- home
- Advanced Search
- Energy Research
- Aurora Universities Network
- Energy Research
- Aurora Universities Network
description Publicationkeyboard_double_arrow_right Article , Journal 2021 Finland, Germany, Denmark, France, Sweden, China (People's Republic of), China (People's Republic of), China (People's Republic of), Germany, FinlandPublisher:Wiley Funded by:NSERC, AKA | When ancient meets modern..., NSF | Collaborative Research: U... +18 projectsNSERC ,AKA| When ancient meets modern effect of plant-derived carbon on anaerobic decomposition in arctic permafrost soils (PANDA) ,NSF| Collaborative Research: Using the ITEX-AON network to document and understand terrestrial ecosystem change in the Arctic ,RCN| Winter-proofing land surface models - quantifying the critical role of cold season processes in vegetation-permafrost feedbacks ,NSF| METHANE AT THE ZERO CURTAIN ,AKA| Geomorphic sensitivity of the Arctic region: geohazards and infrastructure (INFRAHAZARD) / Consortium: INFRAHAZARD ,EC| INTAROS ,NSF| IPY: Collaborative Research on Carbon, Water, and Energy Balance of the Arctic Landscape at Flagship Observatories and in a Pan-Arctic Network ,AKA| Methane uptake by permafrost-affected soils – an underestimated carbon sink in Arctic ecosystems? (MUFFIN) ,AKA| Biogeochemical and biophysical feedbacks from forest harvesting to climate change / Consortium: NNNN ,AKA| Novel soil management practices - key for sustainable bioeconomy and climate change mitigation -SOMPA / Consortium: SOMPA ,AKA| Towards constraining the circumarctic nitrous oxide budget (NOCA) ,NSF| Methane loss from Arctic: towards an annual budget of CH4 emissions from tundra ecosystems across a latitudinal gradient ,AKA| Atmosphere and Climate Competence Center (ACCC) ,NSF| Collaborative Research: Research, Synthesis, and Knowledge Transfer in a Changing Arctic: Science Support for the Study of Environmental Arctic Change (SEARCH) ,EC| PAGE21 ,NSF| Collaborative Research: Multi-Regional Scale Aircraft Observations of Methane and Carbon Dioxide Isotopic Fluxes in the Arctic ,NSF| Collaborative Research: Permafrost Carbon Network: Synthesizing flux observations for benchmarking model projections of permafrost carbon exchange ,NSF| Collaborative Research on Carbon, Water, and Energy Balance of the Arctic Landscape at Flagship Observatories in Alaska and Siberia ,NSF| AON: Development of Sustainable Observations of Thermal State of Permafrost in North America and Russia: The U.S. Contribution to the Global Terrestrial Network for Permafrost ,AKA| Atmosphere and Climate Competence Center (ACCC)Edward A. G. Schuur; Järvi Järveoja; S. Potter; Stef Bokhorst; Marguerite Mauritz; Mats Nilsson; Steven F. Oberbauer; Elyn Humphreys; M. Goeckede; Pertti J. Martikainen; John Kochendorfer; Jinshu Chi; Juha Aalto; Juha Aalto; Jennifer D. Watts; Torben R. Christensen; Matthias Peichl; Oliver Sonnentag; Vincent L. St. Louis; Craig A. Emmerton; Miska Luoto; David Holl; Eugénie S. Euskirchen; Torbern Tagesson; Torbern Tagesson; Sang Jong Park; Gerardo Celis; Margaret S. Torn; Frans-Jan W. Parmentier; Frans-Jan W. Parmentier; Maija E. Marushchak; Maija E. Marushchak; Namyi Chae; Walter C. Oechel; Walter C. Oechel; Masahito Ueyama; Peter M. Lafleur; Christina Biasi; Bo Elberling; Brendan M. Rogers; Han Dolman; Ivan Mammarella; Aleksi Lehtonen; Claire C. Treat; Min Jung Kwon; Carolina Voigt; Carolina Voigt; Hideki Kobayashi; Rafael Poyatos; Susan M. Natali; Hiroki Iwata; Donatella Zona; Donatella Zona; Anna-Maria Virkkala; Efrén López-Blanco; Torsten Sachs;doi: 10.1111/gcb.15659
pmid: 33913236
AbstractThe regional variability in tundra and boreal carbon dioxide (CO2) fluxes can be high, complicating efforts to quantify sink‐source patterns across the entire region. Statistical models are increasingly used to predict (i.e., upscale) CO2 fluxes across large spatial domains, but the reliability of different modeling techniques, each with different specifications and assumptions, has not been assessed in detail. Here, we compile eddy covariance and chamber measurements of annual and growing season CO2 fluxes of gross primary productivity (GPP), ecosystem respiration (ER), and net ecosystem exchange (NEE) during 1990–2015 from 148 terrestrial high‐latitude (i.e., tundra and boreal) sites to analyze the spatial patterns and drivers of CO2 fluxes and test the accuracy and uncertainty of different statistical models. CO2 fluxes were upscaled at relatively high spatial resolution (1 km2) across the high‐latitude region using five commonly used statistical models and their ensemble, that is, the median of all five models, using climatic, vegetation, and soil predictors. We found the performance of machine learning and ensemble predictions to outperform traditional regression methods. We also found the predictive performance of NEE‐focused models to be low, relative to models predicting GPP and ER. Our data compilation and ensemble predictions showed that CO2 sink strength was larger in the boreal biome (observed and predicted average annual NEE −46 and −29 g C m−2 yr−1, respectively) compared to tundra (average annual NEE +10 and −2 g C m−2 yr−1). This pattern was associated with large spatial variability, reflecting local heterogeneity in soil organic carbon stocks, climate, and vegetation productivity. The terrestrial ecosystem CO2 budget, estimated using the annual NEE ensemble prediction, suggests the high‐latitude region was on average an annual CO2 sink during 1990–2015, although uncertainty remains high.
Institut national de... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03260396Data sources: Bielefeld Academic Search Engine (BASE)GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03260396Data sources: Bielefeld Academic Search Engine (BASE)Electronic Publication Information CenterArticle . 2021Data sources: Electronic Publication Information CenterUniversity of Copenhagen: ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Natural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15659&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 105 citations 105 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Institut national de... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03260396Data sources: Bielefeld Academic Search Engine (BASE)GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03260396Data sources: Bielefeld Academic Search Engine (BASE)Electronic Publication Information CenterArticle . 2021Data sources: Electronic Publication Information CenterUniversity of Copenhagen: ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Natural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15659&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021 Finland, Germany, Denmark, France, Sweden, China (People's Republic of), China (People's Republic of), China (People's Republic of), Germany, FinlandPublisher:Wiley Funded by:NSERC, AKA | When ancient meets modern..., NSF | Collaborative Research: U... +18 projectsNSERC ,AKA| When ancient meets modern effect of plant-derived carbon on anaerobic decomposition in arctic permafrost soils (PANDA) ,NSF| Collaborative Research: Using the ITEX-AON network to document and understand terrestrial ecosystem change in the Arctic ,RCN| Winter-proofing land surface models - quantifying the critical role of cold season processes in vegetation-permafrost feedbacks ,NSF| METHANE AT THE ZERO CURTAIN ,AKA| Geomorphic sensitivity of the Arctic region: geohazards and infrastructure (INFRAHAZARD) / Consortium: INFRAHAZARD ,EC| INTAROS ,NSF| IPY: Collaborative Research on Carbon, Water, and Energy Balance of the Arctic Landscape at Flagship Observatories and in a Pan-Arctic Network ,AKA| Methane uptake by permafrost-affected soils – an underestimated carbon sink in Arctic ecosystems? (MUFFIN) ,AKA| Biogeochemical and biophysical feedbacks from forest harvesting to climate change / Consortium: NNNN ,AKA| Novel soil management practices - key for sustainable bioeconomy and climate change mitigation -SOMPA / Consortium: SOMPA ,AKA| Towards constraining the circumarctic nitrous oxide budget (NOCA) ,NSF| Methane loss from Arctic: towards an annual budget of CH4 emissions from tundra ecosystems across a latitudinal gradient ,AKA| Atmosphere and Climate Competence Center (ACCC) ,NSF| Collaborative Research: Research, Synthesis, and Knowledge Transfer in a Changing Arctic: Science Support for the Study of Environmental Arctic Change (SEARCH) ,EC| PAGE21 ,NSF| Collaborative Research: Multi-Regional Scale Aircraft Observations of Methane and Carbon Dioxide Isotopic Fluxes in the Arctic ,NSF| Collaborative Research: Permafrost Carbon Network: Synthesizing flux observations for benchmarking model projections of permafrost carbon exchange ,NSF| Collaborative Research on Carbon, Water, and Energy Balance of the Arctic Landscape at Flagship Observatories in Alaska and Siberia ,NSF| AON: Development of Sustainable Observations of Thermal State of Permafrost in North America and Russia: The U.S. Contribution to the Global Terrestrial Network for Permafrost ,AKA| Atmosphere and Climate Competence Center (ACCC)Edward A. G. Schuur; Järvi Järveoja; S. Potter; Stef Bokhorst; Marguerite Mauritz; Mats Nilsson; Steven F. Oberbauer; Elyn Humphreys; M. Goeckede; Pertti J. Martikainen; John Kochendorfer; Jinshu Chi; Juha Aalto; Juha Aalto; Jennifer D. Watts; Torben R. Christensen; Matthias Peichl; Oliver Sonnentag; Vincent L. St. Louis; Craig A. Emmerton; Miska Luoto; David Holl; Eugénie S. Euskirchen; Torbern Tagesson; Torbern Tagesson; Sang Jong Park; Gerardo Celis; Margaret S. Torn; Frans-Jan W. Parmentier; Frans-Jan W. Parmentier; Maija E. Marushchak; Maija E. Marushchak; Namyi Chae; Walter C. Oechel; Walter C. Oechel; Masahito Ueyama; Peter M. Lafleur; Christina Biasi; Bo Elberling; Brendan M. Rogers; Han Dolman; Ivan Mammarella; Aleksi Lehtonen; Claire C. Treat; Min Jung Kwon; Carolina Voigt; Carolina Voigt; Hideki Kobayashi; Rafael Poyatos; Susan M. Natali; Hiroki Iwata; Donatella Zona; Donatella Zona; Anna-Maria Virkkala; Efrén López-Blanco; Torsten Sachs;doi: 10.1111/gcb.15659
pmid: 33913236
AbstractThe regional variability in tundra and boreal carbon dioxide (CO2) fluxes can be high, complicating efforts to quantify sink‐source patterns across the entire region. Statistical models are increasingly used to predict (i.e., upscale) CO2 fluxes across large spatial domains, but the reliability of different modeling techniques, each with different specifications and assumptions, has not been assessed in detail. Here, we compile eddy covariance and chamber measurements of annual and growing season CO2 fluxes of gross primary productivity (GPP), ecosystem respiration (ER), and net ecosystem exchange (NEE) during 1990–2015 from 148 terrestrial high‐latitude (i.e., tundra and boreal) sites to analyze the spatial patterns and drivers of CO2 fluxes and test the accuracy and uncertainty of different statistical models. CO2 fluxes were upscaled at relatively high spatial resolution (1 km2) across the high‐latitude region using five commonly used statistical models and their ensemble, that is, the median of all five models, using climatic, vegetation, and soil predictors. We found the performance of machine learning and ensemble predictions to outperform traditional regression methods. We also found the predictive performance of NEE‐focused models to be low, relative to models predicting GPP and ER. Our data compilation and ensemble predictions showed that CO2 sink strength was larger in the boreal biome (observed and predicted average annual NEE −46 and −29 g C m−2 yr−1, respectively) compared to tundra (average annual NEE +10 and −2 g C m−2 yr−1). This pattern was associated with large spatial variability, reflecting local heterogeneity in soil organic carbon stocks, climate, and vegetation productivity. The terrestrial ecosystem CO2 budget, estimated using the annual NEE ensemble prediction, suggests the high‐latitude region was on average an annual CO2 sink during 1990–2015, although uncertainty remains high.
Institut national de... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03260396Data sources: Bielefeld Academic Search Engine (BASE)GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03260396Data sources: Bielefeld Academic Search Engine (BASE)Electronic Publication Information CenterArticle . 2021Data sources: Electronic Publication Information CenterUniversity of Copenhagen: ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Natural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15659&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 105 citations 105 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Institut national de... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03260396Data sources: Bielefeld Academic Search Engine (BASE)GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03260396Data sources: Bielefeld Academic Search Engine (BASE)Electronic Publication Information CenterArticle . 2021Data sources: Electronic Publication Information CenterUniversity of Copenhagen: ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Natural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15659&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu