- home
- Advanced Search
- Energy Research
- AU
- Transport Research
- European Marine Science
- Energy Research
- AU
- Transport Research
- European Marine Science
description Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2020 Germany, Australia, Australia, Spain, SpainPublisher:Frontiers Media SA Funded by:NSERC, EC | TRIATLASNSERC ,EC| TRIATLASMarta Coll; Marta Coll; Jeroen Steenbeek; Maria Grazia Pennino; Joe Buszowski; Kristin Kaschner; Heike K. Lotze; Yannick Rousseau; Derek P. Tittensor; Carl Walters; Reg A. Watson; Villy Christensen;handle: 10508/14827 , 10261/326104 , 10261/221916
Considerable effort is being deployed to predict the impacts of climate change and anthropogenic activities on the ocean's biophysical environment, biodiversity, and natural resources to better understand how marine ecosystems and provided services to humans are likely to change and explore alternative pathways and options. We present an updated version of EcoOcean (v2), a spatial-temporal ecosystem modeling complex of the global ocean that spans food-web dynamics from primary producers to top predators. Advancements include an enhanced ability to reproduce spatial-temporal ecosystem dynamics by linking species productivity, distributions, and trophic interactions to the impacts of climate change and worldwide fisheries. The updated modeling platform is used to simulate past and future scenarios of change, where we quantify the impacts of alternative configurations of the ecological model, responses to climate-change scenarios, and the additional impacts of fishing. Climate-change scenarios are obtained from two Earth-System Models (ESMs, GFDL-ESM2M, and IPSL-CMA5-LR) and two contrasting emission pathways (RCPs 2.6 and 8.5) for historical (1950–2005) and future (2006–2100) periods. Standardized ecological indicators and biomasses of selected species groups are used to compare simulations. Results show how future ecological trajectories are sensitive to alternative configurations of EcoOcean, and yield moderate differences when looking at ecological indicators and larger differences for biomasses of species groups. Ecological trajectories are also sensitive to environmental drivers from alternative ESM outputs and RCPs, and show spatial variability and more severe changes when IPSL and RCP 8.5 are used. Under a non-fishing configuration, larger organisms show decreasing trends, while smaller organisms show mixed or increasing results. Fishing intensifies the negative effects predicted by climate change, again stronger under IPSL and RCP 8.5, which results in stronger biomass declines for species already losing under climate change, or dampened positive impacts for those increasing. Several species groups that win under climate change become losers under combined impacts, while only a few (small benthopelagic fish and cephalopods) species are projected to show positive biomass changes under cumulative impacts. EcoOcean v2 can contribute to the quantification of cumulative impact assessments of multiple stressors and of plausible ocean-based solutions to prevent, mitigate and adapt to global change
OceanRep arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2023Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional Digital del IEOArticle . 2021Data sources: Repositorio Institucional Digital del IEOUniversity of Tasmania: UTas ePrintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2020.567877&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 57 citations 57 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 40visibility views 40 download downloads 389 Powered bymore_vert OceanRep arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2023Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional Digital del IEOArticle . 2021Data sources: Repositorio Institucional Digital del IEOUniversity of Tasmania: UTas ePrintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2020.567877&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2019 Germany, United Kingdom, United KingdomPublisher:Frontiers Media SA Publicly fundedFunded by:EC | AtlantOS, UKRI | Marine LTSS: Climate Link...EC| AtlantOS ,UKRI| Marine LTSS: Climate Linked Atlantic Sector ScienceAnne-Cathrin Wölfl; Gordon Johnston; Geoffroy Lamarche; Geoffroy Lamarche; Larry Mayer; David Millar; Terje Haga Pedersen; Kim Picard; Anja Reitz; Thierry Schmitt; Martin Visbeck; Helen Snaith; Pauline Weatherall; Rochelle Wigley; Sam Amirebrahimi; Colin W. Devey; Boris Dorschel; Vicki Ferrini; Veerle A. I. Huvenne; Martin Jakobsson; Jennifer Jencks;Detailed knowledge of the shape of the seafloor is crucial to humankind. Bathymetry data is critical for safety of navigation and is used for many other applications. In an era of ongoing environmental degradation worldwide, bathymetry data (and the knowledge derived from it) play a pivotal role in using and managing the world’s oceans in a way that is in accordance with the United Nations Sustainable Development Goal 14 – conserve and sustainably use the oceans, seas and marine resources for sustainable development. However, the vast majority of our oceans is still virtually unmapped, unobserved, and unexplored. Only a small fraction of the seafloor has been systematically mapped by direct measurement. The remaining bathymetry is predicted from satellite altimeter data, providing only an approximate estimation of the shape of the seafloor. Several global and regional initiatives are underway to change this situation. This paper presents a selection of these initiatives as best practice examples for bathymetry data collection, compilation and open data sharing as well as the Nippon Foundation-GEBCO (The General Bathymetric Chart of the Oceans) Seabed 2030 Project that complements and leverages these initiatives and promotes international collaboration and partnership. Several non-traditional data collection opportunities are looked at that are currently gaining momentum as well as new and innovative technologies that can increase the efficiency of collecting bathymetric data. Finally, recommendations are given toward a possible way forward into the future of seafloor mapping and toward achieving the goal of a truly global ocean bathymetry.
Frontiers in Marine ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2019.00283&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 160 citations 160 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Frontiers in Marine ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2019.00283&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 FrancePublisher:Springer Science and Business Media LLC Funded by:DFG | Climate - Biogeochemistry...DFG| Climate - Biogeochemistry Interactions in the Tropical OceanYoung, J. W.; Olson, R. J.; Ménard, Frédéric; Kuhnert, P. M.; Duffy, L. M.; Allain, V.; Logan, J. M.; Lorrain, Anne; Somes, C. J.; Graham, B.; Goñi, N.; Pethybridge, H.; Simier, Monique; Potier, M.; Romanov, E.; Pagendam, D.; Hannides, C.; Choy, C. A.;Global-scale studies of marine food webs are rare, despite their necessity for examining and understanding ecosystem level effects of climate variability. Here we review the progress of an international collaboration that compiled regional diet datasets of multiple top predator fishes from the Indian, Pacific and Atlantic Oceans and developed new statistical methods that can be used to obtain a comprehensive ocean-scale understanding of food webs and climate impacts on marine top predators. We loosely define top predators not as species at the apex of the food web, but rather a guild of large predators near the top of the food web. Specifically, we present a framework for world-wide compilation and analysis of global stomach-contents and stable-isotope data of tunas and other large pelagic predatory fishes. To illustrate the utility of the statistical methods, we show an example using yellowfin tuna in a “test” area in the Pacific Ocean. Stomach-contents data were analyzed using a modified (bagged) classification tree approach, which is being prepared as an R statistical software package. Bulk δ15N values of yellowfin tuna muscle tissue were examined using a Generalized Additive Model, after adjusting for spatial differences in the δ15N values of the baseline primary producers predicted by a global coupled ocean circulation-biogeochemical-isotope model. Both techniques in tandem demonstrated the capacity of this approach to elucidate spatial patterns of variations in both forage species and predator trophic positions and have the potential to predict responses to climate change. We believe this methodology could be extended to all marine top predators. Our results emphasize the necessity for quantitative investigations of global-scale datasets when evaluating changes to the food webs underpinning top ocean predators under long-term climatic variability.
Hyper Article en Lig... arrow_drop_down Reviews in Fish Biology and FisheriesArticle . 2014 . Peer-reviewedLicense: Springer TDMData sources: CrossrefInstitut national des sciences de l'Univers: HAL-INSUArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Université de Bretagne Occidentale: HALArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11160-014-9368-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 27 citations 27 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Reviews in Fish Biology and FisheriesArticle . 2014 . Peer-reviewedLicense: Springer TDMData sources: CrossrefInstitut national des sciences de l'Univers: HAL-INSUArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Université de Bretagne Occidentale: HALArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11160-014-9368-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2017 Australia, Australia, GermanyPublisher:Public Library of Science (PLoS) Funded by:EC | ASSEMBLEEC| ASSEMBLELennart T. Bach; Santiago Alvarez-Fernandez; Thomas Hornick; Annegret Stuhr; Ulf Riebesell;The oceans absorb ~25% of the annual anthropogenic CO2 emissions. This causes a shift in the marine carbonate chemistry termed ocean acidification (OA). OA is expected to influence metabolic processes in phytoplankton species but it is unclear how the combination of individual physiological changes alters the structure of entire phytoplankton communities. To investigate this, we deployed ten pelagic mesocosms (volume ~50 m3) for 113 days at the west coast of Sweden and simulated OA (pCO2 = 760 μatm) in five of them while the other five served as controls (380 μatm). We found: (1) Bulk chlorophyll a concentration and 10 out of 16 investigated phytoplankton groups were significantly and mostly positively affected by elevated CO2 concentrations. However, CO2 effects on abundance or biomass were generally subtle and present only during certain succession stages. (2) Some of the CO2-affected phytoplankton groups seemed to respond directly to altered carbonate chemistry (e.g. diatoms) while others (e.g. Synechococcus) were more likely to be indirectly affected through CO2 sensitive competitors or grazers. (3) Picoeukaryotic phytoplankton (0.2-2 μm) showed the clearest and relatively strong positive CO2 responses during several succession stages. We attribute this not only to a CO2 fertilization of their photosynthetic apparatus but also to an increased nutrient competitiveness under acidified (i.e. low pH) conditions. The stimulating influence of high CO2/low pH on picoeukaryote abundance observed in this experiment is strikingly consistent with results from previous studies, suggesting that picoeukaryotes are among the winners in a future ocean.
OceanRep arrow_drop_down University of Tasmania: UTas ePrintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0188198&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 53 citations 53 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert OceanRep arrow_drop_down University of Tasmania: UTas ePrintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0188198&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2019 Australia, Australia, GermanyPublisher:Frontiers Media SA Bach, LT; Hernandez-Hernandez, N; Taucher, J; Spisla, C; Sforna, C; Riebesell, U; Aristegui, J;Diatoms are silicifying phytoplankton contributing about one quarter to primary production on Earth. Ocean acidification (OA) could alter the competitiveness of diatoms relative to other taxa and/or lead to shifts among diatom species. In spring 2016, we set up a plankton community experiment at the coast of Gran Canaria (Canary Islands, Spain) to investigate the response of subtropical diatom assemblages to elevated seawater PCO2. Therefore, natural plankton communities were enclosed for 32 days in in situ mesocosms (similar to 8 m(3) volume) with a PCO(2 )gradient ranging from 380 to 1140 mu atm. Halfway through the study we added nutrients to all mesocosms (N, P, Si) to simulate injections through eddy-induced upwelling which frequently occurs in the region. We found that the total diatom biomass remained unaffected during oligotrophic conditions but was significantly positively affected by high CO2 after nutrient enrichment. The average cell volume and carbon content of the diatom community increased with CO2. CO2 effects on diatom biomass and species composition were weak during oligotrophic conditions but became quite strong above similar to 620 mu atm after the nutrient enrichment. We hypothesize that the proliferation of diatoms under high CO(2 )may have been caused by a fertilization effect on photosynthesis in combination with reduced grazing pressure. Our results suggest that OA in the subtropics may strengthen the competitiveness of (large) diatoms and cause changes in diatom community composition, mostly under conditions when nutrients are injected into oligotrophic systems. 1,42 3,661 Q1 Q1 SCIE
Frontiers in Marine ... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of Tasmania: UTas ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2019.00075&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 31 citations 31 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Frontiers in Marine ... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of Tasmania: UTas ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2019.00075&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Other ORP type 2012Publisher:PANGAEA - Data Publisher for Earth & Environmental Science Funded by:ARC | Ocean Acidification in a ..., EC | HERMIONE, EC | COCONETARC| Ocean Acidification in a Rapidly Increasing CO2 World ,EC| HERMIONE ,EC| COCONETMcCulloch, Malcolm T; Trotter, Julie; Montagna, Paolo; Falter, James L; Dunbar, Robert G; Freiwald, André; Försterra, Günter; López Correa, Matthias; Maier, Cornelia; Rüggeberg, Andres; Taviani, Marco;The boron isotope systematics has been determined for azooxanthellate scleractinian corals from a wide range of both deep-sea and shallow-water environments. The aragonitic coral species, Caryophyllia smithii, Desmophyllum dianthus, Enallopsammia rostrata, Lophelia pertusa, and Madrepora oculata, are all found to have relatively high d11B compositions ranging from 23.2 per mil to 28.7 per mil. These values lie substantially above the pH-dependent inorganic seawater borate equilibrium curve, indicative of strong up-regulation of pH of the internal calcifying fluid (pH(cf)), being elevated by ~0.6-0.8 units (Delta pH) relative to ambient seawater. In contrast, the deep-sea calcitic coral Corallium sp. has a significantly lower d11B composition of 15.5 per mil, with a corresponding lower Delta pH value of ~0.3 units, reflecting the importance of mineralogical control on biological pH up-regulation. The solitary coral D. dianthus was sampled over a wide range of seawater pH(T) and shows an approximate linear correlation with Delta pH(Desmo) = 6.43 - 0.71 pH(T) (r**2 = 0.79). An improved correlation is however found with the closely related parameter of seawater aragonite saturation state, where Delta pH(Desmo) = 1.09 - 0.14 Omega(arag) (r**2 = 0.95), indicating the important control that carbonate saturation state has on calcification. The ability to up-regulate internal pH(cf), and consequently Omega(cf), of the calcifying fluid is therefore a process present in both azooxanthellate and zooxanthellate aragonitic corals, and is attributed to the action of Ca2+ -ATPase in modulating the proton gradient between seawater and the site of calcification. These findings also show that the boron isotopic compositions (d11Bcarb) of aragonitic corals are highly systematic and consistent with direct uptake of the borate species within the biologically controlled extracellular calcifying medium.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::e37448c8f2cbbae9bead96dd4805970a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::e37448c8f2cbbae9bead96dd4805970a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 Australia, France, France, Germany, AustraliaPublisher:Frontiers Media SA Funded by:ARC | ARC Future Fellowships - ..., NSF | Collaborative Research: C..., NSF | Collaborative Research: T... +2 projectsARC| ARC Future Fellowships - Grant ID: FT190100599 ,NSF| Collaborative Research: Core Support for the U.S. Hub of the Future Earth Secretariat ,NSF| Collaborative Research: The role of a keystone pathogen in the geographic and local-scale ecology of eelgrass decline in the eastern Pacific ,NSF| Research Coordination Networks (RCN): Sustained Multidisciplinary Ocean Observations ,EC| BYONICAuthors: Erin V. Satterthwaite; Erin V. Satterthwaite; Erin V. Satterthwaite; Nicholas J. Bax; +44 AuthorsErin V. Satterthwaite; Erin V. Satterthwaite; Erin V. Satterthwaite; Nicholas J. Bax; Nicholas J. Bax; Patricia Miloslavich; Patricia Miloslavich; Lavenia Ratnarajah; Lavenia Ratnarajah; Gabrielle Canonico; Daniel Dunn; Samantha E. Simmons; Roxanne J. Carini; Karen Evans; Valerie Allain; Ward Appeltans; Sonia Batten; Lisandro Benedetti-Cecchi; Anthony T. F. Bernard; Anthony T. F. Bernard; Sky Bristol; Abigail Benson; Pier Luigi Buttigieg; Leopoldo Cavaleri Gerhardinger; Sanae Chiba; Tammy E. Davies; J. Emmett Duffy; Alfredo Giron-Nava; Astrid J. Hsu; Alexandra C. Kraberg; Raphael M. Kudela; Dan Lear; Enrique Montes; Frank E. Muller-Karger; Todd D. O’Brien; David Obura; Pieter Provoost; Sara Pruckner; Lisa-Maria Rebelo; Elizabeth R. Selig; Olav Sigurd Kjesbu; Craig Starger; Rick D. Stuart-Smith; Marjo Vierros; John Waller; Lauren V. Weatherdon; Tristan P. Wellman; Anna Zivian;handle: 10568/116179
Maintaining healthy, productive ecosystems in the face of pervasive and accelerating human impacts including climate change requires globally coordinated and sustained observations of marine biodiversity. Global coordination is predicated on an understanding of the scope and capacity of existing monitoring programs, and the extent to which they use standardized, interoperable practices for data management. Global coordination also requires identification of gaps in spatial and ecosystem coverage, and how these gaps correspond to management priorities and information needs. We undertook such an assessment by conducting an audit and gap analysis from global databases and structured surveys of experts. Of 371 survey respondents, 203 active, long-term (>5 years) observing programs systematically sampled marine life. These programs spanned about 7% of the ocean surface area, mostly concentrated in coastal regions of the United States, Canada, Europe, and Australia. Seagrasses, mangroves, hard corals, and macroalgae were sampled in 6% of the entire global coastal zone. Two-thirds of all observing programs offered accessible data, but methods and conditions for access were highly variable. Our assessment indicates that the global observing system is largely uncoordinated which results in a failure to deliver critical information required for informed decision-making such as, status and trends, for the conservation and sustainability of marine ecosystems and provision of ecosystem services. Based on our study, we suggest four key steps that can increase the sustainability, connectivity and spatial coverage of biological Essential Ocean Variables in the global ocean: (1) sustaining existing observing programs and encouraging coordination among these; (2) continuing to strive for data strategies that follow FAIR principles (findable, accessible, interoperable, and reusable); (3) utilizing existing ocean observing platforms and enhancing support to expand observing along coasts of developing countries, in deep ocean basins, and near the poles; and (4) targeting capacity building efforts. Following these suggestions could help create a coordinated marine biodiversity observing system enabling ecological forecasting and better planning for a sustainable use of ocean resources.
OceanRep arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/10568/116179Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2021.737416&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert OceanRep arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/10568/116179Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2021.737416&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2017Embargo end date: 01 Jan 2017 France, Germany, United States, United Kingdom, United Kingdom, United Kingdom, United Kingdom, United States, Norway, United StatesPublisher:Copernicus GmbH Funded by:NSERC, EC | CDREG, EC | METLAKE +3 projectsNSERC ,EC| CDREG ,EC| METLAKE ,EC| MACC II ,EC| MACC-III ,RCN| CICEP-Strategic Challenges in International Climate and Energy PolicyM. Saunois; P. Bousquet; B. Poulter; A. Peregon; P. Ciais; J. G. Canadell; E. J. Dlugokencky; G. Etiope; G. Etiope; D. Bastviken; S. Houweling; S. Houweling; G. Janssens-Maenhout; F. N. Tubiello; S. Castaldi; S. Castaldi; S. Castaldi; R. B. Jackson; M. Alexe; V. K. Arora; D. J. Beerling; P. Bergamaschi; D. R. Blake; G. Brailsford; L. Bruhwiler; C. Crevoisier; P. Crill; K. Covey; C. Frankenberg; C. Frankenberg; N. Gedney; L. Höglund-Isaksson; M. Ishizawa; A. Ito; F. Joos; H.-S. Kim; T. Kleinen; P. Krummel; J.-F. Lamarque; R. Langenfelds; R. Locatelli; T. Machida; S. Maksyutov; J. R. Melton; I. Morino; V. Naik; S. O'Doherty; F.-J. W. Parmentier; P. K. Patra; C. Peng; C. Peng; S. Peng; S. Peng; G. P. Peters; I. Pison; R. Prinn; M. Ramonet; W. J. Riley; M. Saito; M. Santini; M. Santini; R. Schroeder; I. J. Simpson; R. Spahni; A. Takizawa; B. F. Thornton; H. Tian; Y. Tohjima; N. Viovy; A. Voulgarakis; R. Weiss; D. J. Wilton; A. Wiltshire; D. Worthy; D. Wunch; X. Xu; X. Xu; Y. Yoshida; B. Zhang; Z. Zhang; Z. Zhang; Q. Zhu;Abstract. Following the recent Global Carbon Project (GCP) synthesis of the decadal methane (CH4) budget over 2000–2012 (Saunois et al., 2016), we analyse here the same dataset with a focus on quasi-decadal and inter-annual variability in CH4 emissions. The GCP dataset integrates results from top-down studies (exploiting atmospheric observations within an atmospheric inverse-modelling framework) and bottom-up models (including process-based models for estimating land surface emissions and atmospheric chemistry), inventories of anthropogenic emissions, and data-driven approaches. The annual global methane emissions from top-down studies, which by construction match the observed methane growth rate within their uncertainties, all show an increase in total methane emissions over the period 2000–2012, but this increase is not linear over the 13 years. Despite differences between individual studies, the mean emission anomaly of the top-down ensemble shows no significant trend in total methane emissions over the period 2000–2006, during the plateau of atmospheric methane mole fractions, and also over the period 2008–2012, during the renewed atmospheric methane increase. However, the top-down ensemble mean produces an emission shift between 2006 and 2008, leading to 22 [16–32] Tg CH4 yr−1 higher methane emissions over the period 2008–2012 compared to 2002–2006. This emission increase mostly originated from the tropics, with a smaller contribution from mid-latitudes and no significant change from boreal regions. The regional contributions remain uncertain in top-down studies. Tropical South America and South and East Asia seem to contribute the most to the emission increase in the tropics. However, these two regions have only limited atmospheric measurements and remain therefore poorly constrained. The sectorial partitioning of this emission increase between the periods 2002–2006 and 2008–2012 differs from one atmospheric inversion study to another. However, all top-down studies suggest smaller changes in fossil fuel emissions (from oil, gas, and coal industries) compared to the mean of the bottom-up inventories included in this study. This difference is partly driven by a smaller emission change in China from the top-down studies compared to the estimate in the Emission Database for Global Atmospheric Research (EDGARv4.2) inventory, which should be revised to smaller values in a near future. We apply isotopic signatures to the emission changes estimated for individual studies based on five emission sectors and find that for six individual top-down studies (out of eight) the average isotopic signature of the emission changes is not consistent with the observed change in atmospheric 13CH4. However, the partitioning in emission change derived from the ensemble mean is consistent with this isotopic constraint. At the global scale, the top-down ensemble mean suggests that the dominant contribution to the resumed atmospheric CH4 growth after 2006 comes from microbial sources (more from agriculture and waste sectors than from natural wetlands), with an uncertain but smaller contribution from fossil CH4 emissions. In addition, a decrease in biomass burning emissions (in agreement with the biomass burning emission databases) makes the balance of sources consistent with atmospheric 13CH4 observations. In most of the top-down studies included here, OH concentrations are considered constant over the years (seasonal variations but without any inter-annual variability). As a result, the methane loss (in particular through OH oxidation) varies mainly through the change in methane concentrations and not its oxidants. For these reasons, changes in the methane loss could not be properly investigated in this study, although it may play a significant role in the recent atmospheric methane changes as briefly discussed at the end of the paper.
CORE arrow_drop_down Imperial College London: SpiralArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/10044/1/55004Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2017Full-Text: https://hal.science/hal-02414578Data sources: Bielefeld Academic Search Engine (BASE)DSpace@MIT (Massachusetts Institute of Technology)Article . 2018License: CC BYFull-Text: http://dx.doi.org/10.5194/ACP-17-11135-2017Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2017Full-Text: https://hal.science/hal-02414578Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2017Full-Text: https://hal.science/hal-02414578Data sources: Bielefeld Academic Search Engine (BASE)Caltech Authors (California Institute of Technology)Article . 2017Full-Text: https://doi.org/10.5194/acp-17-11135-2017Data sources: Bielefeld Academic Search Engine (BASE)Atmospheric Chemistry and PhysicsArticle . 2017 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.5194/acp-20...Article . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefAtmospheric Chemistry and PhysicsOther literature type . 2017Data sources: DANS (Data Archiving and Networked Services)eScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of CaliforniaMunin - Open Research ArchiveArticle . 2017 . Peer-reviewedData sources: Munin - Open Research ArchiveAtmospheric Chemistry and PhysicsArticle . 2017 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Bristol: Bristol ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/acp-17-11135-2017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 88 citations 88 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 6visibility views 6 download downloads 36 Powered bymore_vert CORE arrow_drop_down Imperial College London: SpiralArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/10044/1/55004Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2017Full-Text: https://hal.science/hal-02414578Data sources: Bielefeld Academic Search Engine (BASE)DSpace@MIT (Massachusetts Institute of Technology)Article . 2018License: CC BYFull-Text: http://dx.doi.org/10.5194/ACP-17-11135-2017Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2017Full-Text: https://hal.science/hal-02414578Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2017Full-Text: https://hal.science/hal-02414578Data sources: Bielefeld Academic Search Engine (BASE)Caltech Authors (California Institute of Technology)Article . 2017Full-Text: https://doi.org/10.5194/acp-17-11135-2017Data sources: Bielefeld Academic Search Engine (BASE)Atmospheric Chemistry and PhysicsArticle . 2017 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.5194/acp-20...Article . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefAtmospheric Chemistry and PhysicsOther literature type . 2017Data sources: DANS (Data Archiving and Networked Services)eScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of CaliforniaMunin - Open Research ArchiveArticle . 2017 . Peer-reviewedData sources: Munin - Open Research ArchiveAtmospheric Chemistry and PhysicsArticle . 2017 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Bristol: Bristol ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/acp-17-11135-2017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United Kingdom, United Kingdom, United States, United KingdomPublisher:The Royal Society Funded by:NSF | LTER: Biodiversity, Multi..., DFG | German Centre for Integra..., NSF | RCN: Coordination of the ...NSF| LTER: Biodiversity, Multiple Drivers of Environmental Change and Ecosystem Functioning at the Prairie Forest Border ,DFG| German Centre for Integrative Biodiversity Research - iDiv ,NSF| RCN: Coordination of the Nutrient Network (NutNet), global manipulations of nutrients and consumersAuthors: Aleksandra M. Lewandowska; Antje Biermann; Elizabeth T. Borer; Miguel A. Cebrián-Piqueras; +30 AuthorsAleksandra M. Lewandowska; Antje Biermann; Elizabeth T. Borer; Miguel A. Cebrián-Piqueras; Steven A. J. Declerck; Luc De Meester; Ellen Van Donk; Lars Gamfeldt; Daniel S. Gruner; Nicole Hagenah; W. Stanley Harpole; Kevin P. Kirkman; Christopher A. Klausmeier; Michael Kleyer; Johannes M. H. Knops; Pieter Lemmens; Eric M. Lind; Elena Litchman; Jasmin Mantilla-Contreras; Koen Martens; Sandra Meier; Vanessa Minden; Joslin L. Moore; Harry Olde Venterink; Eric W. Seabloom; Ulrich Sommer; Maren Striebel; Anastasia Trenkamp; Juliane Trinogga; Jotaro Urabe; Wim Vyverman; Dedmer B. Van de Waal; Claire E. Widdicombe; Helmut Hillebrand;pmid: 27114584
pmc: PMC4843703
Numerous studies show that increasing species richness leads to higher ecosystem productivity. This effect is often attributed to more efficient portioning of multiple resources in communities with higher numbers of competing species, indicating the role of resource supply and stoichiometry for biodiversity–ecosystem functioning relationships. Here, we merged theory on ecological stoichiometry with a framework of biodiversity–ecosystem functioning to understand how resource use transfers into primary production. We applied a structural equation model to define patterns of diversity–productivity relationships with respect to available resources. Meta-analysis was used to summarize the findings across ecosystem types ranging from aquatic ecosystems to grasslands and forests. As hypothesized, resource supply increased realized productivity and richness, but we found significant differences between ecosystems and study types. Increased richness was associated with increased productivity, although this effect was not seen in experiments. More even communities had lower productivity, indicating that biomass production is often maintained by a few dominant species, and reduced dominance generally reduced ecosystem productivity. This synthesis, which integrates observational and experimental studies in a variety of ecosystems and geographical regions, exposes common patterns and differences in biodiversity–functioning relationships, and increases the mechanistic understanding of changes in ecosystems productivity.
Philosophical Transa... arrow_drop_down Philosophical Transactions of the Royal Society B Biological SciencesArticleData sources: UnpayWallPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Philosophical Transactions of the Royal Society B Biological SciencesArticle . 2016 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2017Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rstb.2015.0283&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Philosophical Transa... arrow_drop_down Philosophical Transactions of the Royal Society B Biological SciencesArticleData sources: UnpayWallPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Philosophical Transactions of the Royal Society B Biological SciencesArticle . 2016 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2017Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rstb.2015.0283&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2013Embargo end date: 01 Jan 2014 United States, United Kingdom, France, Australia, Belgium, Germany, United States, United Kingdom, United States, Norway, GermanyPublisher:Copernicus GmbH Funded by:EC | GEOCARBON, EC | EMBRACE, EC | COMBINE +4 projectsEC| GEOCARBON ,EC| EMBRACE ,EC| COMBINE ,NSF| Collaborative Research: Improved Regional and Decadal Predictions of the Carbon Cycle ,EC| CARBOCHANGE ,EC| LUC4C ,RCN| Support for the Scientific Steering Committee of the Global Carbon ProjectPieter P. Tans; C. Le Quéré; Sönke Zaehle; Atul K. Jain; Fabienne Maignan; Jörg Schwinger; Jörg Schwinger; Dorothee C. E. Bakker; Steve D Jones; Geun-Ha Park; Christian Rödenbeck; Laurent Bopp; Arne Körtzinger; Abdirahman M Omar; Bronte Tilbrook; Gregg Marland; T. Ono; Joachim Segschneider; Thomas A. Boden; Richard A. Houghton; Andy Wiltshire; Pierre Regnier; Louise Chini; Philippe Ciais; Joanna Isobel House; Taro Takahashi; Almut Arneth; Glen P. Peters; Josep G. Canadell; Etsushi Kato; Robert J. Andres; Kees Klein Goldewijk; Benjamin Poulter; Anna B. Harper; Rik Wanninkhof; Pierre Friedlingstein; Michael R. Raupach; Benjamin D. Stocker; Stephen Sitch; Ralph F. Keeling; Benjamin Pfeil; Benjamin Pfeil; Robbie M. Andrew; S. van Heuven; Charles D. Koven; R. Moriarty; S. Saito; Nathalie Lefèvre; Scott C. Doney; Ian Harris; A. Arvanitis; Nicolas Viovy;Abstract. Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe datasets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil-fuel combustion and cement production (EFF) are based on energy statistics, while emissions from Land-Use Change (ELUC), including deforestation, are based on combined evidence from land-cover change data, fire activity in regions undergoing deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated for the first time in this budget with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of Dynamic Global Vegetation Models. All uncertainties are reported as ± 1 sigma, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2003–2012), EFF was 8.6 ± 0.4 GtC yr−1, ELUC 0.8 ± 0.5 GtC yr−1, GATM 4.3 ± 0.1 GtC yr−1, SOCEAN 2.6 ± 0.5 GtC yr−1, and SLAND 2.6 ± 0.8 GtC yr−1. For year 2012 alone, EFF grew to 9.7 ± 0.5 GtC yr−1, 2.2% above 2011, reflecting a continued trend in these emissions; GATM was 5.2 ± 0.2 GtC yr−1, SOCEAN was 2.9 ± 0.5 GtC yr−1, and assuming and ELUC of 0.9 ± 0.5 GtC yr−1 (based on 2001–2010 average), SLAND was 2.5 ± 0.9 GtC yr−1. GATM was high in 2012 compared to the 2003–2012 average, almost entirely reflecting the high EFF. The global atmospheric CO2 concentration reached 392.52 ± 0.10 ppm on average over 2012. We estimate that EFF will increase by 2.1% (1.1–3.1%) to 9.9 ± 0.5 GtC in 2013, 61% above emissions in 1990, based on projections of World Gross Domestic Product and recent changes in the carbon intensity of the economy. With this projection, cumulative emissions of CO2 will reach about 550 ± 60 GtC for 1870–2013, 70% from EFF (390 ± 20 GtC) and 30% from ELUC (160 ± 55 GtC). This paper is intended to provide a baseline to keep track of annual carbon budgets in the future. All data presented here can be downloaded from the Carbon Dioxide Information Analysis Center (10.3334/CDIAC/GCP_2013_v1.1).
OceanRep arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2014Full-Text: https://hal.science/hal-01828526Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2014License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2015License: CC BYFull-Text: https://hdl.handle.net/1956/10495Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2014Full-Text: https://hal.science/hal-01828526Data sources: Bielefeld Academic Search Engine (BASE)Woods Hole Open Access ServerArticle . 2014License: CC BYFull-Text: https://doi.org/10.3334/CDIAC/GCP_2013_V2.3Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2014Full-Text: https://hal.science/hal-01828526Data sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/74928Data sources: Bielefeld Academic Search Engine (BASE)Columbia University Academic CommonsArticle . 2014Full-Text: https://doi.org/10.7916/D8319V8NData sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/essdd-...Article . 2013 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2014 . Peer-reviewedLicense: CC BYData sources: CrossrefBergen Open Research Archive - UiBArticle . 2014 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBUniversity of Bristol: Bristol ResearchArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essdd-6-689-2013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 381 citations 381 popularity Top 1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert OceanRep arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2014Full-Text: https://hal.science/hal-01828526Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2014License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2015License: CC BYFull-Text: https://hdl.handle.net/1956/10495Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2014Full-Text: https://hal.science/hal-01828526Data sources: Bielefeld Academic Search Engine (BASE)Woods Hole Open Access ServerArticle . 2014License: CC BYFull-Text: https://doi.org/10.3334/CDIAC/GCP_2013_V2.3Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2014Full-Text: https://hal.science/hal-01828526Data sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/74928Data sources: Bielefeld Academic Search Engine (BASE)Columbia University Academic CommonsArticle . 2014Full-Text: https://doi.org/10.7916/D8319V8NData sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/essdd-...Article . 2013 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2014 . Peer-reviewedLicense: CC BYData sources: CrossrefBergen Open Research Archive - UiBArticle . 2014 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBUniversity of Bristol: Bristol ResearchArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essdd-6-689-2013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2020 Germany, Australia, Australia, Spain, SpainPublisher:Frontiers Media SA Funded by:NSERC, EC | TRIATLASNSERC ,EC| TRIATLASMarta Coll; Marta Coll; Jeroen Steenbeek; Maria Grazia Pennino; Joe Buszowski; Kristin Kaschner; Heike K. Lotze; Yannick Rousseau; Derek P. Tittensor; Carl Walters; Reg A. Watson; Villy Christensen;handle: 10508/14827 , 10261/326104 , 10261/221916
Considerable effort is being deployed to predict the impacts of climate change and anthropogenic activities on the ocean's biophysical environment, biodiversity, and natural resources to better understand how marine ecosystems and provided services to humans are likely to change and explore alternative pathways and options. We present an updated version of EcoOcean (v2), a spatial-temporal ecosystem modeling complex of the global ocean that spans food-web dynamics from primary producers to top predators. Advancements include an enhanced ability to reproduce spatial-temporal ecosystem dynamics by linking species productivity, distributions, and trophic interactions to the impacts of climate change and worldwide fisheries. The updated modeling platform is used to simulate past and future scenarios of change, where we quantify the impacts of alternative configurations of the ecological model, responses to climate-change scenarios, and the additional impacts of fishing. Climate-change scenarios are obtained from two Earth-System Models (ESMs, GFDL-ESM2M, and IPSL-CMA5-LR) and two contrasting emission pathways (RCPs 2.6 and 8.5) for historical (1950–2005) and future (2006–2100) periods. Standardized ecological indicators and biomasses of selected species groups are used to compare simulations. Results show how future ecological trajectories are sensitive to alternative configurations of EcoOcean, and yield moderate differences when looking at ecological indicators and larger differences for biomasses of species groups. Ecological trajectories are also sensitive to environmental drivers from alternative ESM outputs and RCPs, and show spatial variability and more severe changes when IPSL and RCP 8.5 are used. Under a non-fishing configuration, larger organisms show decreasing trends, while smaller organisms show mixed or increasing results. Fishing intensifies the negative effects predicted by climate change, again stronger under IPSL and RCP 8.5, which results in stronger biomass declines for species already losing under climate change, or dampened positive impacts for those increasing. Several species groups that win under climate change become losers under combined impacts, while only a few (small benthopelagic fish and cephalopods) species are projected to show positive biomass changes under cumulative impacts. EcoOcean v2 can contribute to the quantification of cumulative impact assessments of multiple stressors and of plausible ocean-based solutions to prevent, mitigate and adapt to global change
OceanRep arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2023Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional Digital del IEOArticle . 2021Data sources: Repositorio Institucional Digital del IEOUniversity of Tasmania: UTas ePrintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2020.567877&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 57 citations 57 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 40visibility views 40 download downloads 389 Powered bymore_vert OceanRep arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2023Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional Digital del IEOArticle . 2021Data sources: Repositorio Institucional Digital del IEOUniversity of Tasmania: UTas ePrintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2020.567877&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2019 Germany, United Kingdom, United KingdomPublisher:Frontiers Media SA Publicly fundedFunded by:EC | AtlantOS, UKRI | Marine LTSS: Climate Link...EC| AtlantOS ,UKRI| Marine LTSS: Climate Linked Atlantic Sector ScienceAnne-Cathrin Wölfl; Gordon Johnston; Geoffroy Lamarche; Geoffroy Lamarche; Larry Mayer; David Millar; Terje Haga Pedersen; Kim Picard; Anja Reitz; Thierry Schmitt; Martin Visbeck; Helen Snaith; Pauline Weatherall; Rochelle Wigley; Sam Amirebrahimi; Colin W. Devey; Boris Dorschel; Vicki Ferrini; Veerle A. I. Huvenne; Martin Jakobsson; Jennifer Jencks;Detailed knowledge of the shape of the seafloor is crucial to humankind. Bathymetry data is critical for safety of navigation and is used for many other applications. In an era of ongoing environmental degradation worldwide, bathymetry data (and the knowledge derived from it) play a pivotal role in using and managing the world’s oceans in a way that is in accordance with the United Nations Sustainable Development Goal 14 – conserve and sustainably use the oceans, seas and marine resources for sustainable development. However, the vast majority of our oceans is still virtually unmapped, unobserved, and unexplored. Only a small fraction of the seafloor has been systematically mapped by direct measurement. The remaining bathymetry is predicted from satellite altimeter data, providing only an approximate estimation of the shape of the seafloor. Several global and regional initiatives are underway to change this situation. This paper presents a selection of these initiatives as best practice examples for bathymetry data collection, compilation and open data sharing as well as the Nippon Foundation-GEBCO (The General Bathymetric Chart of the Oceans) Seabed 2030 Project that complements and leverages these initiatives and promotes international collaboration and partnership. Several non-traditional data collection opportunities are looked at that are currently gaining momentum as well as new and innovative technologies that can increase the efficiency of collecting bathymetric data. Finally, recommendations are given toward a possible way forward into the future of seafloor mapping and toward achieving the goal of a truly global ocean bathymetry.
Frontiers in Marine ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2019.00283&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 160 citations 160 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Frontiers in Marine ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2019.00283&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 FrancePublisher:Springer Science and Business Media LLC Funded by:DFG | Climate - Biogeochemistry...DFG| Climate - Biogeochemistry Interactions in the Tropical OceanYoung, J. W.; Olson, R. J.; Ménard, Frédéric; Kuhnert, P. M.; Duffy, L. M.; Allain, V.; Logan, J. M.; Lorrain, Anne; Somes, C. J.; Graham, B.; Goñi, N.; Pethybridge, H.; Simier, Monique; Potier, M.; Romanov, E.; Pagendam, D.; Hannides, C.; Choy, C. A.;Global-scale studies of marine food webs are rare, despite their necessity for examining and understanding ecosystem level effects of climate variability. Here we review the progress of an international collaboration that compiled regional diet datasets of multiple top predator fishes from the Indian, Pacific and Atlantic Oceans and developed new statistical methods that can be used to obtain a comprehensive ocean-scale understanding of food webs and climate impacts on marine top predators. We loosely define top predators not as species at the apex of the food web, but rather a guild of large predators near the top of the food web. Specifically, we present a framework for world-wide compilation and analysis of global stomach-contents and stable-isotope data of tunas and other large pelagic predatory fishes. To illustrate the utility of the statistical methods, we show an example using yellowfin tuna in a “test” area in the Pacific Ocean. Stomach-contents data were analyzed using a modified (bagged) classification tree approach, which is being prepared as an R statistical software package. Bulk δ15N values of yellowfin tuna muscle tissue were examined using a Generalized Additive Model, after adjusting for spatial differences in the δ15N values of the baseline primary producers predicted by a global coupled ocean circulation-biogeochemical-isotope model. Both techniques in tandem demonstrated the capacity of this approach to elucidate spatial patterns of variations in both forage species and predator trophic positions and have the potential to predict responses to climate change. We believe this methodology could be extended to all marine top predators. Our results emphasize the necessity for quantitative investigations of global-scale datasets when evaluating changes to the food webs underpinning top ocean predators under long-term climatic variability.
Hyper Article en Lig... arrow_drop_down Reviews in Fish Biology and FisheriesArticle . 2014 . Peer-reviewedLicense: Springer TDMData sources: CrossrefInstitut national des sciences de l'Univers: HAL-INSUArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Université de Bretagne Occidentale: HALArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11160-014-9368-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 27 citations 27 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Reviews in Fish Biology and FisheriesArticle . 2014 . Peer-reviewedLicense: Springer TDMData sources: CrossrefInstitut national des sciences de l'Univers: HAL-INSUArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Université de Bretagne Occidentale: HALArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11160-014-9368-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2017 Australia, Australia, GermanyPublisher:Public Library of Science (PLoS) Funded by:EC | ASSEMBLEEC| ASSEMBLELennart T. Bach; Santiago Alvarez-Fernandez; Thomas Hornick; Annegret Stuhr; Ulf Riebesell;The oceans absorb ~25% of the annual anthropogenic CO2 emissions. This causes a shift in the marine carbonate chemistry termed ocean acidification (OA). OA is expected to influence metabolic processes in phytoplankton species but it is unclear how the combination of individual physiological changes alters the structure of entire phytoplankton communities. To investigate this, we deployed ten pelagic mesocosms (volume ~50 m3) for 113 days at the west coast of Sweden and simulated OA (pCO2 = 760 μatm) in five of them while the other five served as controls (380 μatm). We found: (1) Bulk chlorophyll a concentration and 10 out of 16 investigated phytoplankton groups were significantly and mostly positively affected by elevated CO2 concentrations. However, CO2 effects on abundance or biomass were generally subtle and present only during certain succession stages. (2) Some of the CO2-affected phytoplankton groups seemed to respond directly to altered carbonate chemistry (e.g. diatoms) while others (e.g. Synechococcus) were more likely to be indirectly affected through CO2 sensitive competitors or grazers. (3) Picoeukaryotic phytoplankton (0.2-2 μm) showed the clearest and relatively strong positive CO2 responses during several succession stages. We attribute this not only to a CO2 fertilization of their photosynthetic apparatus but also to an increased nutrient competitiveness under acidified (i.e. low pH) conditions. The stimulating influence of high CO2/low pH on picoeukaryote abundance observed in this experiment is strikingly consistent with results from previous studies, suggesting that picoeukaryotes are among the winners in a future ocean.
OceanRep arrow_drop_down University of Tasmania: UTas ePrintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0188198&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 53 citations 53 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert OceanRep arrow_drop_down University of Tasmania: UTas ePrintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0188198&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2019 Australia, Australia, GermanyPublisher:Frontiers Media SA Bach, LT; Hernandez-Hernandez, N; Taucher, J; Spisla, C; Sforna, C; Riebesell, U; Aristegui, J;Diatoms are silicifying phytoplankton contributing about one quarter to primary production on Earth. Ocean acidification (OA) could alter the competitiveness of diatoms relative to other taxa and/or lead to shifts among diatom species. In spring 2016, we set up a plankton community experiment at the coast of Gran Canaria (Canary Islands, Spain) to investigate the response of subtropical diatom assemblages to elevated seawater PCO2. Therefore, natural plankton communities were enclosed for 32 days in in situ mesocosms (similar to 8 m(3) volume) with a PCO(2 )gradient ranging from 380 to 1140 mu atm. Halfway through the study we added nutrients to all mesocosms (N, P, Si) to simulate injections through eddy-induced upwelling which frequently occurs in the region. We found that the total diatom biomass remained unaffected during oligotrophic conditions but was significantly positively affected by high CO2 after nutrient enrichment. The average cell volume and carbon content of the diatom community increased with CO2. CO2 effects on diatom biomass and species composition were weak during oligotrophic conditions but became quite strong above similar to 620 mu atm after the nutrient enrichment. We hypothesize that the proliferation of diatoms under high CO(2 )may have been caused by a fertilization effect on photosynthesis in combination with reduced grazing pressure. Our results suggest that OA in the subtropics may strengthen the competitiveness of (large) diatoms and cause changes in diatom community composition, mostly under conditions when nutrients are injected into oligotrophic systems. 1,42 3,661 Q1 Q1 SCIE
Frontiers in Marine ... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of Tasmania: UTas ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2019.00075&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 31 citations 31 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Frontiers in Marine ... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of Tasmania: UTas ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2019.00075&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research productkeyboard_double_arrow_right Other ORP type 2012Publisher:PANGAEA - Data Publisher for Earth & Environmental Science Funded by:ARC | Ocean Acidification in a ..., EC | HERMIONE, EC | COCONETARC| Ocean Acidification in a Rapidly Increasing CO2 World ,EC| HERMIONE ,EC| COCONETMcCulloch, Malcolm T; Trotter, Julie; Montagna, Paolo; Falter, James L; Dunbar, Robert G; Freiwald, André; Försterra, Günter; López Correa, Matthias; Maier, Cornelia; Rüggeberg, Andres; Taviani, Marco;The boron isotope systematics has been determined for azooxanthellate scleractinian corals from a wide range of both deep-sea and shallow-water environments. The aragonitic coral species, Caryophyllia smithii, Desmophyllum dianthus, Enallopsammia rostrata, Lophelia pertusa, and Madrepora oculata, are all found to have relatively high d11B compositions ranging from 23.2 per mil to 28.7 per mil. These values lie substantially above the pH-dependent inorganic seawater borate equilibrium curve, indicative of strong up-regulation of pH of the internal calcifying fluid (pH(cf)), being elevated by ~0.6-0.8 units (Delta pH) relative to ambient seawater. In contrast, the deep-sea calcitic coral Corallium sp. has a significantly lower d11B composition of 15.5 per mil, with a corresponding lower Delta pH value of ~0.3 units, reflecting the importance of mineralogical control on biological pH up-regulation. The solitary coral D. dianthus was sampled over a wide range of seawater pH(T) and shows an approximate linear correlation with Delta pH(Desmo) = 6.43 - 0.71 pH(T) (r**2 = 0.79). An improved correlation is however found with the closely related parameter of seawater aragonite saturation state, where Delta pH(Desmo) = 1.09 - 0.14 Omega(arag) (r**2 = 0.95), indicating the important control that carbonate saturation state has on calcification. The ability to up-regulate internal pH(cf), and consequently Omega(cf), of the calcifying fluid is therefore a process present in both azooxanthellate and zooxanthellate aragonitic corals, and is attributed to the action of Ca2+ -ATPase in modulating the proton gradient between seawater and the site of calcification. These findings also show that the boron isotopic compositions (d11Bcarb) of aragonitic corals are highly systematic and consistent with direct uptake of the borate species within the biologically controlled extracellular calcifying medium.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::e37448c8f2cbbae9bead96dd4805970a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::e37448c8f2cbbae9bead96dd4805970a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 Australia, France, France, Germany, AustraliaPublisher:Frontiers Media SA Funded by:ARC | ARC Future Fellowships - ..., NSF | Collaborative Research: C..., NSF | Collaborative Research: T... +2 projectsARC| ARC Future Fellowships - Grant ID: FT190100599 ,NSF| Collaborative Research: Core Support for the U.S. Hub of the Future Earth Secretariat ,NSF| Collaborative Research: The role of a keystone pathogen in the geographic and local-scale ecology of eelgrass decline in the eastern Pacific ,NSF| Research Coordination Networks (RCN): Sustained Multidisciplinary Ocean Observations ,EC| BYONICAuthors: Erin V. Satterthwaite; Erin V. Satterthwaite; Erin V. Satterthwaite; Nicholas J. Bax; +44 AuthorsErin V. Satterthwaite; Erin V. Satterthwaite; Erin V. Satterthwaite; Nicholas J. Bax; Nicholas J. Bax; Patricia Miloslavich; Patricia Miloslavich; Lavenia Ratnarajah; Lavenia Ratnarajah; Gabrielle Canonico; Daniel Dunn; Samantha E. Simmons; Roxanne J. Carini; Karen Evans; Valerie Allain; Ward Appeltans; Sonia Batten; Lisandro Benedetti-Cecchi; Anthony T. F. Bernard; Anthony T. F. Bernard; Sky Bristol; Abigail Benson; Pier Luigi Buttigieg; Leopoldo Cavaleri Gerhardinger; Sanae Chiba; Tammy E. Davies; J. Emmett Duffy; Alfredo Giron-Nava; Astrid J. Hsu; Alexandra C. Kraberg; Raphael M. Kudela; Dan Lear; Enrique Montes; Frank E. Muller-Karger; Todd D. O’Brien; David Obura; Pieter Provoost; Sara Pruckner; Lisa-Maria Rebelo; Elizabeth R. Selig; Olav Sigurd Kjesbu; Craig Starger; Rick D. Stuart-Smith; Marjo Vierros; John Waller; Lauren V. Weatherdon; Tristan P. Wellman; Anna Zivian;handle: 10568/116179
Maintaining healthy, productive ecosystems in the face of pervasive and accelerating human impacts including climate change requires globally coordinated and sustained observations of marine biodiversity. Global coordination is predicated on an understanding of the scope and capacity of existing monitoring programs, and the extent to which they use standardized, interoperable practices for data management. Global coordination also requires identification of gaps in spatial and ecosystem coverage, and how these gaps correspond to management priorities and information needs. We undertook such an assessment by conducting an audit and gap analysis from global databases and structured surveys of experts. Of 371 survey respondents, 203 active, long-term (>5 years) observing programs systematically sampled marine life. These programs spanned about 7% of the ocean surface area, mostly concentrated in coastal regions of the United States, Canada, Europe, and Australia. Seagrasses, mangroves, hard corals, and macroalgae were sampled in 6% of the entire global coastal zone. Two-thirds of all observing programs offered accessible data, but methods and conditions for access were highly variable. Our assessment indicates that the global observing system is largely uncoordinated which results in a failure to deliver critical information required for informed decision-making such as, status and trends, for the conservation and sustainability of marine ecosystems and provision of ecosystem services. Based on our study, we suggest four key steps that can increase the sustainability, connectivity and spatial coverage of biological Essential Ocean Variables in the global ocean: (1) sustaining existing observing programs and encouraging coordination among these; (2) continuing to strive for data strategies that follow FAIR principles (findable, accessible, interoperable, and reusable); (3) utilizing existing ocean observing platforms and enhancing support to expand observing along coasts of developing countries, in deep ocean basins, and near the poles; and (4) targeting capacity building efforts. Following these suggestions could help create a coordinated marine biodiversity observing system enabling ecological forecasting and better planning for a sustainable use of ocean resources.
OceanRep arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/10568/116179Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2021.737416&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert OceanRep arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/10568/116179Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2021.737416&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2017Embargo end date: 01 Jan 2017 France, Germany, United States, United Kingdom, United Kingdom, United Kingdom, United Kingdom, United States, Norway, United StatesPublisher:Copernicus GmbH Funded by:NSERC, EC | CDREG, EC | METLAKE +3 projectsNSERC ,EC| CDREG ,EC| METLAKE ,EC| MACC II ,EC| MACC-III ,RCN| CICEP-Strategic Challenges in International Climate and Energy PolicyM. Saunois; P. Bousquet; B. Poulter; A. Peregon; P. Ciais; J. G. Canadell; E. J. Dlugokencky; G. Etiope; G. Etiope; D. Bastviken; S. Houweling; S. Houweling; G. Janssens-Maenhout; F. N. Tubiello; S. Castaldi; S. Castaldi; S. Castaldi; R. B. Jackson; M. Alexe; V. K. Arora; D. J. Beerling; P. Bergamaschi; D. R. Blake; G. Brailsford; L. Bruhwiler; C. Crevoisier; P. Crill; K. Covey; C. Frankenberg; C. Frankenberg; N. Gedney; L. Höglund-Isaksson; M. Ishizawa; A. Ito; F. Joos; H.-S. Kim; T. Kleinen; P. Krummel; J.-F. Lamarque; R. Langenfelds; R. Locatelli; T. Machida; S. Maksyutov; J. R. Melton; I. Morino; V. Naik; S. O'Doherty; F.-J. W. Parmentier; P. K. Patra; C. Peng; C. Peng; S. Peng; S. Peng; G. P. Peters; I. Pison; R. Prinn; M. Ramonet; W. J. Riley; M. Saito; M. Santini; M. Santini; R. Schroeder; I. J. Simpson; R. Spahni; A. Takizawa; B. F. Thornton; H. Tian; Y. Tohjima; N. Viovy; A. Voulgarakis; R. Weiss; D. J. Wilton; A. Wiltshire; D. Worthy; D. Wunch; X. Xu; X. Xu; Y. Yoshida; B. Zhang; Z. Zhang; Z. Zhang; Q. Zhu;Abstract. Following the recent Global Carbon Project (GCP) synthesis of the decadal methane (CH4) budget over 2000–2012 (Saunois et al., 2016), we analyse here the same dataset with a focus on quasi-decadal and inter-annual variability in CH4 emissions. The GCP dataset integrates results from top-down studies (exploiting atmospheric observations within an atmospheric inverse-modelling framework) and bottom-up models (including process-based models for estimating land surface emissions and atmospheric chemistry), inventories of anthropogenic emissions, and data-driven approaches. The annual global methane emissions from top-down studies, which by construction match the observed methane growth rate within their uncertainties, all show an increase in total methane emissions over the period 2000–2012, but this increase is not linear over the 13 years. Despite differences between individual studies, the mean emission anomaly of the top-down ensemble shows no significant trend in total methane emissions over the period 2000–2006, during the plateau of atmospheric methane mole fractions, and also over the period 2008–2012, during the renewed atmospheric methane increase. However, the top-down ensemble mean produces an emission shift between 2006 and 2008, leading to 22 [16–32] Tg CH4 yr−1 higher methane emissions over the period 2008–2012 compared to 2002–2006. This emission increase mostly originated from the tropics, with a smaller contribution from mid-latitudes and no significant change from boreal regions. The regional contributions remain uncertain in top-down studies. Tropical South America and South and East Asia seem to contribute the most to the emission increase in the tropics. However, these two regions have only limited atmospheric measurements and remain therefore poorly constrained. The sectorial partitioning of this emission increase between the periods 2002–2006 and 2008–2012 differs from one atmospheric inversion study to another. However, all top-down studies suggest smaller changes in fossil fuel emissions (from oil, gas, and coal industries) compared to the mean of the bottom-up inventories included in this study. This difference is partly driven by a smaller emission change in China from the top-down studies compared to the estimate in the Emission Database for Global Atmospheric Research (EDGARv4.2) inventory, which should be revised to smaller values in a near future. We apply isotopic signatures to the emission changes estimated for individual studies based on five emission sectors and find that for six individual top-down studies (out of eight) the average isotopic signature of the emission changes is not consistent with the observed change in atmospheric 13CH4. However, the partitioning in emission change derived from the ensemble mean is consistent with this isotopic constraint. At the global scale, the top-down ensemble mean suggests that the dominant contribution to the resumed atmospheric CH4 growth after 2006 comes from microbial sources (more from agriculture and waste sectors than from natural wetlands), with an uncertain but smaller contribution from fossil CH4 emissions. In addition, a decrease in biomass burning emissions (in agreement with the biomass burning emission databases) makes the balance of sources consistent with atmospheric 13CH4 observations. In most of the top-down studies included here, OH concentrations are considered constant over the years (seasonal variations but without any inter-annual variability). As a result, the methane loss (in particular through OH oxidation) varies mainly through the change in methane concentrations and not its oxidants. For these reasons, changes in the methane loss could not be properly investigated in this study, although it may play a significant role in the recent atmospheric methane changes as briefly discussed at the end of the paper.
CORE arrow_drop_down Imperial College London: SpiralArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/10044/1/55004Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2017Full-Text: https://hal.science/hal-02414578Data sources: Bielefeld Academic Search Engine (BASE)DSpace@MIT (Massachusetts Institute of Technology)Article . 2018License: CC BYFull-Text: http://dx.doi.org/10.5194/ACP-17-11135-2017Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2017Full-Text: https://hal.science/hal-02414578Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2017Full-Text: https://hal.science/hal-02414578Data sources: Bielefeld Academic Search Engine (BASE)Caltech Authors (California Institute of Technology)Article . 2017Full-Text: https://doi.org/10.5194/acp-17-11135-2017Data sources: Bielefeld Academic Search Engine (BASE)Atmospheric Chemistry and PhysicsArticle . 2017 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.5194/acp-20...Article . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefAtmospheric Chemistry and PhysicsOther literature type . 2017Data sources: DANS (Data Archiving and Networked Services)eScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of CaliforniaMunin - Open Research ArchiveArticle . 2017 . Peer-reviewedData sources: Munin - Open Research ArchiveAtmospheric Chemistry and PhysicsArticle . 2017 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Bristol: Bristol ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/acp-17-11135-2017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 88 citations 88 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 6visibility views 6 download downloads 36 Powered bymore_vert CORE arrow_drop_down Imperial College London: SpiralArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/10044/1/55004Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2017Full-Text: https://hal.science/hal-02414578Data sources: Bielefeld Academic Search Engine (BASE)DSpace@MIT (Massachusetts Institute of Technology)Article . 2018License: CC BYFull-Text: http://dx.doi.org/10.5194/ACP-17-11135-2017Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2017Full-Text: https://hal.science/hal-02414578Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2017Full-Text: https://hal.science/hal-02414578Data sources: Bielefeld Academic Search Engine (BASE)Caltech Authors (California Institute of Technology)Article . 2017Full-Text: https://doi.org/10.5194/acp-17-11135-2017Data sources: Bielefeld Academic Search Engine (BASE)Atmospheric Chemistry and PhysicsArticle . 2017 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.5194/acp-20...Article . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefAtmospheric Chemistry and PhysicsOther literature type . 2017Data sources: DANS (Data Archiving and Networked Services)eScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of CaliforniaMunin - Open Research ArchiveArticle . 2017 . Peer-reviewedData sources: Munin - Open Research ArchiveAtmospheric Chemistry and PhysicsArticle . 2017 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Bristol: Bristol ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/acp-17-11135-2017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United Kingdom, United Kingdom, United States, United KingdomPublisher:The Royal Society Funded by:NSF | LTER: Biodiversity, Multi..., DFG | German Centre for Integra..., NSF | RCN: Coordination of the ...NSF| LTER: Biodiversity, Multiple Drivers of Environmental Change and Ecosystem Functioning at the Prairie Forest Border ,DFG| German Centre for Integrative Biodiversity Research - iDiv ,NSF| RCN: Coordination of the Nutrient Network (NutNet), global manipulations of nutrients and consumersAuthors: Aleksandra M. Lewandowska; Antje Biermann; Elizabeth T. Borer; Miguel A. Cebrián-Piqueras; +30 AuthorsAleksandra M. Lewandowska; Antje Biermann; Elizabeth T. Borer; Miguel A. Cebrián-Piqueras; Steven A. J. Declerck; Luc De Meester; Ellen Van Donk; Lars Gamfeldt; Daniel S. Gruner; Nicole Hagenah; W. Stanley Harpole; Kevin P. Kirkman; Christopher A. Klausmeier; Michael Kleyer; Johannes M. H. Knops; Pieter Lemmens; Eric M. Lind; Elena Litchman; Jasmin Mantilla-Contreras; Koen Martens; Sandra Meier; Vanessa Minden; Joslin L. Moore; Harry Olde Venterink; Eric W. Seabloom; Ulrich Sommer; Maren Striebel; Anastasia Trenkamp; Juliane Trinogga; Jotaro Urabe; Wim Vyverman; Dedmer B. Van de Waal; Claire E. Widdicombe; Helmut Hillebrand;pmid: 27114584
pmc: PMC4843703
Numerous studies show that increasing species richness leads to higher ecosystem productivity. This effect is often attributed to more efficient portioning of multiple resources in communities with higher numbers of competing species, indicating the role of resource supply and stoichiometry for biodiversity–ecosystem functioning relationships. Here, we merged theory on ecological stoichiometry with a framework of biodiversity–ecosystem functioning to understand how resource use transfers into primary production. We applied a structural equation model to define patterns of diversity–productivity relationships with respect to available resources. Meta-analysis was used to summarize the findings across ecosystem types ranging from aquatic ecosystems to grasslands and forests. As hypothesized, resource supply increased realized productivity and richness, but we found significant differences between ecosystems and study types. Increased richness was associated with increased productivity, although this effect was not seen in experiments. More even communities had lower productivity, indicating that biomass production is often maintained by a few dominant species, and reduced dominance generally reduced ecosystem productivity. This synthesis, which integrates observational and experimental studies in a variety of ecosystems and geographical regions, exposes common patterns and differences in biodiversity–functioning relationships, and increases the mechanistic understanding of changes in ecosystems productivity.
Philosophical Transa... arrow_drop_down Philosophical Transactions of the Royal Society B Biological SciencesArticleData sources: UnpayWallPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Philosophical Transactions of the Royal Society B Biological SciencesArticle . 2016 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2017Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rstb.2015.0283&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Philosophical Transa... arrow_drop_down Philosophical Transactions of the Royal Society B Biological SciencesArticleData sources: UnpayWallPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Philosophical Transactions of the Royal Society B Biological SciencesArticle . 2016 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2017Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rstb.2015.0283&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2013Embargo end date: 01 Jan 2014 United States, United Kingdom, France, Australia, Belgium, Germany, United States, United Kingdom, United States, Norway, GermanyPublisher:Copernicus GmbH Funded by:EC | GEOCARBON, EC | EMBRACE, EC | COMBINE +4 projectsEC| GEOCARBON ,EC| EMBRACE ,EC| COMBINE ,NSF| Collaborative Research: Improved Regional and Decadal Predictions of the Carbon Cycle ,EC| CARBOCHANGE ,EC| LUC4C ,RCN| Support for the Scientific Steering Committee of the Global Carbon ProjectPieter P. Tans; C. Le Quéré; Sönke Zaehle; Atul K. Jain; Fabienne Maignan; Jörg Schwinger; Jörg Schwinger; Dorothee C. E. Bakker; Steve D Jones; Geun-Ha Park; Christian Rödenbeck; Laurent Bopp; Arne Körtzinger; Abdirahman M Omar; Bronte Tilbrook; Gregg Marland; T. Ono; Joachim Segschneider; Thomas A. Boden; Richard A. Houghton; Andy Wiltshire; Pierre Regnier; Louise Chini; Philippe Ciais; Joanna Isobel House; Taro Takahashi; Almut Arneth; Glen P. Peters; Josep G. Canadell; Etsushi Kato; Robert J. Andres; Kees Klein Goldewijk; Benjamin Poulter; Anna B. Harper; Rik Wanninkhof; Pierre Friedlingstein; Michael R. Raupach; Benjamin D. Stocker; Stephen Sitch; Ralph F. Keeling; Benjamin Pfeil; Benjamin Pfeil; Robbie M. Andrew; S. van Heuven; Charles D. Koven; R. Moriarty; S. Saito; Nathalie Lefèvre; Scott C. Doney; Ian Harris; A. Arvanitis; Nicolas Viovy;Abstract. Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe datasets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil-fuel combustion and cement production (EFF) are based on energy statistics, while emissions from Land-Use Change (ELUC), including deforestation, are based on combined evidence from land-cover change data, fire activity in regions undergoing deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated for the first time in this budget with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of Dynamic Global Vegetation Models. All uncertainties are reported as ± 1 sigma, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2003–2012), EFF was 8.6 ± 0.4 GtC yr−1, ELUC 0.8 ± 0.5 GtC yr−1, GATM 4.3 ± 0.1 GtC yr−1, SOCEAN 2.6 ± 0.5 GtC yr−1, and SLAND 2.6 ± 0.8 GtC yr−1. For year 2012 alone, EFF grew to 9.7 ± 0.5 GtC yr−1, 2.2% above 2011, reflecting a continued trend in these emissions; GATM was 5.2 ± 0.2 GtC yr−1, SOCEAN was 2.9 ± 0.5 GtC yr−1, and assuming and ELUC of 0.9 ± 0.5 GtC yr−1 (based on 2001–2010 average), SLAND was 2.5 ± 0.9 GtC yr−1. GATM was high in 2012 compared to the 2003–2012 average, almost entirely reflecting the high EFF. The global atmospheric CO2 concentration reached 392.52 ± 0.10 ppm on average over 2012. We estimate that EFF will increase by 2.1% (1.1–3.1%) to 9.9 ± 0.5 GtC in 2013, 61% above emissions in 1990, based on projections of World Gross Domestic Product and recent changes in the carbon intensity of the economy. With this projection, cumulative emissions of CO2 will reach about 550 ± 60 GtC for 1870–2013, 70% from EFF (390 ± 20 GtC) and 30% from ELUC (160 ± 55 GtC). This paper is intended to provide a baseline to keep track of annual carbon budgets in the future. All data presented here can be downloaded from the Carbon Dioxide Information Analysis Center (10.3334/CDIAC/GCP_2013_v1.1).
OceanRep arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2014Full-Text: https://hal.science/hal-01828526Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2014License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2015License: CC BYFull-Text: https://hdl.handle.net/1956/10495Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2014Full-Text: https://hal.science/hal-01828526Data sources: Bielefeld Academic Search Engine (BASE)Woods Hole Open Access ServerArticle . 2014License: CC BYFull-Text: https://doi.org/10.3334/CDIAC/GCP_2013_V2.3Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2014Full-Text: https://hal.science/hal-01828526Data sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/74928Data sources: Bielefeld Academic Search Engine (BASE)Columbia University Academic CommonsArticle . 2014Full-Text: https://doi.org/10.7916/D8319V8NData sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/essdd-...Article . 2013 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2014 . Peer-reviewedLicense: CC BYData sources: CrossrefBergen Open Research Archive - UiBArticle . 2014 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBUniversity of Bristol: Bristol ResearchArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essdd-6-689-2013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 381 citations 381 popularity Top 1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert OceanRep arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2014Full-Text: https://hal.science/hal-01828526Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2014License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2015License: CC BYFull-Text: https://hdl.handle.net/1956/10495Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2014Full-Text: https://hal.science/hal-01828526Data sources: Bielefeld Academic Search Engine (BASE)Woods Hole Open Access ServerArticle . 2014License: CC BYFull-Text: https://doi.org/10.3334/CDIAC/GCP_2013_V2.3Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2014Full-Text: https://hal.science/hal-01828526Data sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/74928Data sources: Bielefeld Academic Search Engine (BASE)Columbia University Academic CommonsArticle . 2014Full-Text: https://doi.org/10.7916/D8319V8NData sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/essdd-...Article . 2013 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2014 . Peer-reviewedLicense: CC BYData sources: CrossrefBergen Open Research Archive - UiBArticle . 2014 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBUniversity of Bristol: Bristol ResearchArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essdd-6-689-2013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu