- home
- Advanced Search
- Energy Research
- Bioresource Technology
- Aurora Universities Network
- Energy Research
- Bioresource Technology
- Aurora Universities Network
description Publicationkeyboard_double_arrow_right Article 2025 ItalyPublisher:Elsevier BV Authors: Van Peteghem, L.; Matassa, S.; Sakarika, M.;Meeting the protein needs of a growing population will require significant resources. In this context, microbial protein (MP) offers a nutritious and versatile protein source from recovered resources. This meta-analysis of over 100 studies examines the efficiency and nutritional quality of MP production using ethanol. Ethanol, a feedstock derived from CO2 and biological waste, is used by various microorganisms, and has an established role in the food sector. Results show that ethanol-based MP production is technically feasible for food applications, reaching biomass concentrations of 14-230 g/L and productivities of 11-13 g/L/h. The protein content of MP correlates with productivity, and the nutritional quality of ethanol-grown MP matches common sources like pork and tofu. Lastly, operational choices affect the techno-economic feasibility of using waste-derived ethanol and other recovered resources. This meta-analysis highlights the potential of ethanol-grown MP, though further research is needed to close existing knowledge gaps.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2024.131990&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2024.131990&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Italy, GermanyPublisher:Elsevier BV JEZ, SABINA; Spinelli, D.; Fierro, A.; Dibenedetto, A.; Aresta, M.; BUSI, ELENA; BASOSI, RICCARDO;pmid: 28531851
handle: 11588/740067 , 11365/1007165 , 11586/364199
In this study the LCA methodology is applied in order to satisfy two goals: i) to evaluate the hot spots in site-specific production chain of biodiesel from terrestrial and micro-algae feedstock; ii) to compare quantitatively, utilizing primary data, the impacts of the first generation in respect to the third generation bio-fuels. Results show that micro-algae are neither competitive yet with traditional oil crops nor with fossil fuel. The use of renewable technologies as photovoltaics and biogas self production might increase the competitiveness of micro-algae oil. Further investigations are however necessary to optimize their production chain and to increase the added value of co-products.
Bioresource Technolo... arrow_drop_down Università degli Studi di Siena: USiena airArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Università degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2017.05.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu47 citations 47 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Bioresource Technolo... arrow_drop_down Università degli Studi di Siena: USiena airArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Università degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2017.05.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Elsevier BV Authors: Ghimire, Anish; Kumar, Gopalakrishnan; Sivagurunathan, Periyasamy; Shobana, Sutha; +5 AuthorsGhimire, Anish; Kumar, Gopalakrishnan; Sivagurunathan, Periyasamy; Shobana, Sutha; Saratale, Ganesh D; Kim, Hyun Woo; Luongo, Vincenzo; Esposito, Giovanni; Munoz, Raul;The interest in microalgae for wastewater treatment and liquid bio-fuels production (i.e. biodiesel and bioethanol) is steadily increasing due to the energy demand of the ultra-modern technological world. The associated biomass and by-product residues generated from these processes can be utilized as a feedstock in anaerobic fermentation for the production of gaseous bio-fuels. In this context, dark fermentation coupled with anaerobic digestion can be a potential technology for the production of hydrogen and methane from these residual algal biomasses. The mixture of these gaseous bio-fuels, known as hythane, has superior characteristics and is increasingly regarded as an alternative to fossil fuels. This review provides the current developments achieved in the conversion of algal biomass to bio-hythane (H2+CH4).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2017.05.156&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu102 citations 102 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2017.05.156&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Elsevier BV Authors: PROCENTESE, ALESSANDRA; RAGANATI, FRANCESCA; OLIVIERI, GIUSEPPE; Russo, Maria Elena; +2 AuthorsPROCENTESE, ALESSANDRA; RAGANATI, FRANCESCA; OLIVIERI, GIUSEPPE; Russo, Maria Elena; Rehmann, Lars; MARZOCCHELLA, ANTONIO;pmid: 28688330
handle: 11588/691868 , 20.500.14243/326521 , 11386/4771464
Waste lettuce leaves - from the "fresh cut vegetable" industry - were pretreated with the deep eutectic solvent (DES) made of choline chloride - glycerol. Reaction time (3-16h) and the operation temperature (80-150°C) were investigated. Enzymatic glucose and xylose yields of 94.9% and 75.0%, respectively were obtained when the biomass was pretreated at 150°C for 16h. Sugars contained in the biomass hydrolysate were fermented in batch cultures of Clostridium acetobutylicum DSMZ 792. The energy consumption and the energy efficiency related to the DES pretreatment were calculated and compared to the most common lignocellulosic pretreatment processes reported in the literature. The DES pretreatment process was characterized by lower energy required (about 28% decrease and 72% decrease) than the NAOH pretreatment and steam explosion process respectively. The Net Energy Ratio (NER) value related to butanol production via DES biomass pretreatment was assessed.
CNR ExploRA arrow_drop_down Archivio della Ricerca - Università di SalernoArticle . 2017Data sources: Archivio della Ricerca - Università di Salernoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2017.06.143&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 94 citations 94 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CNR ExploRA arrow_drop_down Archivio della Ricerca - Università di SalernoArticle . 2017Data sources: Archivio della Ricerca - Università di Salernoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2017.06.143&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Elsevier BV Vivek, Narisetty; Sindhu, Raveendran; Madhavan, Aravind; Anju, Alphonsa Jose; Castro, Eulogio; Faraco, Vincenza; Pandey, Ashok; Binod, Parameswaran;One of the major ecological concerns associated with biodiesel production is the generation of waste/crude glycerol during the trans-esterification process. Purification of this crude glycerol is not economically viable. In this context, the development of an efficient and economically viable strategy would be biotransformation reactions converting the biodiesel derived crude glycerol into value added chemicals. Hence the process ensures the sustainability and waste management in biodiesel industry, paving a path to integrated biorefineries. This review addresses a waste to wealth approach for utilization of crude glycerol in the production of value added chemicals, current trends, challenges, future perspectives, metabolic approaches and the genetic tools developed for the improved synthesis over wild type microorganisms were described.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2017.05.056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu130 citations 130 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2017.05.056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United Kingdom, ItalyPublisher:Elsevier BV Publicly fundedFunded by:UKRI | Undestanding microbial co..., EC | ABWETUKRI| Undestanding microbial communities through in situ environmental 'omic data synthesis ,EC| ABWETKostrytsia, Anastasiia; Papirio, Stefano; Morrison, Liam; Ijaz, Umer Zeeshan; Collins, Gavin; Lens, Piet N. L.; Esposito, Giovanni;In this study, the biokinetics of autotrophic denitrification with biogenic S0 (ADBIOS) for the treatment of nitrogen pollution in wastewaters were investigated. The used biogenic S0, a by-product of gas desulfurization, was an elemental microcrystalline orthorhombic sulfur with a median size of 4.69 µm and a specific surface area of 3.38 m2/g, which made S0 particularly reactive and bioavailable. During denitritation, the biomass enriched on nitrite (NO2-) was capable of degrading up to 240 mg/l NO2--N with a denitritation activity of 339.5 mg NO2--N/g VSS·d. The use of biogenic S0 induced a low NO2--N accumulation, hindering the NO2--N negative impact on the denitrifying consortia and resulting in a specific denitrification activity of 223.0 mg NO3--N/g VSS·d. Besides Thiobacillus being the most abundant genus, Moheibacter and Thermomonas were predominantly selected for denitrification and denitritation, respectively.
CORE arrow_drop_down EnlightenArticle . 2018License: CC BYFull-Text: http://eprints.gla.ac.uk/168662/1/168662.pdfData sources: CORE (RIOXX-UK Aggregator)DANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2018.09.044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 77 citations 77 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down EnlightenArticle . 2018License: CC BYFull-Text: http://eprints.gla.ac.uk/168662/1/168662.pdfData sources: CORE (RIOXX-UK Aggregator)DANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2018.09.044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 ItalyPublisher:Elsevier BV Authors: Ridha Djellabi; Dominic Aboagye; Melissa Greta Galloni; Vaibhav Vilas Andhalkar; +6 AuthorsRidha Djellabi; Dominic Aboagye; Melissa Greta Galloni; Vaibhav Vilas Andhalkar; Sana Nouacer; Walid Nabgan; Sami Rtimi; Magda Constantí; Francisco Medina Cabello; Sandra Contreras;pmid: 36403911
The production of high-value products from lignocellulosic biomass is carried out through the selective scission of crosslinked CC/CO bonds. Nowadays, several techniques are applied to optimize biomass conversion into desired products with high yields. Photocatalytic technology has been proven to be a valuable tool for valorizing biomass at mild conditions. The photoproduced reactive oxygen species (ROSs) can initiate the scission of crosslinked bonds and form radical intermediates. However, the low mass transfer of the photocatalytic process could limit the production of a high yield of products. The incorporation of ultrasonic cavitation in the photocatalytic system provides an exceptional condition to boost the fragmentation and transformation of biomass into the desired products within a lesser reaction time. This review critically discusses the main factors governing the application of photocatalysis for biomass valorization and tricks to boost the selectivity for enhancing the yield of desired products. Synergistic effects obtained through the combination of sonolysis and photocatalysis were discussed in depth. Under ultrasonic vibration, hot spots could be produced on the surface of the photocatalysts, improving the mass transfer through the jet phenomenon. In addition, shock waves can assist the dissolution and mixing of biomass particles.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2022.128333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 38 citations 38 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2022.128333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017 Italy, NetherlandsPublisher:Elsevier BV Funded by:EC | MIRACLESEC| MIRACLESSafi, C.; Cabas Rodriguez, L.; Mulder, W.J.; Engelen-Smit, N.; Spekking, W.; van den Broek, L.A.M.; Olivieri, G.; Sijtsma, L.;pmid: 28521230
Several cell disruption methods were tested on Nannochloropsis gaditana, to evaluate their efficiency in terms of cell disintegration, energy input and release of soluble proteins. High-pressure homogenization (HPH) and bead milling were the most efficient with >95% cell disintegration, ±50% (w/w) release of total proteins and low energy input (<0.5kWh.kg-1biomass). Enzymatic treatment required low energy input (<0.34kWh.kg-1biomass), but it only released ±35% protein (w/w). Pulsed Electric Field (PEF) was neither energy-efficient (10.44kWh.kg-1biomass) nor successful for protein release (only 10% proteins w/w) and cell disintegration. The release of proteins after applying HPH and bead milling always required less intensive operating conditions for cell disruption. The energy cost per unit of released protein ranged from 0.15-0.25 €.kgProtein-1 in case of HPH, and up to 2-20 €.kgProtein-1 in case of PEF.
Bioresource Technolo... arrow_drop_down Wageningen Staff PublicationsArticle . 2017License: CC BYData sources: Wageningen Staff Publicationshttp://dx.doi.org/10.1016/j.bi...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2017.05.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 97 citations 97 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Bioresource Technolo... arrow_drop_down Wageningen Staff PublicationsArticle . 2017License: CC BYData sources: Wageningen Staff Publicationshttp://dx.doi.org/10.1016/j.bi...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2017.05.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016Publisher:Elsevier BV Urrutia C.; Sangaletti-Gerhard, N; Cea M.; Suazo, A; Aliberti, A; Navia R.;Sewage sludge generated in municipal wastewater treatment plants was used as a feedstock for biodiesel production via esterification/transesterification in a two-step process. In the first esterification step, greasy and secondary sludge were tested using acid and enzymatic catalysts. The results indicate that both catalysts performed the esterification of free fatty acids (FFA) simultaneously with the transesterification of triacylglycerols (TAG). Acid catalyst demonstrated better performance in FFA esterification compared to TAG transesterification, while enzymatic catalyst showed the ability to first hydrolyze TAG in FFA, which were esterified to methyl esters. In addition, FAME concentration using greasy sludge were higher (63.9% and 58.7%), compared with those of secondary sludge (11% and 16%), using acid and enzymatic catalysts, respectively. Therefore, only greasy sludge was used in the second step of alkaline transesterification. The alkaline transesterification of the previously esterified greasy sludge reached a maximum FAME concentration of 65.4% when using acid catalyst.
LAReferencia - Red F... arrow_drop_down LAReferencia - Red Federada de Repositorios Institucionales de Publicaciones Científicas LatinoamericanasOther literature type . 2016LAReferencia - Red Federada de Repositorios Institucionales de Publicaciones Científicas LatinoamericanasOther literature type . 2016add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2015.10.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert LAReferencia - Red F... arrow_drop_down LAReferencia - Red Federada de Repositorios Institucionales de Publicaciones Científicas LatinoamericanasOther literature type . 2016LAReferencia - Red Federada de Repositorios Institucionales de Publicaciones Científicas LatinoamericanasOther literature type . 2016add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2015.10.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 FrancePublisher:Elsevier BV Zinkoné, Téné Rosine; Gifuni, Imma; Lavenant, Laurence; Pruvost, Jeremy; Marchal, Luc;pmid: 30036846
Industrial development of microalgae biomass valorization relies on process optimization and controlled scale-up. Both need robust modeling: (i) for biomass production and (ii) for integrated processes in the downstream processing (DSP). Cell disruption and primary fractionation are key steps in DSP. In this study, a kinetic model, including microalgal cell size distribution, was developed for Chlorella sorokiniana disruption in continuous bead milling. Glass beads of 0.4 mm size at impeller tip velocity of 14 m.s-1 were used as optimal conditions for efficient cell disruption. These conditions allowed faster disruption of big cells than small ones. A modified expression of the Stress Number, including cell size effect, was then proposed and validated. Separation of starch, proteins and chlorophyll by mild centrifugation was studied as function of the disruption parameters. Low energy consumption conditions led to extreme comminution. An intermediate zone drew attention for allowing moderate energy consumption and efficient metabolites separation by centrifugation.
HAL INRAE arrow_drop_down Université de Nantes: HAL-UNIV-NANTESArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Université de Nantes: HAL-UNIV-NANTESArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2018.07.080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 47 citations 47 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert HAL INRAE arrow_drop_down Université de Nantes: HAL-UNIV-NANTESArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Université de Nantes: HAL-UNIV-NANTESArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2018.07.080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2025 ItalyPublisher:Elsevier BV Authors: Van Peteghem, L.; Matassa, S.; Sakarika, M.;Meeting the protein needs of a growing population will require significant resources. In this context, microbial protein (MP) offers a nutritious and versatile protein source from recovered resources. This meta-analysis of over 100 studies examines the efficiency and nutritional quality of MP production using ethanol. Ethanol, a feedstock derived from CO2 and biological waste, is used by various microorganisms, and has an established role in the food sector. Results show that ethanol-based MP production is technically feasible for food applications, reaching biomass concentrations of 14-230 g/L and productivities of 11-13 g/L/h. The protein content of MP correlates with productivity, and the nutritional quality of ethanol-grown MP matches common sources like pork and tofu. Lastly, operational choices affect the techno-economic feasibility of using waste-derived ethanol and other recovered resources. This meta-analysis highlights the potential of ethanol-grown MP, though further research is needed to close existing knowledge gaps.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2024.131990&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2024.131990&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Italy, GermanyPublisher:Elsevier BV JEZ, SABINA; Spinelli, D.; Fierro, A.; Dibenedetto, A.; Aresta, M.; BUSI, ELENA; BASOSI, RICCARDO;pmid: 28531851
handle: 11588/740067 , 11365/1007165 , 11586/364199
In this study the LCA methodology is applied in order to satisfy two goals: i) to evaluate the hot spots in site-specific production chain of biodiesel from terrestrial and micro-algae feedstock; ii) to compare quantitatively, utilizing primary data, the impacts of the first generation in respect to the third generation bio-fuels. Results show that micro-algae are neither competitive yet with traditional oil crops nor with fossil fuel. The use of renewable technologies as photovoltaics and biogas self production might increase the competitiveness of micro-algae oil. Further investigations are however necessary to optimize their production chain and to increase the added value of co-products.
Bioresource Technolo... arrow_drop_down Università degli Studi di Siena: USiena airArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Università degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2017.05.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu47 citations 47 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Bioresource Technolo... arrow_drop_down Università degli Studi di Siena: USiena airArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Università degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2017.05.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Elsevier BV Authors: Ghimire, Anish; Kumar, Gopalakrishnan; Sivagurunathan, Periyasamy; Shobana, Sutha; +5 AuthorsGhimire, Anish; Kumar, Gopalakrishnan; Sivagurunathan, Periyasamy; Shobana, Sutha; Saratale, Ganesh D; Kim, Hyun Woo; Luongo, Vincenzo; Esposito, Giovanni; Munoz, Raul;The interest in microalgae for wastewater treatment and liquid bio-fuels production (i.e. biodiesel and bioethanol) is steadily increasing due to the energy demand of the ultra-modern technological world. The associated biomass and by-product residues generated from these processes can be utilized as a feedstock in anaerobic fermentation for the production of gaseous bio-fuels. In this context, dark fermentation coupled with anaerobic digestion can be a potential technology for the production of hydrogen and methane from these residual algal biomasses. The mixture of these gaseous bio-fuels, known as hythane, has superior characteristics and is increasingly regarded as an alternative to fossil fuels. This review provides the current developments achieved in the conversion of algal biomass to bio-hythane (H2+CH4).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2017.05.156&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu102 citations 102 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2017.05.156&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Elsevier BV Authors: PROCENTESE, ALESSANDRA; RAGANATI, FRANCESCA; OLIVIERI, GIUSEPPE; Russo, Maria Elena; +2 AuthorsPROCENTESE, ALESSANDRA; RAGANATI, FRANCESCA; OLIVIERI, GIUSEPPE; Russo, Maria Elena; Rehmann, Lars; MARZOCCHELLA, ANTONIO;pmid: 28688330
handle: 11588/691868 , 20.500.14243/326521 , 11386/4771464
Waste lettuce leaves - from the "fresh cut vegetable" industry - were pretreated with the deep eutectic solvent (DES) made of choline chloride - glycerol. Reaction time (3-16h) and the operation temperature (80-150°C) were investigated. Enzymatic glucose and xylose yields of 94.9% and 75.0%, respectively were obtained when the biomass was pretreated at 150°C for 16h. Sugars contained in the biomass hydrolysate were fermented in batch cultures of Clostridium acetobutylicum DSMZ 792. The energy consumption and the energy efficiency related to the DES pretreatment were calculated and compared to the most common lignocellulosic pretreatment processes reported in the literature. The DES pretreatment process was characterized by lower energy required (about 28% decrease and 72% decrease) than the NAOH pretreatment and steam explosion process respectively. The Net Energy Ratio (NER) value related to butanol production via DES biomass pretreatment was assessed.
CNR ExploRA arrow_drop_down Archivio della Ricerca - Università di SalernoArticle . 2017Data sources: Archivio della Ricerca - Università di Salernoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2017.06.143&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 94 citations 94 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CNR ExploRA arrow_drop_down Archivio della Ricerca - Università di SalernoArticle . 2017Data sources: Archivio della Ricerca - Università di Salernoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2017.06.143&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Elsevier BV Vivek, Narisetty; Sindhu, Raveendran; Madhavan, Aravind; Anju, Alphonsa Jose; Castro, Eulogio; Faraco, Vincenza; Pandey, Ashok; Binod, Parameswaran;One of the major ecological concerns associated with biodiesel production is the generation of waste/crude glycerol during the trans-esterification process. Purification of this crude glycerol is not economically viable. In this context, the development of an efficient and economically viable strategy would be biotransformation reactions converting the biodiesel derived crude glycerol into value added chemicals. Hence the process ensures the sustainability and waste management in biodiesel industry, paving a path to integrated biorefineries. This review addresses a waste to wealth approach for utilization of crude glycerol in the production of value added chemicals, current trends, challenges, future perspectives, metabolic approaches and the genetic tools developed for the improved synthesis over wild type microorganisms were described.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2017.05.056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu130 citations 130 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2017.05.056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United Kingdom, ItalyPublisher:Elsevier BV Publicly fundedFunded by:UKRI | Undestanding microbial co..., EC | ABWETUKRI| Undestanding microbial communities through in situ environmental 'omic data synthesis ,EC| ABWETKostrytsia, Anastasiia; Papirio, Stefano; Morrison, Liam; Ijaz, Umer Zeeshan; Collins, Gavin; Lens, Piet N. L.; Esposito, Giovanni;In this study, the biokinetics of autotrophic denitrification with biogenic S0 (ADBIOS) for the treatment of nitrogen pollution in wastewaters were investigated. The used biogenic S0, a by-product of gas desulfurization, was an elemental microcrystalline orthorhombic sulfur with a median size of 4.69 µm and a specific surface area of 3.38 m2/g, which made S0 particularly reactive and bioavailable. During denitritation, the biomass enriched on nitrite (NO2-) was capable of degrading up to 240 mg/l NO2--N with a denitritation activity of 339.5 mg NO2--N/g VSS·d. The use of biogenic S0 induced a low NO2--N accumulation, hindering the NO2--N negative impact on the denitrifying consortia and resulting in a specific denitrification activity of 223.0 mg NO3--N/g VSS·d. Besides Thiobacillus being the most abundant genus, Moheibacter and Thermomonas were predominantly selected for denitrification and denitritation, respectively.
CORE arrow_drop_down EnlightenArticle . 2018License: CC BYFull-Text: http://eprints.gla.ac.uk/168662/1/168662.pdfData sources: CORE (RIOXX-UK Aggregator)DANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2018.09.044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 77 citations 77 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down EnlightenArticle . 2018License: CC BYFull-Text: http://eprints.gla.ac.uk/168662/1/168662.pdfData sources: CORE (RIOXX-UK Aggregator)DANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2018.09.044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 ItalyPublisher:Elsevier BV Authors: Ridha Djellabi; Dominic Aboagye; Melissa Greta Galloni; Vaibhav Vilas Andhalkar; +6 AuthorsRidha Djellabi; Dominic Aboagye; Melissa Greta Galloni; Vaibhav Vilas Andhalkar; Sana Nouacer; Walid Nabgan; Sami Rtimi; Magda Constantí; Francisco Medina Cabello; Sandra Contreras;pmid: 36403911
The production of high-value products from lignocellulosic biomass is carried out through the selective scission of crosslinked CC/CO bonds. Nowadays, several techniques are applied to optimize biomass conversion into desired products with high yields. Photocatalytic technology has been proven to be a valuable tool for valorizing biomass at mild conditions. The photoproduced reactive oxygen species (ROSs) can initiate the scission of crosslinked bonds and form radical intermediates. However, the low mass transfer of the photocatalytic process could limit the production of a high yield of products. The incorporation of ultrasonic cavitation in the photocatalytic system provides an exceptional condition to boost the fragmentation and transformation of biomass into the desired products within a lesser reaction time. This review critically discusses the main factors governing the application of photocatalysis for biomass valorization and tricks to boost the selectivity for enhancing the yield of desired products. Synergistic effects obtained through the combination of sonolysis and photocatalysis were discussed in depth. Under ultrasonic vibration, hot spots could be produced on the surface of the photocatalysts, improving the mass transfer through the jet phenomenon. In addition, shock waves can assist the dissolution and mixing of biomass particles.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2022.128333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 38 citations 38 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2022.128333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017 Italy, NetherlandsPublisher:Elsevier BV Funded by:EC | MIRACLESEC| MIRACLESSafi, C.; Cabas Rodriguez, L.; Mulder, W.J.; Engelen-Smit, N.; Spekking, W.; van den Broek, L.A.M.; Olivieri, G.; Sijtsma, L.;pmid: 28521230
Several cell disruption methods were tested on Nannochloropsis gaditana, to evaluate their efficiency in terms of cell disintegration, energy input and release of soluble proteins. High-pressure homogenization (HPH) and bead milling were the most efficient with >95% cell disintegration, ±50% (w/w) release of total proteins and low energy input (<0.5kWh.kg-1biomass). Enzymatic treatment required low energy input (<0.34kWh.kg-1biomass), but it only released ±35% protein (w/w). Pulsed Electric Field (PEF) was neither energy-efficient (10.44kWh.kg-1biomass) nor successful for protein release (only 10% proteins w/w) and cell disintegration. The release of proteins after applying HPH and bead milling always required less intensive operating conditions for cell disruption. The energy cost per unit of released protein ranged from 0.15-0.25 €.kgProtein-1 in case of HPH, and up to 2-20 €.kgProtein-1 in case of PEF.
Bioresource Technolo... arrow_drop_down Wageningen Staff PublicationsArticle . 2017License: CC BYData sources: Wageningen Staff Publicationshttp://dx.doi.org/10.1016/j.bi...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2017.05.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 97 citations 97 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Bioresource Technolo... arrow_drop_down Wageningen Staff PublicationsArticle . 2017License: CC BYData sources: Wageningen Staff Publicationshttp://dx.doi.org/10.1016/j.bi...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2017.05.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016Publisher:Elsevier BV Urrutia C.; Sangaletti-Gerhard, N; Cea M.; Suazo, A; Aliberti, A; Navia R.;Sewage sludge generated in municipal wastewater treatment plants was used as a feedstock for biodiesel production via esterification/transesterification in a two-step process. In the first esterification step, greasy and secondary sludge were tested using acid and enzymatic catalysts. The results indicate that both catalysts performed the esterification of free fatty acids (FFA) simultaneously with the transesterification of triacylglycerols (TAG). Acid catalyst demonstrated better performance in FFA esterification compared to TAG transesterification, while enzymatic catalyst showed the ability to first hydrolyze TAG in FFA, which were esterified to methyl esters. In addition, FAME concentration using greasy sludge were higher (63.9% and 58.7%), compared with those of secondary sludge (11% and 16%), using acid and enzymatic catalysts, respectively. Therefore, only greasy sludge was used in the second step of alkaline transesterification. The alkaline transesterification of the previously esterified greasy sludge reached a maximum FAME concentration of 65.4% when using acid catalyst.
LAReferencia - Red F... arrow_drop_down LAReferencia - Red Federada de Repositorios Institucionales de Publicaciones Científicas LatinoamericanasOther literature type . 2016LAReferencia - Red Federada de Repositorios Institucionales de Publicaciones Científicas LatinoamericanasOther literature type . 2016add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2015.10.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert LAReferencia - Red F... arrow_drop_down LAReferencia - Red Federada de Repositorios Institucionales de Publicaciones Científicas LatinoamericanasOther literature type . 2016LAReferencia - Red Federada de Repositorios Institucionales de Publicaciones Científicas LatinoamericanasOther literature type . 2016add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2015.10.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 FrancePublisher:Elsevier BV Zinkoné, Téné Rosine; Gifuni, Imma; Lavenant, Laurence; Pruvost, Jeremy; Marchal, Luc;pmid: 30036846
Industrial development of microalgae biomass valorization relies on process optimization and controlled scale-up. Both need robust modeling: (i) for biomass production and (ii) for integrated processes in the downstream processing (DSP). Cell disruption and primary fractionation are key steps in DSP. In this study, a kinetic model, including microalgal cell size distribution, was developed for Chlorella sorokiniana disruption in continuous bead milling. Glass beads of 0.4 mm size at impeller tip velocity of 14 m.s-1 were used as optimal conditions for efficient cell disruption. These conditions allowed faster disruption of big cells than small ones. A modified expression of the Stress Number, including cell size effect, was then proposed and validated. Separation of starch, proteins and chlorophyll by mild centrifugation was studied as function of the disruption parameters. Low energy consumption conditions led to extreme comminution. An intermediate zone drew attention for allowing moderate energy consumption and efficient metabolites separation by centrifugation.
HAL INRAE arrow_drop_down Université de Nantes: HAL-UNIV-NANTESArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Université de Nantes: HAL-UNIV-NANTESArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2018.07.080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 47 citations 47 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert HAL INRAE arrow_drop_down Université de Nantes: HAL-UNIV-NANTESArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Université de Nantes: HAL-UNIV-NANTESArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2018.07.080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu