Niedrist; Christophe Piscart; Carmen Postolache; Alexander Psomas; Margarida Santos-Reis; Ulrike Tappeiner; Kristin Vanderbilt; Gunther Van Ryckegem;pmid: 29890590
With an overarching goal of addressing global and regional sustainability challenges, Long Term Socio-Ecological Research Platforms (LTSER) aim to conduct place-based research, to collect and synthesize both environmental and socio-economic data, and to involve a broader stakeholder pool to set the research agenda. To date there have been few studies examining the output from LTSER platforms. In this study we enquire if the socio-ecological research from 25 self-selected LTSER platforms of the International Long-Term Ecological Research (ILTER) network has produced research products which fulfil the aims and ambitions of the paradigm shift from ecological to socio-ecological research envisaged at the turn of the century. In total we assessed 4983 publically available publications, of which 1112 were deemed relevant to the socio-ecological objectives of the platform. A series of 22 questions were scored for each publication, assessing relevance of responses in terms of the disciplinary focus of research, consideration of human health and well-being, degree of stakeholder engagement, and other relevant variables. The results reflected the diverse origins of the individual platforms and revealed a wide range in foci, temporal periods and quantity of output from participating platforms, supporting the premise that there is a growing trend in socio-ecological research at long-term monitoring platforms. Our review highlights the challenges of realizing the top-down goal to harmonize international network activities and objectives and the need for bottom-up, self-definition for research platforms. This provides support for increasing the consistency of LTSER research while preserving the diversity of regional experiences.
Hyper Article en Lig... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Full-Text: https://univ-rennes.hal.science/hal-01769658Data sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Article . 2018Full-Text: https://univ-rennes.hal.science/hal-01769658Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefFlorida International University: Digital Commons@FIUArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2017.11.324&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 50 citations 50 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 7visibility views 7 Powered bymore_vert Hyper Article en Lig... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Full-Text: https://univ-rennes.hal.science/hal-01769658Data sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Article . 2018Full-Text: https://univ-rennes.hal.science/hal-01769658Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefFlorida International University: Digital Commons@FIUArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2017.11.324&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Denmark, France, United Kingdom, Italy, France, United Kingdom, SpainPublisher:Elsevier BV Funded by:EC | RENATURE, EC | RAMSESEC| RENATURE ,EC| RAMSESAuthors: Eliška Krkoška Lorencová; Orsolya Fülöp; Filomena Pietrapertosa; Jon Marco Church; +27 AuthorsEliška Krkoška Lorencová; Orsolya Fülöp; Filomena Pietrapertosa; Jon Marco Church; Davide Geneletti; Hans Orru; Hans Orru; Niki Artemis Spyridaki; Stelios Grafakos; Monica Salvia; Diana Reckien; Richard Dawson; Kati Orru; Johannes Flacke; Aoife Foley; Anna Krook-Riekkola; Mario V. Balzan; Anja Wejs; Sofia Simoes; Valentina D'Alonzo; Marko Matosović; Paris A. Fokaides; Sergiu Vasilie; Sonia De Gregorio-Hurtado; Byron Ioannou; Efren Feliu; Oliver Heidrich; Cristiana Nador; Alexandros Flamos; Marta Olazabal; Ivan Paspaldzhiev;handle: 1765/106232
The Paris Agreement aims to limit global mean temperature rise this century to well below 2 °C above pre-industrial levels. This target has wide-ranging implications for Europe and its cities, which are the source of substantial greenhouse gas emissions. This paper reports the state of local planning for climate change by collecting and analysing information about local climate mitigation and adaptation plans across 885 urban areas of the EU-28. A typology and framework for analysis was developed that classifies local climate plans in terms of their alignment with spatial (local, national and international) and other climate related policies. Out of eight types of local climate plans identified in total we document three types of stand-alone local climate plans classified as type A1 (autonomously produced plans), A2 (plans produced to comply with national regulations) or A3 (plans developed for international climate networks). There is wide variation among countries in the prevalence of local climate plans, with generally more plans developed by central and northern European cities. Approximately 66% of EU cities have a type A1, A2, or A3 mitigation plan, 26% an adaptation plan, and 17% a joint adaptation and mitigation plan, while about 33% lack any form of stand-alone local climate plan (i.e. what we classify as A1, A2, A3 plans). Mitigation plans are more numerous than adaptation plans, but planning for mitigation does not always precede planning for adaptation. Our analysis reveals that city size, national legislation, and international networks can influence the development of local climate plans. We found that size does matter as about 80% of the cities with above 500,000 inhabitants have a comprehensive and stand-alone mitigation and/or an adaptation plan (A1). Cities in four countries with national climate legislation (A2), i.e. Denmark, France, Slovakia and the United Kingdom, are nearly twice as likely to produce local mitigation plans, and five times more likely to produce local adaptation plans, compared to cities in countries without such legislation. A1 and A2 mitigation plans are particularly numerous in Denmark, Poland, Germany, and Finland; while A1 and A2 adaptation plans are prevalent in Denmark, Finland, UK and France. The integration of adaptation and mitigation is country-specific and can mainly be observed in two countries where local climate plans are compulsory, i.e. France and the UK. Finally, local climate plans produced for international climate networks (A3) are mostly found in the many countries where autonomous (type A1) plans are less common. This is the most comprehensive analysis of local climate planning to date. The findings are of international importance as they will inform and support decision-making towards climate planning and policy development at national, EU and global level being based on the most comprehensive and up-to-date knowledge of local climate planning available to date.
Journal of Cleaner P... arrow_drop_down https://hdl.handle.net/1765/10...Article . 2018Data sources: DANS (Data Archiving and Networked Services)Université de Reims Champagne-Ardenne: Archives Ouvertes (HAL)Article . 2018License: CC BY NC NDFull-Text: https://hal.science/hal-01756463Data sources: Bielefeld Academic Search Engine (BASE)Journal of Cleaner ProductionArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTAQueen's University Belfast Research PortalArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Journal of Cleaner ProductionArticle . 2018 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2018.03.220&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 417 citations 417 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Journal of Cleaner P... arrow_drop_down https://hdl.handle.net/1765/10...Article . 2018Data sources: DANS (Data Archiving and Networked Services)Université de Reims Champagne-Ardenne: Archives Ouvertes (HAL)Article . 2018License: CC BY NC NDFull-Text: https://hal.science/hal-01756463Data sources: Bielefeld Academic Search Engine (BASE)Journal of Cleaner ProductionArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTAQueen's University Belfast Research PortalArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Journal of Cleaner ProductionArticle . 2018 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2018.03.220&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu