- home
- Advanced Search
- Energy Research
- 2021-2025
- EU
- UA
- Aurora Universities Network
- Energy Research
- 2021-2025
- EU
- UA
- Aurora Universities Network
description Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:American Association for the Advancement of Science (AAAS) Authors:Madalina Vlasceanu;
Madalina Vlasceanu
Madalina Vlasceanu in OpenAIREKimberly C. Doell;
Kimberly C. Doell
Kimberly C. Doell in OpenAIREJoseph B. Bak-Coleman;
Joseph B. Bak-Coleman
Joseph B. Bak-Coleman in OpenAIREBoryana Todorova;
+196 AuthorsBoryana Todorova
Boryana Todorova in OpenAIREMadalina Vlasceanu;
Madalina Vlasceanu
Madalina Vlasceanu in OpenAIREKimberly C. Doell;
Kimberly C. Doell
Kimberly C. Doell in OpenAIREJoseph B. Bak-Coleman;
Joseph B. Bak-Coleman
Joseph B. Bak-Coleman in OpenAIREBoryana Todorova;
Michael M. Berkebile-Weinberg;Boryana Todorova
Boryana Todorova in OpenAIRESamantha J. Grayson;
Samantha J. Grayson
Samantha J. Grayson in OpenAIREYash Patel;
Yash Patel
Yash Patel in OpenAIREDanielle Goldwert;
Yifei Pei; Alek Chakroff;Danielle Goldwert
Danielle Goldwert in OpenAIREEkaterina Pronizius;
Karlijn L. van den Broek;Ekaterina Pronizius
Ekaterina Pronizius in OpenAIREDenisa Vlasceanu;
Denisa Vlasceanu
Denisa Vlasceanu in OpenAIRESara Constantino;
Sara Constantino
Sara Constantino in OpenAIREMichael J. Morais;
Michael J. Morais
Michael J. Morais in OpenAIREPhilipp Schumann;
Steve Rathje;Philipp Schumann
Philipp Schumann in OpenAIREKe Fang;
Salvatore Maria Aglioti;
Salvatore Maria Aglioti
Salvatore Maria Aglioti in OpenAIREMark Alfano;
Mark Alfano
Mark Alfano in OpenAIREAndy J. Alvarado-Yepez;
Andy J. Alvarado-Yepez
Andy J. Alvarado-Yepez in OpenAIREAngélica Andersen;
Angélica Andersen
Angélica Andersen in OpenAIREFrederik Anseel;
Frederik Anseel
Frederik Anseel in OpenAIREMatthew A. J. Apps;
Matthew A. J. Apps
Matthew A. J. Apps in OpenAIREChillar Asadli;
Fonda Jane Awuor;Chillar Asadli
Chillar Asadli in OpenAIREFlavio Azevedo;
Piero Basaglia;Flavio Azevedo
Flavio Azevedo in OpenAIREJocelyn J. Bélanger;
Jocelyn J. Bélanger
Jocelyn J. Bélanger in OpenAIRESebastian Berger;
Sebastian Berger
Sebastian Berger in OpenAIREPaul Bertin;
Paul Bertin
Paul Bertin in OpenAIREMichał Białek;
Michał Białek
Michał Białek in OpenAIREOlga Bialobrzeska;
Olga Bialobrzeska
Olga Bialobrzeska in OpenAIREMichelle Blaya-Burgo;
Michelle Blaya-Burgo
Michelle Blaya-Burgo in OpenAIREDaniëlle N. M. Bleize;
Daniëlle N. M. Bleize
Daniëlle N. M. Bleize in OpenAIRESimen Bø;
Simen Bø
Simen Bø in OpenAIRELea Boecker;
Lea Boecker
Lea Boecker in OpenAIREPaulo S. Boggio;
Paulo S. Boggio
Paulo S. Boggio in OpenAIRESylvie Borau;
Sylvie Borau
Sylvie Borau in OpenAIREBjörn Bos;
Björn Bos
Björn Bos in OpenAIREAyoub Bouguettaya;
Ayoub Bouguettaya
Ayoub Bouguettaya in OpenAIREMarkus Brauer;
Markus Brauer
Markus Brauer in OpenAIRECameron Brick;
Cameron Brick
Cameron Brick in OpenAIRETymofii Brik;
Tymofii Brik
Tymofii Brik in OpenAIRERoman Briker;
Roman Briker
Roman Briker in OpenAIRETobias Brosch;
Tobias Brosch
Tobias Brosch in OpenAIREOndrej Buchel;
Ondrej Buchel
Ondrej Buchel in OpenAIREDaniel Buonauro;
Daniel Buonauro
Daniel Buonauro in OpenAIRERadhika Butalia;
Radhika Butalia
Radhika Butalia in OpenAIREHéctor Carvacho;
Héctor Carvacho
Héctor Carvacho in OpenAIRESarah A. E. Chamberlain;
Sarah A. E. Chamberlain
Sarah A. E. Chamberlain in OpenAIREHang-Yee Chan;
Hang-Yee Chan
Hang-Yee Chan in OpenAIREDawn Chow;
Dawn Chow
Dawn Chow in OpenAIREDongil Chung;
Dongil Chung
Dongil Chung in OpenAIRELuca Cian;
Luca Cian
Luca Cian in OpenAIRENoa Cohen-Eick;
Noa Cohen-Eick
Noa Cohen-Eick in OpenAIRELuis Sebastian Contreras-Huerta;
Luis Sebastian Contreras-Huerta
Luis Sebastian Contreras-Huerta in OpenAIREDavide Contu;
Davide Contu
Davide Contu in OpenAIREVladimir Cristea;
Vladimir Cristea
Vladimir Cristea in OpenAIREJo Cutler;
Silvana D'Ottone;Jo Cutler
Jo Cutler in OpenAIREJonas De Keersmaecker;
Jonas De Keersmaecker
Jonas De Keersmaecker in OpenAIRESarah Delcourt;
Sarah Delcourt
Sarah Delcourt in OpenAIRESylvain Delouvée;
Sylvain Delouvée
Sylvain Delouvée in OpenAIREKathi Diel;
Benjamin D. Douglas;Kathi Diel
Kathi Diel in OpenAIREMoritz A. Drupp;
Moritz A. Drupp
Moritz A. Drupp in OpenAIREShreya Dubey;
Shreya Dubey
Shreya Dubey in OpenAIREJānis Ekmanis;
Jānis Ekmanis
Jānis Ekmanis in OpenAIREChristian T. Elbaek;
Christian T. Elbaek
Christian T. Elbaek in OpenAIREMahmoud Elsherif;
Iris M. Engelhard;Mahmoud Elsherif
Mahmoud Elsherif in OpenAIREYannik A. Escher;
Yannik A. Escher
Yannik A. Escher in OpenAIRETom W. Etienne;
Tom W. Etienne
Tom W. Etienne in OpenAIRELaura Farage;
Laura Farage
Laura Farage in OpenAIREAna Rita Farias;
Ana Rita Farias
Ana Rita Farias in OpenAIREStefan Feuerriegel;
Stefan Feuerriegel
Stefan Feuerriegel in OpenAIREAndrej Findor;
Andrej Findor
Andrej Findor in OpenAIRELucia Freira;
Lucia Freira
Lucia Freira in OpenAIREMalte Friese;
Malte Friese
Malte Friese in OpenAIRENeil Philip Gains;
Neil Philip Gains
Neil Philip Gains in OpenAIREAlbina Gallyamova;
Albina Gallyamova
Albina Gallyamova in OpenAIRESandra J. Geiger;
Sandra J. Geiger
Sandra J. Geiger in OpenAIREOliver Genschow;
Oliver Genschow
Oliver Genschow in OpenAIREBiljana Gjoneska;
Theofilos Gkinopoulos;Biljana Gjoneska
Biljana Gjoneska in OpenAIREBeth Goldberg;
Beth Goldberg
Beth Goldberg in OpenAIREAmit Goldenberg;
Amit Goldenberg
Amit Goldenberg in OpenAIRESarah Gradidge;
Sarah Gradidge
Sarah Gradidge in OpenAIRESimone Grassini;
Kurt Gray; Sonja Grelle;Simone Grassini
Simone Grassini in OpenAIRESiobhán M. Griffin;
Siobhán M. Griffin
Siobhán M. Griffin in OpenAIRELusine Grigoryan;
Lusine Grigoryan
Lusine Grigoryan in OpenAIREAni Grigoryan;
Ani Grigoryan
Ani Grigoryan in OpenAIREDmitry Grigoryev;
Dmitry Grigoryev
Dmitry Grigoryev in OpenAIREJune Gruber;
June Gruber
June Gruber in OpenAIREJohnrev Guilaran;
Johnrev Guilaran
Johnrev Guilaran in OpenAIREBritt Hadar;
Britt Hadar
Britt Hadar in OpenAIREUlf J.J. Hahnel;
Ulf J.J. Hahnel
Ulf J.J. Hahnel in OpenAIREEran Halperin;
Eran Halperin
Eran Halperin in OpenAIREAnnelie J. Harvey;
Annelie J. Harvey
Annelie J. Harvey in OpenAIREChristian A. P. Haugestad;
Christian A. P. Haugestad
Christian A. P. Haugestad in OpenAIREAleksandra M. Herman;
Aleksandra M. Herman
Aleksandra M. Herman in OpenAIREHal E. Hershfield;
Hal E. Hershfield
Hal E. Hershfield in OpenAIREToshiyuki Himichi;
Toshiyuki Himichi
Toshiyuki Himichi in OpenAIREDonald W. Hine;
Wilhelm Hofmann;Donald W. Hine
Donald W. Hine in OpenAIRELauren Howe;
Lauren Howe
Lauren Howe in OpenAIREEnma T. Huaman-Chulluncuy;
Enma T. Huaman-Chulluncuy
Enma T. Huaman-Chulluncuy in OpenAIREGuanxiong Huang;
Guanxiong Huang
Guanxiong Huang in OpenAIRETatsunori Ishii;
Tatsunori Ishii
Tatsunori Ishii in OpenAIREAyahito Ito;
Ayahito Ito
Ayahito Ito in OpenAIREFanli Jia;
Fanli Jia
Fanli Jia in OpenAIREJohn T. Jost;
John T. Jost
John T. Jost in OpenAIREVeljko Jovanović;
Veljko Jovanović
Veljko Jovanović in OpenAIREDominika Jurgiel;
Ondřej Kácha;Dominika Jurgiel
Dominika Jurgiel in OpenAIREReeta Kankaanpää;
Reeta Kankaanpää
Reeta Kankaanpää in OpenAIREJaroslaw Kantorowicz;
Jaroslaw Kantorowicz
Jaroslaw Kantorowicz in OpenAIREElena Kantorowicz-Reznichenko;
Keren Kaplan Mintz;Elena Kantorowicz-Reznichenko
Elena Kantorowicz-Reznichenko in OpenAIREIlker Kaya;
Ilker Kaya
Ilker Kaya in OpenAIREOzgur Kaya;
Ozgur Kaya
Ozgur Kaya in OpenAIRENarine Khachatryan;
Narine Khachatryan
Narine Khachatryan in OpenAIREAnna Klas;
Anna Klas
Anna Klas in OpenAIREColin Klein;
Colin Klein
Colin Klein in OpenAIREChristian A. Klöckner;
Lina Koppel;Christian A. Klöckner
Christian A. Klöckner in OpenAIREAlexandra I. Kosachenko;
Alexandra I. Kosachenko
Alexandra I. Kosachenko in OpenAIREEmily J. Kothe;
Ruth Krebs;Emily J. Kothe
Emily J. Kothe in OpenAIREAmy R. Krosch;
Amy R. Krosch
Amy R. Krosch in OpenAIREAndre P.M. Krouwel;
Andre P.M. Krouwel
Andre P.M. Krouwel in OpenAIREYara Kyrychenko;
Yara Kyrychenko
Yara Kyrychenko in OpenAIREMaria Lagomarsino;
Maria Lagomarsino
Maria Lagomarsino in OpenAIREClaus Lamm;
Claus Lamm
Claus Lamm in OpenAIREFlorian Lange;
Florian Lange
Florian Lange in OpenAIREJulia Lee Cunningham;
Julia Lee Cunningham
Julia Lee Cunningham in OpenAIREJeffrey Lees;
Jeffrey Lees
Jeffrey Lees in OpenAIRETak Yan Leung;
Tak Yan Leung
Tak Yan Leung in OpenAIRENeil Levy;
Neil Levy
Neil Levy in OpenAIREPatricia L. Lockwood;
Patricia L. Lockwood
Patricia L. Lockwood in OpenAIREChiara Longoni;
Chiara Longoni
Chiara Longoni in OpenAIREAlberto López Ortega;
Alberto López Ortega
Alberto López Ortega in OpenAIREDavid D. Loschelder;
David D. Loschelder
David D. Loschelder in OpenAIREJackson G. Lu;
Jackson G. Lu
Jackson G. Lu in OpenAIREYu Luo;
Joseph Luomba;Annika E. Lutz;
Annika E. Lutz
Annika E. Lutz in OpenAIREJohann M. Majer;
Johann M. Majer
Johann M. Majer in OpenAIREEzra Markowitz;
Ezra Markowitz
Ezra Markowitz in OpenAIREAbigail A. Marsh;
Abigail A. Marsh
Abigail A. Marsh in OpenAIREKaren Louise Mascarenhas;
Karen Louise Mascarenhas
Karen Louise Mascarenhas in OpenAIREBwambale Mbilingi;
Bwambale Mbilingi
Bwambale Mbilingi in OpenAIREWinfred Mbungu;
Winfred Mbungu
Winfred Mbungu in OpenAIRECillian McHugh;
Cillian McHugh
Cillian McHugh in OpenAIREMarijn H.C. Meijers;
Marijn H.C. Meijers
Marijn H.C. Meijers in OpenAIREHugo Mercier;
Hugo Mercier
Hugo Mercier in OpenAIREFenant Laurent Mhagama;
Fenant Laurent Mhagama
Fenant Laurent Mhagama in OpenAIREKaterina Michalakis;
Katerina Michalakis
Katerina Michalakis in OpenAIRENace Mikus;
Nace Mikus
Nace Mikus in OpenAIRESarah Milliron;
Sarah Milliron
Sarah Milliron in OpenAIREPanagiotis Mitkidis;
Panagiotis Mitkidis
Panagiotis Mitkidis in OpenAIREFredy S. Monge-Rodríguez;
Fredy S. Monge-Rodríguez
Fredy S. Monge-Rodríguez in OpenAIREYouri L. Mora;
Youri L. Mora
Youri L. Mora in OpenAIREDavid Moreau;
David Moreau
David Moreau in OpenAIREKosuke Motoki;
Kosuke Motoki
Kosuke Motoki in OpenAIREManuel Moyano;
Mathilde Mus;Manuel Moyano
Manuel Moyano in OpenAIREJoaquin Navajas;
Joaquin Navajas
Joaquin Navajas in OpenAIRETam Luong Nguyen;
Tam Luong Nguyen
Tam Luong Nguyen in OpenAIREDung Minh Nguyen;
Dung Minh Nguyen
Dung Minh Nguyen in OpenAIRETrieu Nguyen;
Laura Niemi;Trieu Nguyen
Trieu Nguyen in OpenAIRESari R. R. Nijssen;
Sari R. R. Nijssen
Sari R. R. Nijssen in OpenAIREGustav Nilsonne;
Gustav Nilsonne
Gustav Nilsonne in OpenAIREJonas P. Nitschke;
Jonas P. Nitschke
Jonas P. Nitschke in OpenAIRELaila Nockur;
Ritah Okura;Laila Nockur
Laila Nockur in OpenAIRESezin Öner;
Sezin Öner
Sezin Öner in OpenAIREAsil Ali Özdoğru;
Asil Ali Özdoğru
Asil Ali Özdoğru in OpenAIREHelena Palumbo;
Helena Palumbo
Helena Palumbo in OpenAIRECostas Panagopoulos;
Costas Panagopoulos
Costas Panagopoulos in OpenAIREMaria Serena Panasiti;
Maria Serena Panasiti
Maria Serena Panasiti in OpenAIREPhilip Pärnamets;
Philip Pärnamets
Philip Pärnamets in OpenAIREMariola Paruzel-Czachura;
Mariola Paruzel-Czachura
Mariola Paruzel-Czachura in OpenAIREYuri G. Pavlov;
Yuri G. Pavlov
Yuri G. Pavlov in OpenAIRECésar Payán-Gómez;
César Payán-Gómez
César Payán-Gómez in OpenAIREAdam R. Pearson;
Adam R. Pearson
Adam R. Pearson in OpenAIRELeonor Pereira da Costa;
Leonor Pereira da Costa
Leonor Pereira da Costa in OpenAIREHannes M. Petrowsky;
Hannes M. Petrowsky
Hannes M. Petrowsky in OpenAIREStefan Pfattheicher;
Stefan Pfattheicher
Stefan Pfattheicher in OpenAIRENhat Tan Pham;
Nhat Tan Pham
Nhat Tan Pham in OpenAIREVladimir Ponizovskiy;
Clara Pretus;Vladimir Ponizovskiy
Vladimir Ponizovskiy in OpenAIREGabriel G. Rêgo;
Gabriel G. Rêgo
Gabriel G. Rêgo in OpenAIRERitsaart Reimann;
Ritsaart Reimann
Ritsaart Reimann in OpenAIREShawn A. Rhoads;
Shawn A. Rhoads
Shawn A. Rhoads in OpenAIREJulian Riano-Moreno;
Julian Riano-Moreno
Julian Riano-Moreno in OpenAIREdoi: 10.1126/sciadv.adj5778 , 10.17615/j71a-aj22 , 10.48350/192662 , 10.26181/27048496.v1 , 10.26181/27048496
pmid: 38324680
pmc: PMC10849597
doi: 10.1126/sciadv.adj5778 , 10.17615/j71a-aj22 , 10.48350/192662 , 10.26181/27048496.v1 , 10.26181/27048496
pmid: 38324680
pmc: PMC10849597
Effectively reducing climate change requires marked, global behavior change. However, it is unclear which strategies are most likely to motivate people to change their climate beliefs and behaviors. Here, we tested 11 expert-crowdsourced interventions on four climate mitigation outcomes: beliefs, policy support, information sharing intention, and an effortful tree-planting behavioral task. Across 59,440 participants from 63 countries, the interventions’ effectiveness was small, largely limited to nonclimate skeptics, and differed across outcomes: Beliefs were strengthened mostly by decreasing psychological distance (by 2.3%), policy support by writing a letter to a future-generation member (2.6%), information sharing by negative emotion induction (12.1%), and no intervention increased the more effortful behavior—several interventions even reduced tree planting. Last, the effects of each intervention differed depending on people’s initial climate beliefs. These findings suggest that the impact of behavioral climate interventions varies across audiences and target behaviors.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.adj5778&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu36 citations 36 popularity Average influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.adj5778&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Proceedings of the National Academy of Sciences Funded by:UKRI | Elucidating the transient..., UKRI | Engineering new capacitie..., EC | PhotoRedesignUKRI| Elucidating the transient nature of electron transfer complexes at the single-molecule level ,UKRI| Engineering new capacities for solar energy utilisation in bacteria ,EC| PhotoRedesignAuthors:David J. K. Swainsbury;
Frederick R. Hawkings; Elizabeth C. Martin;David J. K. Swainsbury
David J. K. Swainsbury in OpenAIRESabina Musiał;
+7 AuthorsSabina Musiał
Sabina Musiał in OpenAIREDavid J. K. Swainsbury;
Frederick R. Hawkings; Elizabeth C. Martin;David J. K. Swainsbury
David J. K. Swainsbury in OpenAIRESabina Musiał;
Jack H. Salisbury;Sabina Musiał
Sabina Musiał in OpenAIREPhilip J. Jackson;
Philip J. Jackson
Philip J. Jackson in OpenAIREDavid A. Farmer;
David A. Farmer
David A. Farmer in OpenAIREMatthew P. Johnson;
Matthew P. Johnson
Matthew P. Johnson in OpenAIREC. Alistair Siebert;
C. Alistair Siebert
C. Alistair Siebert in OpenAIREAndrew Hitchcock;
Andrew Hitchcock
Andrew Hitchcock in OpenAIREC. Neil Hunter;
C. Neil Hunter
C. Neil Hunter in OpenAIRECytochrome bc 1 complexes are ubiquinol:cytochrome c oxidoreductases, and as such, they are centrally important components of respiratory and photosynthetic electron transfer chains in many species of bacteria and in mitochondria. The minimal complex has three catalytic components, which are cytochrome b , cytochrome c 1 , and the Rieske iron–sulfur subunit, but the function of mitochondrial cytochrome bc 1 complexes is modified by up to eight supernumerary subunits. The cytochrome bc 1 complex from the purple phototrophic bacterium Rhodobacter sphaeroides has a single supernumerary subunit called subunit IV, which is absent from current structures of the complex. In this work we use the styrene–maleic acid copolymer to purify the R. sphaeroides cytochrome bc 1 complex in native lipid nanodiscs, which retains the labile subunit IV, annular lipids, and natively bound quinones. The catalytic activity of the four-subunit cytochrome bc 1 complex is threefold higher than that of the complex lacking subunit IV. To understand the role of subunit IV, we determined the structure of the four-subunit complex at 2.9 Å using single particle cryogenic electron microscopy. The structure shows the position of the transmembrane domain of subunit IV, which lies across the transmembrane helices of the Rieske and cytochrome c 1 subunits. We observe a quinone at the Q o quinone-binding site and show that occupancy of this site is linked to conformational changes in the Rieske head domain during catalysis. Twelve lipids were structurally resolved, making contacts with the Rieske and cytochrome b subunits, with some spanning both of the two monomers that make up the dimeric complex.
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2217922120&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2217922120&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Czech Republic, Czech Republic, United KingdomPublisher:Wiley Funded by:SNSF | How does forest microclim..., EC | FORMICA, SNSF | Climate change impacts on... +1 projectsSNSF| How does forest microclimate affect biodiversity dynamics? ,EC| FORMICA ,SNSF| Climate change impacts on biodiversity: From macro- to microclimate ,EC| UnderSCOREAuthors:Kamila Reczyńska;
Kamila Reczyńska
Kamila Reczyńska in OpenAIREMartin Macek;
Martin Macek
Martin Macek in OpenAIREFlorian Zellweger;
Florian Zellweger
Florian Zellweger in OpenAIREJonathan Lenoir;
+29 AuthorsJonathan Lenoir
Jonathan Lenoir in OpenAIREKamila Reczyńska;
Kamila Reczyńska
Kamila Reczyńska in OpenAIREMartin Macek;
Martin Macek
Martin Macek in OpenAIREFlorian Zellweger;
Florian Zellweger
Florian Zellweger in OpenAIREJonathan Lenoir;
Jonathan Lenoir
Jonathan Lenoir in OpenAIREWolfgang Schmidt;
Wolfgang Schmidt
Wolfgang Schmidt in OpenAIREImre Berki;
Imre Berki
Imre Berki in OpenAIREThomas Dirnböck;
Thomas Dirnböck
Thomas Dirnböck in OpenAIRELander Baeten;
Lander Baeten
Lander Baeten in OpenAIREMarkus Bernhardt-Römermann;
Markus Bernhardt-Römermann
Markus Bernhardt-Römermann in OpenAIREKrzysztof Świerkosz;
Krzysztof Świerkosz
Krzysztof Świerkosz in OpenAIREPieter De Frenne;
Pieter De Frenne
Pieter De Frenne in OpenAIRESandra Díaz;
Sandra Díaz;Sandra Díaz
Sandra Díaz in OpenAIRETomasz Durak;
Tomasz Durak
Tomasz Durak in OpenAIRERemigiusz Pielech;
Remigiusz Pielech
Remigiusz Pielech in OpenAIREKris Verheyen;
Kris Verheyen
Kris Verheyen in OpenAIREJörg Brunet;
Jörg Brunet
Jörg Brunet in OpenAIREBogdan Jaroszewicz;
Bogdan Jaroszewicz
Bogdan Jaroszewicz in OpenAIRERadim Hédl;
Radim Hédl
Radim Hédl in OpenAIREMonika Wulf;
Monika Wulf
Monika Wulf in OpenAIREGuillaume Decocq;
Thilo Heinken;Guillaume Decocq
Guillaume Decocq in OpenAIREPetr Petřík;
Petr Petřík
Petr Petřík in OpenAIREMartin Kopecký;
Martin Kopecký; María Mercedes Carón;Martin Kopecký
Martin Kopecký in OpenAIREMarek Malicki;
Marek Malicki;Marek Malicki
Marek Malicki in OpenAIREBalázs Teleki;
Balázs Teleki
Balázs Teleki in OpenAIREThomas A. Nagel;
Thomas A. Nagel
Thomas A. Nagel in OpenAIREFrantišek Máliš;
František Máliš
František Máliš in OpenAIREMichael P. Perring;
Michael P. Perring;Michael P. Perring
Michael P. Perring in OpenAIREAbstract Woody species' requirements and environmental sensitivity change from seedlings to adults, a process referred to as ontogenetic shift. Such shifts can be increased by climate change. To assess the changes in the difference of temperature experienced by seedlings and adults in the context of climate change, it is essential to have reliable climatic data over long periods that capture the thermal conditions experienced by the individuals throughout their life cycle. Here we used a unique cross‐European database of 2,195 pairs of resurveyed forest plots with a mean intercensus time interval of 37 years. We inferred macroclimatic temperature (free‐air conditions above tree canopies—representative of the conditions experienced by adult trees) and microclimatic temperature (representative of the juvenile stage at the forest floor, inferred from the relationship between canopy cover, distance to the coast and below‐canopy temperature) at both surveys. We then address the long‐term, large‐scale and multitaxa dynamics of the difference between the temperatures experienced by adults and juveniles of 25 temperate tree species. We found significant, but species‐specific, variations in the perceived temperature (calculated from presence/absence data) between life stages during both surveys. Additionally, the difference of the temperature experienced by the adult versus juveniles significantly increased between surveys for 8 of 25 species. We found evidence of a relationship between the difference of temperature experienced by juveniles and adults over time and one key functional trait (i.e. leaf area). Together, these results suggest that the temperatures experienced by adults versus juveniles became more decoupled over time for a subset of species, probably due to the combination of climate change and a recorded increase of canopy cover between the surveys resulting in higher rates of macroclimate than microclimate warming. Synthesis. We document warming and canopy‐cover induced changes in the difference of the temperature experienced by juveniles and adults. These findings have implications for forest management adaptation to climate change such as the promotion of tree regeneration by creating suitable species‐specific microclimatic conditions. Such adaptive management will help to mitigate the macroclimate change in the understorey layer.
Journal of Ecology arrow_drop_down Repository of the Czech Academy of SciencesArticle . 2021Data sources: Repository of the Czech Academy of SciencesJournal of EcologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2745.13773&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 5visibility views 5 download downloads 4 Powered bymore_vert Journal of Ecology arrow_drop_down Repository of the Czech Academy of SciencesArticle . 2021Data sources: Repository of the Czech Academy of SciencesJournal of EcologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2745.13773&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Netherlands, NorwayPublisher:IOP Publishing Funded by:EC | SIZEEC| SIZEAuthors:Arnald Puy;
Bruce Lankford;Arnald Puy
Arnald Puy in OpenAIREJonas Meier;
Saskia van der Kooij; +1 AuthorsJonas Meier
Jonas Meier in OpenAIREArnald Puy;
Bruce Lankford;Arnald Puy
Arnald Puy in OpenAIREJonas Meier;
Saskia van der Kooij;Jonas Meier
Jonas Meier in OpenAIREAndrea Saltelli;
Andrea Saltelli
Andrea Saltelli in OpenAIREhandle: 11250/3039998
Abstract An assessment of the human impact on the global water cycle requires estimating the volume of water withdrawn for irrigated agriculture. A key parameter in this calculation is the irrigation efficiency, which corrects for the fraction of water lost between irrigation withdrawals and the crop due to management, distribution or conveyance losses. Here we show that the irrigation efficiency used in global irrigation models is flawed for it overlooks key ambiguities in partial efficiencies, irrigation technologies, the definition of ‘large-scale’ irrigated areas or managerial factors. Once accounted for, these uncertainties can make irrigation withdrawal estimates fluctuate by more than one order of magnitude at the country level. Such variability is larger and leads to more extreme values than that caused by the uncertainties related with climate change. Our results highlight the need to embrace deep uncertainties in irrigation efficiency to prevent the design of shortsighted policies at the river basin-water-agricultural interface.
University of Bergen... arrow_drop_down University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/11250/3039998Data sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ac5768&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 18visibility views 18 download downloads 30 Powered bymore_vert University of Bergen... arrow_drop_down University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/11250/3039998Data sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ac5768&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book 2024Publisher:Springer International Publishing Funded by:EC | TIPPING.plusEC| TIPPING.plusJ. David Tàbara; Diana Mangalagiu; Bohumil Frantal; Franziska Mey; Raphaela Maier; Johan Lilliestam; Mauro Sarrica; Antoine Mandel;Jenny Lieu;
Jenny Lieu
Jenny Lieu in OpenAIREPaolo Cottone;
Siri Veland; Amanda Martínez-Reyes;Paolo Cottone
Paolo Cottone in OpenAIREAbstractA crucial task to accelerate global decarbonisation is to understand how to enable fast, equitable, low-carbon transformations in Coal and Carbon Intensive Regions (CCIRs). In this early literature review we underlined the relevance of the boundary concept of social-ecological tipping points (SETPs) and showed that the research and policy usage of SETPs applied to accelerate structural regional sustainability transformations faces three key challenges: (I) integrating theoretical and empirical contributions from diverse social and ecological sciences, together with complexity theory (II) designing open transdisciplinary assessment processes able to represent multiple qualities of systemic change and enable regionally situated transformative capacities, and (III) moving away from one-directional metaphors of social change, or static or homogeneous conceptions of individual agency and single equilibrium in energy transitions; and instead, focus on understanding the conditions and capacities for the emergence of systemic transformations and regenerative processes across multiple levels and forms of agency. We refer to these complex and place-situated processes as learning to enable regional transformative emergence.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-031-50762-5_16&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-031-50762-5_16&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Royal Society of Chemistry (RSC) Funded by:EC | FREENERGY, EC | PERSEPHONeEC| FREENERGY ,EC| PERSEPHONeAuthors:Diego Di Girolamo;
Diego Di Girolamo
Diego Di Girolamo in OpenAIREEce Aktas;
Ece Aktas
Ece Aktas in OpenAIRECorinna Ponti;
Corinna Ponti
Corinna Ponti in OpenAIREJorge Pascual;
+6 AuthorsJorge Pascual
Jorge Pascual in OpenAIREDiego Di Girolamo;
Diego Di Girolamo
Diego Di Girolamo in OpenAIREEce Aktas;
Ece Aktas
Ece Aktas in OpenAIRECorinna Ponti;
Corinna Ponti
Corinna Ponti in OpenAIREJorge Pascual;
Jorge Pascual
Jorge Pascual in OpenAIREGuixiang Li;
Meng Li; Giuseppe Nasti;Guixiang Li
Guixiang Li in OpenAIREFahad Alharthi;
Francesco Mura; Antonio Abate;Fahad Alharthi
Fahad Alharthi in OpenAIREA thin layer of Al2O3nanoparticles has been deposited on top of a water-free PEDOT layer to modify wettability for obtaining pinhole-free homogenous tin-based perovskite films, resulting in better device performance.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d2ma00834c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d2ma00834c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 United KingdomPublisher:Wiley Funded by:UKRI | ADVENT (ADdressing Valuat..., UKRI | Feasibility of Afforestat..., EC | ESM2025UKRI| ADVENT (ADdressing Valuation of Energy and Nature Together) ,UKRI| Feasibility of Afforestation and Biomass energy with carbon capture storage for Greenhouse Gas Removal (FAB GGR) ,EC| ESM2025Authors:Emma W. Littleton;
Emma W. Littleton
Emma W. Littleton in OpenAIREAnita Shepherd;
Anita Shepherd
Anita Shepherd in OpenAIREAnna B. Harper;
Anna B. Harper
Anna B. Harper in OpenAIREAstley F. S. Hastings;
+4 AuthorsAstley F. S. Hastings
Astley F. S. Hastings in OpenAIREEmma W. Littleton;
Emma W. Littleton
Emma W. Littleton in OpenAIREAnita Shepherd;
Anita Shepherd
Anita Shepherd in OpenAIREAnna B. Harper;
Anna B. Harper
Anna B. Harper in OpenAIREAstley F. S. Hastings;
Astley F. S. Hastings
Astley F. S. Hastings in OpenAIRENaomi E. Vaughan;
Naomi E. Vaughan
Naomi E. Vaughan in OpenAIREJonathan Doelman;
Jonathan Doelman
Jonathan Doelman in OpenAIREDetlef P. van Vuuren;
Detlef P. van Vuuren
Detlef P. van Vuuren in OpenAIRETimothy M. Lenton;
Timothy M. Lenton
Timothy M. Lenton in OpenAIREdoi: 10.1111/gcbb.12982
handle: 2164/19964
AbstractLarge‐scale bioenergy plays a key role in climate change mitigation scenarios, but its efficacy is uncertain. This study aims to quantify that uncertainty by contrasting the results of three different types of models under the same mitigation scenario (RCP2.6‐SSP2), consistent with a 2°C temperature target. This analysis focuses on a single bioenergy feedstock, Miscanthus × giganteus, and contrasts projections for its yields and environmental effects from an integrated assessment model (IMAGE), a land surface and dynamic global vegetation model tailored to Miscanthus bioenergy (JULES) and a bioenergy crop model (MiscanFor). Under the present climate, JULES, IMAGE and MiscanFor capture the observed magnitude and variability in Miscanthus yields across Europe; yet in the tropics JULES and IMAGE predict high yields, whereas MiscanFor predicts widespread drought‐related diebacks. 2040–2049 projections show there is a rapid scale up of over 200 Mha bioenergy cropping area in the tropics. Resulting biomass yield ranges from 12 (MiscanFor) to 39 (JULES) Gt dry matter over that decade. Change in soil carbon ranges from +0.7 Pg C (MiscanFor) to −2.8 Pg C (JULES), depending on preceding land cover and soil carbon.2090–99 projections show large‐scale biomass energy with carbon capture and storage (BECCS) is projected in Europe. The models agree that <2°C global warming will increase yields in the higher latitudes, but drought stress in the Mediterranean region could produce low yields (MiscanFor), and significant losses of soil carbon (JULES and IMAGE). These results highlight the uncertainty in rapidly scaling‐up biomass energy supply, especially in dry tropical climates and in regions where future climate change could result in drier conditions. This has important policy implications—because prominently used scenarios to limit warming to ‘well below 2°C’ (including the one explored here) depend upon its effectiveness.
Aberdeen University ... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/2164/19964Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12982&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 9visibility views 9 download downloads 11 Powered bymore_vert Aberdeen University ... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/2164/19964Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12982&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Funded by:EC | SAFERUPEC| SAFERUPAuthors:Siverio Lima, Mayara Sarisariyama;
Siverio Lima, Mayara Sarisariyama
Siverio Lima, Mayara Sarisariyama in OpenAIREHajibabaei, Mohsen;
Hajibabaei, Mohsen
Hajibabaei, Mohsen in OpenAIREHesarkazzazi, Sina;
Hesarkazzazi, Sina
Hesarkazzazi, Sina in OpenAIRESitzenfrei, Robert;
+4 AuthorsSitzenfrei, Robert
Sitzenfrei, Robert in OpenAIRESiverio Lima, Mayara Sarisariyama;
Siverio Lima, Mayara Sarisariyama
Siverio Lima, Mayara Sarisariyama in OpenAIREHajibabaei, Mohsen;
Hajibabaei, Mohsen
Hajibabaei, Mohsen in OpenAIREHesarkazzazi, Sina;
Hesarkazzazi, Sina
Hesarkazzazi, Sina in OpenAIRESitzenfrei, Robert;
Buttgereit, Alexander;Sitzenfrei, Robert
Sitzenfrei, Robert in OpenAIREQueiroz, Cesar;
Queiroz, Cesar
Queiroz, Cesar in OpenAIREHaritonovs, Viktors;
Haritonovs, Viktors
Haritonovs, Viktors in OpenAIREGschösser, Florian;
Gschösser, Florian
Gschösser, Florian in OpenAIREdoi: 10.3390/su132212487
This study used a cradle-to-cradle Life Cycle Assessment (LCA) approach to evaluate the environmental potentials of urban pavements. For this purpose, the urban road network of the City of Münster (Germany) was selected as the case study, and comprehensive data for several phases were collected. The entire road network is composed of flexible pavements designed according to specific traffic loads and consists of main roads (MRs), main access roads (MARs), and residential roads (RSDTs). Asphalt materials, pavement structures, and maintenance strategies are predefined for each type of road and are referred to as “traditional” herein. Some pavement structures have two possible maintenance strategies, denoted by “A” and “B”, with distinguished periods of intervention. To evaluate the impact of using recycled materials, we considered alternative pavement structures composed of asphalt materials containing a greater amount of reclaimed asphalt pavement (RAP). The study was carried out considering analysis periods of 20, 50, 80, and 100 years and using two indicators: non-renewable cumulative energy demand (nr-CED) and global warming potential (GWP). The results show that the use of higher amounts of RAP can mitigate negative environmental impacts and that certain structures and maintenance strategies potentially enhance the environmental performance of road pavements. This article suggests initiatives that will facilitate the decision-making process of city administrators to achieve more sustainable road pavement constructions and provides an essential dataset inventory to support future environmental assessment studies, particularly for European cities.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132212487&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 9visibility views 9 download downloads 18 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132212487&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Funded by:EC | Phusicos, EC | OPERANDUM, EC | RECONECTEC| Phusicos ,EC| OPERANDUM ,EC| RECONECTJames M. Strout; Amy M. P. Oen; Bjørn G. Kalsnes; Anders Solheim; Gerd Lupp;Francesco Pugliese;
Séverine Bernardie;Francesco Pugliese
Francesco Pugliese in OpenAIREdoi: 10.3390/su13020986
Impacts in the form of innovation and commercialization are essential components of publicly funded research projects. PHUSICOS ("According to nature" in Greek), an EU Horizon 2020 program (H2020) Innovation Action project, aims to demonstrate the use of nature-based solutions (NBS) to mitigate hydrometeorological hazards in rural and mountainous areas. The work program is built around key innovation actions, and each Work Package (WP) leader is specifically responsible for nurturing innovation processes, maintaining market focus, and ensuring relevance for the intended recipients of the project results. Key success criteria for PHUSICOS include up-scaling and mainstream implementation of NBS to achieve broader market access. An innovation strategy and supporting tools for implementing this within PHUSICOS has been developed and key concepts forming the basis for this strategy are presented in this research note.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13020986&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13020986&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Embargo end date: 15 Feb 2022 South Africa, Spain, Switzerland, United States, DenmarkPublisher:Proceedings of the National Academy of Sciences Funded by:EC | MIDLAND, EC | COUPLED, EC | SystemShift +2 projectsEC| MIDLAND ,EC| COUPLED ,EC| SystemShift ,EC| MAT_STOCKS ,EC| HEFTAuthors:Meyfroidt, Patrick;
Meyfroidt, Patrick
Meyfroidt, Patrick in OpenAIREDe Bremond, Ariane;
De Bremond, Ariane
De Bremond, Ariane in OpenAIRERyan, Casey M.;
Ryan, Casey M.
Ryan, Casey M. in OpenAIREArcher, Emma;
+47 AuthorsArcher, Emma
Archer, Emma in OpenAIREMeyfroidt, Patrick;
Meyfroidt, Patrick
Meyfroidt, Patrick in OpenAIREDe Bremond, Ariane;
De Bremond, Ariane
De Bremond, Ariane in OpenAIRERyan, Casey M.;
Ryan, Casey M.
Ryan, Casey M. in OpenAIREArcher, Emma;
Aspinall, Richard;Archer, Emma
Archer, Emma in OpenAIREChhabra, Abha;
Camara, Gilberto;Chhabra, Abha
Chhabra, Abha in OpenAIRECorbera, Esteve;
Corbera, Esteve
Corbera, Esteve in OpenAIREDeFries, Ruth;
DeFries, Ruth
DeFries, Ruth in OpenAIREDíaz, Sandra;
Díaz, Sandra
Díaz, Sandra in OpenAIREDong, Jinwei;
Dong, Jinwei
Dong, Jinwei in OpenAIREEllis, Erle C.;
Ellis, Erle C.
Ellis, Erle C. in OpenAIREErb, Karl-Heinz;
Fisher, Janet A.;Erb, Karl-Heinz
Erb, Karl-Heinz in OpenAIREGarrett, Rachael D.;
Golubiewski, Nancy E.; Grau, H. Ricardo; Grove, J. Morgan;Garrett, Rachael D.
Garrett, Rachael D. in OpenAIREHaberl, Helmut;
Haberl, Helmut
Haberl, Helmut in OpenAIREHeinimann, Andreas;
Heinimann, Andreas
Heinimann, Andreas in OpenAIREHostert, Patrick;
Jobbágy, Esteban G.; Kerr, Suzi;Hostert, Patrick
Hostert, Patrick in OpenAIREKuemmerle, Tobias;
Kuemmerle, Tobias
Kuemmerle, Tobias in OpenAIRELambin, Eric F.;
Lavorel, Sandra;Lambin, Eric F.
Lambin, Eric F. in OpenAIRELele, Sharachandra;
Lele, Sharachandra
Lele, Sharachandra in OpenAIREMertz, Ole;
Mertz, Ole
Mertz, Ole in OpenAIREMesserli, Peter;
Messerli, Peter
Messerli, Peter in OpenAIREMetternicht, Graciela;
Metternicht, Graciela
Metternicht, Graciela in OpenAIREMunroe, Darla K.;
Munroe, Darla K.
Munroe, Darla K. in OpenAIRENagendra, Harini;
Nagendra, Harini
Nagendra, Harini in OpenAIRENielsen, Jonas Østergaard;
Ojima, Dennis S.;Nielsen, Jonas Østergaard
Nielsen, Jonas Østergaard in OpenAIREParker, Dawn Cassandra;
Parker, Dawn Cassandra
Parker, Dawn Cassandra in OpenAIREPascual, Unai;
Pascual, Unai
Pascual, Unai in OpenAIREPorter, John R.;
Ramankutty, Navin;Porter, John R.
Porter, John R. in OpenAIREReenberg, Anette;
Roy Chowdhury, Rinku;Reenberg, Anette
Reenberg, Anette in OpenAIRESeto, Karen C.;
Seto, Karen C.
Seto, Karen C. in OpenAIRESeufert, Verena;
Seufert, Verena
Seufert, Verena in OpenAIREShibata, Hideaki;
Shibata, Hideaki
Shibata, Hideaki in OpenAIREThomson, Allison;
Thomson, Allison
Thomson, Allison in OpenAIRETurner, Billie L.;
Turner, Billie L.
Turner, Billie L. in OpenAIREUrabe, Jotaro;
Urabe, Jotaro
Urabe, Jotaro in OpenAIREVeldkamp, Tom;
Veldkamp, Tom
Veldkamp, Tom in OpenAIREVerburg, Peter H.;
Verburg, Peter H.
Verburg, Peter H. in OpenAIREZeleke, Gete;
Zeleke, Gete
Zeleke, Gete in OpenAIREzu Ermgassen, Erasmus K. H. J.;
Universitat Autònoma de Barcelona. Departament de Geografia;zu Ermgassen, Erasmus K. H. J.
zu Ermgassen, Erasmus K. H. J. in OpenAIRELand use is central to addressing sustainability issues, including biodiversity conservation, climate change, food security, poverty alleviation, and sustainable energy. In this paper, we synthesize knowledge accumulated in land system science, the integrated study of terrestrial social-ecological systems, into 10 hard truths that have strong, general, empirical support. These facts help to explain the challenges of achieving sustainability in land use and thus also point toward solutions. The 10 facts are as follows: 1) Meanings and values of land are socially constructed and contested; 2) land systems exhibit complex behaviors with abrupt, hard-to-predict changes; 3) irreversible changes and path dependence are common features of land systems; 4) some land uses have a small footprint but very large impacts; 5) drivers and impacts of land-use change are globally interconnected and spill over to distant locations; 6) humanity lives on a used planet where all land provides benefits to societies; 7) land-use change usually entails trade-offs between different benefits—"win–wins" are thus rare; 8) land tenure and land-use claims are often unclear, overlapping, and contested; 9) the benefits and burdens from land are unequally distributed; and 10) land users have multiple, sometimes conflicting, ideas of what social and environmental justice entails. The facts have implications for governance, but do not provide fixed answers. Instead they constitute a set of core principles which can guide scientists, policy makers, and practitioners toward meeting sustainability challenges in land use.
Columbia University ... arrow_drop_down Columbia University Academic CommonsArticle . 2022Full-Text: https://doi.org/10.7916/gqbb-4y58Data sources: Bielefeld Academic Search Engine (BASE)UP Research Data RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2022License: CC BYData sources: Diposit Digital de Documents de la UABUniversity of Western Sydney (UWS): Research DirectArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2109217118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 215 citations 215 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Columbia University ... arrow_drop_down Columbia University Academic CommonsArticle . 2022Full-Text: https://doi.org/10.7916/gqbb-4y58Data sources: Bielefeld Academic Search Engine (BASE)UP Research Data RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2022License: CC BYData sources: Diposit Digital de Documents de la UABUniversity of Western Sydney (UWS): Research DirectArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2109217118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu