- home
- Advanced Search
- Energy Research
- Transport Research
- Netherlands Research Portal
- Energy Research
- Transport Research
- Netherlands Research Portal
Research data keyboard_double_arrow_right Dataset 2022Publisher:Zenodo Funded by:EC | MAT_STOCKSEC| MAT_STOCKSDavid Frantz; Franz Schug; Dominik Wiedenhofer; André Baumgart; Doris Virág; Sam Cooper; Camila Gomez-Medina; Fabian Lehmann; Thomas Udelhoven; Sebastian van der Linden; Patrick Hostert; Helmut Haberl;Humanity’s role in changing the face of the earth is a long-standing concern, as is the human domination of ecosystems. Geologists are debating the introduction of a new geological epoch, the ‘anthropocene’, as humans are ‘overwhelming the great forces of nature’. In this context, the accumulation of artefacts, i.e., human-made physical objects, is a pervasive phenomenon. Variously dubbed ‘manufactured capital’, ‘technomass’, ‘human-made mass’, ‘in-use stocks’ or ‘socioeconomic material stocks’, they have become a major focus of sustainability sciences in the last decade. Globally, the mass of socioeconomic material stocks now exceeds 10e14 kg, which is roughly equal to the dry-matter equivalent of all biomass on earth. It is doubling roughly every 20 years, almost perfectly in line with ‘real’ (i.e. inflation-adjusted) GDP. In terms of mass, buildings and infrastructures (here collectively called ‘built structures’) represent the overwhelming majority of all socioeconomic material stocks. This dataset features a detailed map of material stocks in the CONUS on a 10m grid based on high resolution Earth Observation data (Sentinel-1 + Sentinel-2), crowd-sourced geodata (OSM) and material intensity factors. Spatial extent This subdataset covers the West Coast CONUS, i.e. CA OR WA For the remaining CONUS, see the related identifiers. Temporal extent The map is representative for ca. 2018. Data format The data are organized by states. Within each state, data are split into 100km x 100km tiles (EQUI7 grid), and mosaics are provided. Within each tile, images for area, volume, and mass at 10m spatial resolution are provided. Units are m², m³, and t, respectively. Each metric is split into buildings, other, rail and street (note: In the paper, other, rail, and street stocks are subsumed to mobility infrastructure). Each category is further split into subcategories (e.g. building types). Additionally, a grand total of all stocks is provided at multiple spatial resolutions and units, i.e. t at 10m x 10m kt at 100m x 100m Mt at 1km x 1km Gt at 10km x 10km For each state, mosaics of all above-described data are provided in GDAL VRT format, which can readily be opened in most Geographic Information Systems. File paths are relative, i.e. DO NOT change the file structure or file naming. Additionally, the grand total mass per state is tabulated for each county in mass_grand_total_t_10m2.tif.csv. County FIPS code and the ID in this table can be related via FIPS-dictionary_ENLOCALE.csv. Material layers Note that material-specific layers are not included in this repository because of upload limits. Only the totals are provided (i.e. the sum over all materials). However, these can easily be derived by re-applying the material intensity factors from (see related identifiers): A. Baumgart, D. Virág, D. Frantz, F. Schug, D. Wiedenhofer, Material intensity factors for buildings, roads and rail-based infrastructure in the United States. Zenodo (2022), doi:10.5281/zenodo.5045337. Further information For further information, please see the publication. A web-visualization of this dataset is available here. Visit our website to learn more about our project MAT_STOCKS - Understanding the Role of Material Stock Patterns for the Transformation to a Sustainable Society. Publication D. Frantz, F. Schug, D. Wiedenhofer, A. Baumgart, D. Virág, S. Cooper, C. Gomez-Medina, F. Lehmann, T. Udelhoven, S. van der Linden, P. Hostert, H. Haberl. Weighing the US Economy: Map of Built Structures Unveils Patterns in Human-Dominated Landscapes. In prep Funding This research was primarly funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (MAT_STOCKS, grant agreement No 741950). Workflow development was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—Project-ID 414984028-SFB 1404. Acknowledgments We thank the European Space Agency and the European Commission for freely and openly sharing Sentinel imagery; USGS for the National Land Cover Database; Microsoft for Building Footprints; Geofabrik and all contributors for OpenStreetMap.This dataset was partly produced on EODC - we thank Clement Atzberger for supporting the generation of this dataset by sharing disc space on EODC.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8176660&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8176660&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:PANGAEA Authors: Sánchez, Nicolás; Brüggemann, Daniel; Goldenberg, Silvan Urs;This data was collected as a part of a mesocosm study to investigate the ecosystem impacts of ocean alkalinity enhancement, within the EU H2020 OceanNETs project. Nine mesocosms were deployed in Taliarte Harbour (Gran Canaria, Spain) and were regularly sampled using integrated water samplers between 10th September-25th October 2021. A gradient design was used in this experiment with a total of nine different alkalinity concentrations. Seawater alkalinity ranged between ambient (0 µeq kg-1 added alkalinity, OAE0) and 2400 µeq kg-1 additional alkalinity (OAE2400). The alkalinity levels increased in equal intervals of 300 µeq kg-1 across nine mesocosms (OAE0, OAE300, OAE600, OAE900, OAE1200, OAE1500, OAE1800, OAE2100, OAE2400). This data set contains metazoan zooplankton biomass (µgC per L) from these nine mesocosms. Biomass was calculated based on zooplankton abundances transformed using carbon mass conversion factors. Metazoan zooplankton were sampled with apstein net (ø17cm, mesh size 55µm, 64.06285L) hauls taken every two days (except for days 5 and 9). Zooplankton were size fractioned and assessed in the correspondent size class (small: 55-200µm; medium: 200-500µm; large: 500µm-3mm). Within each size class, all organisms were counted and identified to the lowest possible taxonomic level, and developmental stages were differentiated where possible. Zooplankton abundances (individuals per L) converted to carbon biomass (µgC per L) using biomass conversion factors. Conversion factors are obtained from different sources (Sanchez et al. (in prep)). Briefly: i) metazoan zooplankton functional groups were sampled and measured for carbon biomass using an elemental analyser at specific points throughout the experiment, ii) individual zooplankton were photographed, measured, and their biovolumes and carbon masses derived using standard conversions cited in the literature, iii) zooplankton conversion factors from KOSMOS Gran Canaria 2019 (https://doi.pangaea.de/10.1594/PANGAEA.971765). The experiment, which lasted 33 days, was divided into four response phases (see Sánchez et al. (in prep)): i) pretreatment (days 1 to 4, treatment was implemented on day 4), ii) immediate (days 5-10), iii) shorter term (days 11-22), iv) longer term (days 23 to 33). This data set is associated to the submission by Paul et al. (in review) (https://doi.pangaea.de/10.1594/PANGAEA.966941), so we refer to this data set for basic parameters like water temperature, salinity, pH and carbonate chemistry, to avoid repetition.
PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2024License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.971764&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2024License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.971764&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report 2017 United StatesPublisher:World Bank, Washington, DC Authors: Foster, Vivien; Pushak, Nataliya;handle: 10986/27770 , 10986/27257
Liberia's 14-year civil war left much of the country's infrastructure shambles. The country's 170 megawatt power generation capacity and national grid were completely destroyed. In Monrovia, just 0.1 percent of households had access to electricity. According to the 2008 National Census, access to piped water fell from 15 percent of the population in 1986 to less than 3 percent in 2008. The national road network was left in severe disrepair. Peace brought many positive developments. The Freeport of Monrovia is now privately managed and has resumed normal operations. Essential rehabilitation work has been carried out, and the port's performance now matches that of neighboring ports along the West African coast. Liberia has also successfully liberalized its mobile telephone markets, with access surging to 40 percent in 2009, at some of the lowest prices in Africa. Despite the potential for private investment, Liberia will likely need more than a decade to reach the illustrative infrastructure targets outlined in this report. Under business-as-usual assumptions for spending and efficiency, it would take at least 40 years for Liberia to reach these goals. Yet with a combination of increased finance, improved efficiency, and cost-reducing innovations, it should be possible to significantly reduce that time.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10986/27770&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10986/27770&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Zenodo Funded by:EC | MAT_STOCKSEC| MAT_STOCKSDavid Frantz; Franz Schug; Dominik Wiedenhofer; André Baumgart; Doris Virág; Sam Cooper; Camila Gomez-Medina; Fabian Lehmann; Thomas Udelhoven; Sebastian van der Linden; Patrick Hostert; Helmut Haberl;Humanity's role in changing the face of the earth is a long-standing concern, as is the human domination of ecosystems. Geologists are debating the introduction of a new geological epoch, the 'anthropocene', as humans are 'overwhelming the great forces of nature'. In this context, the accumulation of artefacts, i.e., human-made physical objects, is a pervasive phenomenon. Variously dubbed 'manufactured capital', 'technomass', 'human-made mass', 'in-use stocks' or 'socioeconomic material stocks', they have become a major focus of sustainability sciences in the last decade. Globally, the mass of socioeconomic material stocks now exceeds 10e14 kg, which is roughly equal to the dry-matter equivalent of all biomass on earth. It is doubling roughly every 20 years, almost perfectly in line with 'real' (i.e. inflation-adjusted) GDP. In terms of mass, buildings and infrastructures (here collectively called 'built structures') represent the overwhelming majority of all socioeconomic material stocks. This dataset features a detailed map of material stocks in the CONUS on a 10m grid based on high resolution Earth Observation data (Sentinel-1 + Sentinel-2), crowd-sourced geodata (OSM) and material intensity factors. Spatial extentThis subdataset covers the South CONUS, i.e. AL AR FL GA KY LA MS NC SC TN VA WV For the remaining CONUS, see the related identifiers. Temporal extentThe map is representative for ca. 2018. Data formatThe data are organized by states. Within each state, data are split into 100km x 100km tiles (EQUI7 grid), and mosaics are provided. Within each tile, images for area, volume, and mass at 10m spatial resolution are provided. Units are m², m³, and t, respectively. Each metric is split into buildings, other, rail and street (note: In the paper, other, rail, and street stocks are subsumed to mobility infrastructure). Each category is further split into subcategories (e.g. building types). Additionally, a grand total of all stocks is provided at multiple spatial resolutions and units, i.e. t at 10m x 10m kt at 100m x 100m Mt at 1km x 1km Gt at 10km x 10km For each state, mosaics of all above-described data are provided in GDAL VRT format, which can readily be opened in most Geographic Information Systems. File paths are relative, i.e. DO NOT change the file structure or file naming. Additionally, the grand total mass per state is tabulated for each county in mass_grand_total_t_10m2.tif.csv. County FIPS code and the ID in this table can be related via FIPS-dictionary_ENLOCALE.csv. Material layersNote that material-specific layers are not included in this repository because of upload limits. Only the totals are provided (i.e. the sum over all materials). However, these can easily be derived by re-applying the material intensity factors from (see related identifiers): A. Baumgart, D. Virág, D. Frantz, F. Schug, D. Wiedenhofer, Material intensity factors for buildings, roads and rail-based infrastructure in the United States. Zenodo (2022), doi:10.5281/zenodo.5045337. Further informationFor further information, please see the publication.A web-visualization of this dataset is available here.Visit our website to learn more about our project MAT_STOCKS - Understanding the Role of Material Stock Patterns for the Transformation to a Sustainable Society. PublicationD. Frantz, F. Schug, D. Wiedenhofer, A. Baumgart, D. Virág, S. Cooper, C. Gómez-Medina, F. Lehmann, T. Udelhoven, S. van der Linden, P. Hostert, and H. Haberl (2023): Unveiling patterns in human dominated landscapes through mapping the mass of US built structures. Nature Communications 14, 8014. https://doi.org/10.1038/s41467-023-43755-5 FundingThis research was primarly funded by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (MAT_STOCKS, grant agreement No 741950). Workflow development was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—Project-ID 414984028-SFB 1404. AcknowledgmentsWe thank the European Space Agency and the European Commission for freely and openly sharing Sentinel imagery; USGS for the National Land Cover Database; Microsoft for Building Footprints; Geofabrik and all contributors for OpenStreetMap.This dataset was partly produced on EODC - we thank Clement Atzberger for supporting the generation of this dataset by sharing disc space on EODC.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6873598&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6873598&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Funded by:EC | MAT_STOCKSEC| MAT_STOCKSHaberl, Helmut; Wiedenhofer, Dominik; Schug, Franz; Frantz, David; Virag, Doris; Plutzar, Christoph; Gruhler, Karin; Lederer, Jakob; Schiller, Georg; Fishman, Tomer; Lanau, Maud; Gattringer, Andreas; Kemper, Thomas; Liu, Gang; Tanikawa, Hiroki; van der Linden, Sebastian; Hostert, Patrick;Dynamics of societal material stocks such as buildings and infrastructures and their spatial patterns drive surging resource use and emissions. Building up and maintaining stocks requires large amounts of resources; currently stock-building materials amount to almost 60% of all materials used by humanity. Buildings, infrastructures and machinery shape social practices of production and consumption, thereby creating path dependencies for future resource use. They constitute the physical basis of the spatial organization of most socio-economic activities, for example as mobility networks, urbanization and settlement patterns and various other infrastructures. This dataset features a detailed map of material stocks for the whole of Germany on a 10m grid based on high resolution Earth Observation data (Sentinel-1 + Sentinel-2), crowd-sourced geodata (OSM) and material intensity factors. Temporal extent The map is representative for ca. 2018. Data format Per federal state, the data come in tiles of 30x30km (see shapefile). The projection is EPSG:3035. The images are compressed GeoTiff files (*.tif). There is a mosaic in GDAL Virtual format (*.vrt), which can readily be opened in most Geographic Information Systems. The dataset features area and mass for different street types area and mass for different rail types area and mass for other infrastructure area, volume and mass for different building types Masses are reported as total values, and per material category. Units area in m² height in m volume in m³ mass in t for infrastructure and buildings Further information For further information, please see the publication or contact Helmut Haberl (helmut.haberl@boku.ac.at). A web-visualization of this dataset is available here. Visit our website to learn more about our project MAT_STOCKS - Understanding the Role of Material Stock Patterns for the Transformation to a Sustainable Society. Publication Haberl, H., Wiedenhofer, D., Schug, F., Frantz, D., Virág, D., Plutzar, C., Gruhler, K., Lederer, J., Schiller, G. , Fishman, T., Lanau, M., Gattringer, A., Kemper, T., Liu, G., Tanikawa, H., van der Linden, S., Hostert, P. (accepted): High-resolution maps of material stocks in buildings and infrastructures in Austria and Germany. Environmental Science & Technology Funding This research was primarly funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (MAT_STOCKS, grant agreement No 741950). ML and GL acknowledge funding by the Independent Research Fund Denmark (CityWeight, 6111-00555B), ML thanks the Engineering and Physical Sciences Research Council (EPSRC; project Multi-Scale, Circular Economic Potential of Non-Residential Building Scale, EP/S029273/1), JL acknowledges funding by the Vienna Science and Technology Fund (WWTF), project ESR17-067, TF acknowledges the Israel Science Foundation grant no. 2706/19.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4536989&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 586visibility views 586 download downloads 70 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4536989&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 Germany, France, FrancePublisher:Public Library of Science (PLoS) Herbert Siegel; Gaute Lavik; Carolin R. Löscher; Harald Schunck; Harald Schunck; Markus Schilhabel; Dhwani K. Desai; Dhwani K. Desai; Sergio Contreras; Sergio Contreras; Marcel M. M. Kuypers; Philip Rosenstiel; Ruth A. Schmitz; Tobias Großkopf; Tobias Großkopf; Moritz Holtappels; Tim Kalvelage; Michelle Graco; Julie LaRoche; Julie LaRoche; Aurélien Paulmier;In Eastern Boundary Upwelling Systems nutrient-rich waters are transported to the ocean surface, fuelling high photoautotrophic primary production. Subsequent heterotrophic decomposition of the produced biomass increases the oxygen-depletion at intermediate water depths, which can result in the formation of oxygen minimum zones (OMZ). OMZs can sporadically accumulate hydrogen sulfide (H2S), which is toxic to most multicellular organisms and has been implicated in massive fish kills. During a cruise to the OMZ off Peru in January 2009 we found a sulfidic plume in continental shelf waters, covering an area >5500 km(2), which contained ∼2.2×10(4) tons of H2S. This was the first time that H2S was measured in the Peruvian OMZ and with ∼440 km(3) the largest plume ever reported for oceanic waters. We assessed the phylogenetic and functional diversity of the inhabiting microbial community by high-throughput sequencing of DNA and RNA, while its metabolic activity was determined with rate measurements of carbon fixation and nitrogen transformation processes. The waters were dominated by several distinct γ-, δ- and ε-proteobacterial taxa associated with either sulfur oxidation or sulfate reduction. Our results suggest that these chemolithoautotrophic bacteria utilized several oxidants (oxygen, nitrate, nitrite, nitric oxide and nitrous oxide) to detoxify the sulfidic waters well below the oxic surface. The chemolithoautotrophic activity at our sampling site led to high rates of dark carbon fixation. Assuming that these chemolithoautotrophic rates were maintained throughout the sulfidic waters, they could be representing as much as ∼30% of the photoautotrophic carbon fixation. Postulated changes such as eutrophication and global warming, which lead to an expansion and intensification of OMZs, might also increase the frequency of sulfidic waters. We suggest that the chemolithoautotrophically fixed carbon may be involved in a negative feedback loop that could fuel further sulfate reduction and potentially stabilize the sulfidic OMZ waters.
OceanRep arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverInstitut national des sciences de l'Univers: HAL-INSUArticle . 2013Full-Text: https://hal.science/hal-00998673Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2013 . Peer-reviewedData sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0068661&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 183 citations 183 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert OceanRep arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverInstitut national des sciences de l'Univers: HAL-INSUArticle . 2013Full-Text: https://hal.science/hal-00998673Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2013 . Peer-reviewedData sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0068661&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: James W. Heim; Randy L. Vander Wal;doi: 10.3390/min13101274
Rare earth element (REE) permanent magnets (NdFeB) are a critical element in a vast and growing number of industrial applications. In consumer electronics, a broad category encompassing computer, CD, and DVD hard drives, in addition to the ubiquitous cell phones, the nominal NdFeB magnet content may be small, but the global market share for this sector accounts for almost 30% of NdFeB demand, due to a large and continually increasing consumer base. It is estimated that wind turbines that primarily employ permanent magnets will add roughly 110 GW annually of on- and off-shore capability over the next few years. Electric vehicles (EVs) and E-bicycles (EBs) equipped with permanent magnet motors comprise the transportation contribution. Permanent magnet motors have garnered nearly 100% of the market share among EV manufacturers worldwide. Industrial, professional service, and personal robots, most using permanent magnets, are also included in the projected global need for rare earths, particularly Nd and Dy. The sector projects significant growth of approximately 10% across robotic categories. In this paper, we calculate the future demand for Nd and Dy through 2050 across these sectors using a compounded annual growth rate coupled with magnet weight and rare earth content. Uncertainties in the estimates, such as the true global production of Nd, a range of end-product scales and/or unit types in each sector, varied magnet compositions, and the variety of uses within a sector, are all considered.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/min13101274&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 10 citations 10 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/min13101274&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report 2016 United StatesPublisher:World Bank, Washington, DC Authors: Mot, Manuela; Bose, Ranjan; Burduja, Sebastian; Ionescu-Heroiu, Marcel;handle: 10986/24361
The Tool for Rapid Assessment of City Energy (TRACE) is used for conducting rapid assessments of energy use in cities. It helps prioritize sectors with significant energy savings potential, and identifies appropriate energy efficiency interventions across six sectors-transport, municipal buildings, water and waste water, public lighting, solid waste, and power and heat. It is a simple, low-cost, user-friendly, and practical tool that can be applied in any socioeconomic setting. While this work focuses on the growth poles in Romania, the analysis was limited to the boundary of the center city of Brasov, due to the difficulty of collecting individual indicators for all the constituent localities of a metropolitan area. The report details the analysis carried out and the recommendations derived as a result, for district heating maintenance and upgrade, non-motorized transport, public transport development, parking restraint measures, municipal buildings audit and retrofit, street lighting timing program, and active leakage of water and pressure management.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10986/24361&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10986/24361&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal , Preprint 2019Publisher:MDPI AG Authors: Arthur Trembanis; Alimjan Abla; Ken Haulsee; Carter DuVal;This study utilizes repeated geoacoustic mapping to quantify the morphodynamic response of the nearshore to storm-induced changes. The aim of this study was to quantitatively map the nearshore zone of Assateague Island National Seashore (ASIS) to determine what changes in bottom geomorphology and benthic habitats are attributable to storm events including hurricane Sandy and the passage of hurricane Joaquin. Specifically, (1) the entire domain of the National Parks Service offshore area was mapped with side-scan sonar and multibeam bathymetry at a resolution comparable to that of the existing pre-storm survey, (2) a subset of the benthic stations were resampled that represented all sediment strata previously identified, and (3) newly obtained data were compared to that from the pre-storm survey to determined changes that could be attributed to specific storms such as Sandy and Joaquin. Capturing event specific dynamics requires rapid response surveys in close temporal association of the before and after period. The time-lapse between the pre-storm surveys for Sandy and our study meant that only a time and storm integrated signature for that storm could be obtained whereas with hurricane Joaquin we could identify impacts to the habitat type and geomorphology more directly related to that particular storm. This storm impacts study provides for the National Park Service direct documentation of storm-related changes in sediments and marine habitats on multiple scales: From large scale, side-scan sonar maps and interpretation of acoustic bottom types, to characterize as fully as possible habitats from 1 to 10 m up to many kilometer scales, as well as from point benthic samples within each sediment stratum and these results can help guide management of the island resources.
Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.20944/prepr...Article . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse7100371&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.20944/prepr...Article . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse7100371&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 Germany, SpainPublisher:Public Library of Science (PLoS) Funded by:EC | EPOCAEC| EPOCALebrato, Mario; Molinero, Juan Carlos; Cartes, Joan E.; Lloris, Domingo; Melin, Frederic; Beni-Casadella, Laia;Particulate matter export fuels benthic ecosystems in continental margins and the deep sea, removing carbon from the upper ocean. Gelatinous zooplankton biomass provides a fast carbon vector that has been poorly studied. Observational data of a large-scale benthic trawling survey from 1994 to 2005 provided a unique opportunity to quantify jelly-carbon along an entire continental margin in the Mediterranean Sea and to assess potential links with biological and physical variables. Biomass depositions were sampled in shelves, slopes and canyons with peaks above 1000 carcasses per trawl, translating to standing stock values between 0.3 and 1.4 mg C m(2) after trawling and integrating between 30,000 and 175,000 m(2) of seabed. The benthopelagic jelly-carbon spatial distribution from the shelf to the canyons may be explained by atmospheric forcing related with NAO events and dense shelf water cascading, which are both known from the open Mediterranean. Over the decadal scale, we show that the jelly-carbon depositions temporal variability paralleled hydroclimate modifications, and that the enhanced jelly-carbon deposits are connected to a temperature-driven system where chlorophyll plays a minor role. Our results highlight the importance of gelatinous groups as indicators of large-scale ecosystem change, where jelly-carbon depositions play an important role in carbon and energy transport to benthic systems.
OceanRep arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2013 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0082070&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 10visibility views 10 download downloads 32 Powered bymore_vert OceanRep arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2013 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0082070&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2022Publisher:Zenodo Funded by:EC | MAT_STOCKSEC| MAT_STOCKSDavid Frantz; Franz Schug; Dominik Wiedenhofer; André Baumgart; Doris Virág; Sam Cooper; Camila Gomez-Medina; Fabian Lehmann; Thomas Udelhoven; Sebastian van der Linden; Patrick Hostert; Helmut Haberl;Humanity’s role in changing the face of the earth is a long-standing concern, as is the human domination of ecosystems. Geologists are debating the introduction of a new geological epoch, the ‘anthropocene’, as humans are ‘overwhelming the great forces of nature’. In this context, the accumulation of artefacts, i.e., human-made physical objects, is a pervasive phenomenon. Variously dubbed ‘manufactured capital’, ‘technomass’, ‘human-made mass’, ‘in-use stocks’ or ‘socioeconomic material stocks’, they have become a major focus of sustainability sciences in the last decade. Globally, the mass of socioeconomic material stocks now exceeds 10e14 kg, which is roughly equal to the dry-matter equivalent of all biomass on earth. It is doubling roughly every 20 years, almost perfectly in line with ‘real’ (i.e. inflation-adjusted) GDP. In terms of mass, buildings and infrastructures (here collectively called ‘built structures’) represent the overwhelming majority of all socioeconomic material stocks. This dataset features a detailed map of material stocks in the CONUS on a 10m grid based on high resolution Earth Observation data (Sentinel-1 + Sentinel-2), crowd-sourced geodata (OSM) and material intensity factors. Spatial extent This subdataset covers the West Coast CONUS, i.e. CA OR WA For the remaining CONUS, see the related identifiers. Temporal extent The map is representative for ca. 2018. Data format The data are organized by states. Within each state, data are split into 100km x 100km tiles (EQUI7 grid), and mosaics are provided. Within each tile, images for area, volume, and mass at 10m spatial resolution are provided. Units are m², m³, and t, respectively. Each metric is split into buildings, other, rail and street (note: In the paper, other, rail, and street stocks are subsumed to mobility infrastructure). Each category is further split into subcategories (e.g. building types). Additionally, a grand total of all stocks is provided at multiple spatial resolutions and units, i.e. t at 10m x 10m kt at 100m x 100m Mt at 1km x 1km Gt at 10km x 10km For each state, mosaics of all above-described data are provided in GDAL VRT format, which can readily be opened in most Geographic Information Systems. File paths are relative, i.e. DO NOT change the file structure or file naming. Additionally, the grand total mass per state is tabulated for each county in mass_grand_total_t_10m2.tif.csv. County FIPS code and the ID in this table can be related via FIPS-dictionary_ENLOCALE.csv. Material layers Note that material-specific layers are not included in this repository because of upload limits. Only the totals are provided (i.e. the sum over all materials). However, these can easily be derived by re-applying the material intensity factors from (see related identifiers): A. Baumgart, D. Virág, D. Frantz, F. Schug, D. Wiedenhofer, Material intensity factors for buildings, roads and rail-based infrastructure in the United States. Zenodo (2022), doi:10.5281/zenodo.5045337. Further information For further information, please see the publication. A web-visualization of this dataset is available here. Visit our website to learn more about our project MAT_STOCKS - Understanding the Role of Material Stock Patterns for the Transformation to a Sustainable Society. Publication D. Frantz, F. Schug, D. Wiedenhofer, A. Baumgart, D. Virág, S. Cooper, C. Gomez-Medina, F. Lehmann, T. Udelhoven, S. van der Linden, P. Hostert, H. Haberl. Weighing the US Economy: Map of Built Structures Unveils Patterns in Human-Dominated Landscapes. In prep Funding This research was primarly funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (MAT_STOCKS, grant agreement No 741950). Workflow development was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—Project-ID 414984028-SFB 1404. Acknowledgments We thank the European Space Agency and the European Commission for freely and openly sharing Sentinel imagery; USGS for the National Land Cover Database; Microsoft for Building Footprints; Geofabrik and all contributors for OpenStreetMap.This dataset was partly produced on EODC - we thank Clement Atzberger for supporting the generation of this dataset by sharing disc space on EODC.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8176660&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8176660&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:PANGAEA Authors: Sánchez, Nicolás; Brüggemann, Daniel; Goldenberg, Silvan Urs;This data was collected as a part of a mesocosm study to investigate the ecosystem impacts of ocean alkalinity enhancement, within the EU H2020 OceanNETs project. Nine mesocosms were deployed in Taliarte Harbour (Gran Canaria, Spain) and were regularly sampled using integrated water samplers between 10th September-25th October 2021. A gradient design was used in this experiment with a total of nine different alkalinity concentrations. Seawater alkalinity ranged between ambient (0 µeq kg-1 added alkalinity, OAE0) and 2400 µeq kg-1 additional alkalinity (OAE2400). The alkalinity levels increased in equal intervals of 300 µeq kg-1 across nine mesocosms (OAE0, OAE300, OAE600, OAE900, OAE1200, OAE1500, OAE1800, OAE2100, OAE2400). This data set contains metazoan zooplankton biomass (µgC per L) from these nine mesocosms. Biomass was calculated based on zooplankton abundances transformed using carbon mass conversion factors. Metazoan zooplankton were sampled with apstein net (ø17cm, mesh size 55µm, 64.06285L) hauls taken every two days (except for days 5 and 9). Zooplankton were size fractioned and assessed in the correspondent size class (small: 55-200µm; medium: 200-500µm; large: 500µm-3mm). Within each size class, all organisms were counted and identified to the lowest possible taxonomic level, and developmental stages were differentiated where possible. Zooplankton abundances (individuals per L) converted to carbon biomass (µgC per L) using biomass conversion factors. Conversion factors are obtained from different sources (Sanchez et al. (in prep)). Briefly: i) metazoan zooplankton functional groups were sampled and measured for carbon biomass using an elemental analyser at specific points throughout the experiment, ii) individual zooplankton were photographed, measured, and their biovolumes and carbon masses derived using standard conversions cited in the literature, iii) zooplankton conversion factors from KOSMOS Gran Canaria 2019 (https://doi.pangaea.de/10.1594/PANGAEA.971765). The experiment, which lasted 33 days, was divided into four response phases (see Sánchez et al. (in prep)): i) pretreatment (days 1 to 4, treatment was implemented on day 4), ii) immediate (days 5-10), iii) shorter term (days 11-22), iv) longer term (days 23 to 33). This data set is associated to the submission by Paul et al. (in review) (https://doi.pangaea.de/10.1594/PANGAEA.966941), so we refer to this data set for basic parameters like water temperature, salinity, pH and carbonate chemistry, to avoid repetition.
PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2024License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.971764&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2024License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.971764&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report 2017 United StatesPublisher:World Bank, Washington, DC Authors: Foster, Vivien; Pushak, Nataliya;handle: 10986/27770 , 10986/27257
Liberia's 14-year civil war left much of the country's infrastructure shambles. The country's 170 megawatt power generation capacity and national grid were completely destroyed. In Monrovia, just 0.1 percent of households had access to electricity. According to the 2008 National Census, access to piped water fell from 15 percent of the population in 1986 to less than 3 percent in 2008. The national road network was left in severe disrepair. Peace brought many positive developments. The Freeport of Monrovia is now privately managed and has resumed normal operations. Essential rehabilitation work has been carried out, and the port's performance now matches that of neighboring ports along the West African coast. Liberia has also successfully liberalized its mobile telephone markets, with access surging to 40 percent in 2009, at some of the lowest prices in Africa. Despite the potential for private investment, Liberia will likely need more than a decade to reach the illustrative infrastructure targets outlined in this report. Under business-as-usual assumptions for spending and efficiency, it would take at least 40 years for Liberia to reach these goals. Yet with a combination of increased finance, improved efficiency, and cost-reducing innovations, it should be possible to significantly reduce that time.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10986/27770&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10986/27770&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Zenodo Funded by:EC | MAT_STOCKSEC| MAT_STOCKSDavid Frantz; Franz Schug; Dominik Wiedenhofer; André Baumgart; Doris Virág; Sam Cooper; Camila Gomez-Medina; Fabian Lehmann; Thomas Udelhoven; Sebastian van der Linden; Patrick Hostert; Helmut Haberl;Humanity's role in changing the face of the earth is a long-standing concern, as is the human domination of ecosystems. Geologists are debating the introduction of a new geological epoch, the 'anthropocene', as humans are 'overwhelming the great forces of nature'. In this context, the accumulation of artefacts, i.e., human-made physical objects, is a pervasive phenomenon. Variously dubbed 'manufactured capital', 'technomass', 'human-made mass', 'in-use stocks' or 'socioeconomic material stocks', they have become a major focus of sustainability sciences in the last decade. Globally, the mass of socioeconomic material stocks now exceeds 10e14 kg, which is roughly equal to the dry-matter equivalent of all biomass on earth. It is doubling roughly every 20 years, almost perfectly in line with 'real' (i.e. inflation-adjusted) GDP. In terms of mass, buildings and infrastructures (here collectively called 'built structures') represent the overwhelming majority of all socioeconomic material stocks. This dataset features a detailed map of material stocks in the CONUS on a 10m grid based on high resolution Earth Observation data (Sentinel-1 + Sentinel-2), crowd-sourced geodata (OSM) and material intensity factors. Spatial extentThis subdataset covers the South CONUS, i.e. AL AR FL GA KY LA MS NC SC TN VA WV For the remaining CONUS, see the related identifiers. Temporal extentThe map is representative for ca. 2018. Data formatThe data are organized by states. Within each state, data are split into 100km x 100km tiles (EQUI7 grid), and mosaics are provided. Within each tile, images for area, volume, and mass at 10m spatial resolution are provided. Units are m², m³, and t, respectively. Each metric is split into buildings, other, rail and street (note: In the paper, other, rail, and street stocks are subsumed to mobility infrastructure). Each category is further split into subcategories (e.g. building types). Additionally, a grand total of all stocks is provided at multiple spatial resolutions and units, i.e. t at 10m x 10m kt at 100m x 100m Mt at 1km x 1km Gt at 10km x 10km For each state, mosaics of all above-described data are provided in GDAL VRT format, which can readily be opened in most Geographic Information Systems. File paths are relative, i.e. DO NOT change the file structure or file naming. Additionally, the grand total mass per state is tabulated for each county in mass_grand_total_t_10m2.tif.csv. County FIPS code and the ID in this table can be related via FIPS-dictionary_ENLOCALE.csv. Material layersNote that material-specific layers are not included in this repository because of upload limits. Only the totals are provided (i.e. the sum over all materials). However, these can easily be derived by re-applying the material intensity factors from (see related identifiers): A. Baumgart, D. Virág, D. Frantz, F. Schug, D. Wiedenhofer, Material intensity factors for buildings, roads and rail-based infrastructure in the United States. Zenodo (2022), doi:10.5281/zenodo.5045337. Further informationFor further information, please see the publication.A web-visualization of this dataset is available here.Visit our website to learn more about our project MAT_STOCKS - Understanding the Role of Material Stock Patterns for the Transformation to a Sustainable Society. PublicationD. Frantz, F. Schug, D. Wiedenhofer, A. Baumgart, D. Virág, S. Cooper, C. Gómez-Medina, F. Lehmann, T. Udelhoven, S. van der Linden, P. Hostert, and H. Haberl (2023): Unveiling patterns in human dominated landscapes through mapping the mass of US built structures. Nature Communications 14, 8014. https://doi.org/10.1038/s41467-023-43755-5 FundingThis research was primarly funded by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (MAT_STOCKS, grant agreement No 741950). Workflow development was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—Project-ID 414984028-SFB 1404. AcknowledgmentsWe thank the European Space Agency and the European Commission for freely and openly sharing Sentinel imagery; USGS for the National Land Cover Database; Microsoft for Building Footprints; Geofabrik and all contributors for OpenStreetMap.This dataset was partly produced on EODC - we thank Clement Atzberger for supporting the generation of this dataset by sharing disc space on EODC.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6873598&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6873598&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Funded by:EC | MAT_STOCKSEC| MAT_STOCKSHaberl, Helmut; Wiedenhofer, Dominik; Schug, Franz; Frantz, David; Virag, Doris; Plutzar, Christoph; Gruhler, Karin; Lederer, Jakob; Schiller, Georg; Fishman, Tomer; Lanau, Maud; Gattringer, Andreas; Kemper, Thomas; Liu, Gang; Tanikawa, Hiroki; van der Linden, Sebastian; Hostert, Patrick;Dynamics of societal material stocks such as buildings and infrastructures and their spatial patterns drive surging resource use and emissions. Building up and maintaining stocks requires large amounts of resources; currently stock-building materials amount to almost 60% of all materials used by humanity. Buildings, infrastructures and machinery shape social practices of production and consumption, thereby creating path dependencies for future resource use. They constitute the physical basis of the spatial organization of most socio-economic activities, for example as mobility networks, urbanization and settlement patterns and various other infrastructures. This dataset features a detailed map of material stocks for the whole of Germany on a 10m grid based on high resolution Earth Observation data (Sentinel-1 + Sentinel-2), crowd-sourced geodata (OSM) and material intensity factors. Temporal extent The map is representative for ca. 2018. Data format Per federal state, the data come in tiles of 30x30km (see shapefile). The projection is EPSG:3035. The images are compressed GeoTiff files (*.tif). There is a mosaic in GDAL Virtual format (*.vrt), which can readily be opened in most Geographic Information Systems. The dataset features area and mass for different street types area and mass for different rail types area and mass for other infrastructure area, volume and mass for different building types Masses are reported as total values, and per material category. Units area in m² height in m volume in m³ mass in t for infrastructure and buildings Further information For further information, please see the publication or contact Helmut Haberl (helmut.haberl@boku.ac.at). A web-visualization of this dataset is available here. Visit our website to learn more about our project MAT_STOCKS - Understanding the Role of Material Stock Patterns for the Transformation to a Sustainable Society. Publication Haberl, H., Wiedenhofer, D., Schug, F., Frantz, D., Virág, D., Plutzar, C., Gruhler, K., Lederer, J., Schiller, G. , Fishman, T., Lanau, M., Gattringer, A., Kemper, T., Liu, G., Tanikawa, H., van der Linden, S., Hostert, P. (accepted): High-resolution maps of material stocks in buildings and infrastructures in Austria and Germany. Environmental Science & Technology Funding This research was primarly funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (MAT_STOCKS, grant agreement No 741950). ML and GL acknowledge funding by the Independent Research Fund Denmark (CityWeight, 6111-00555B), ML thanks the Engineering and Physical Sciences Research Council (EPSRC; project Multi-Scale, Circular Economic Potential of Non-Residential Building Scale, EP/S029273/1), JL acknowledges funding by the Vienna Science and Technology Fund (WWTF), project ESR17-067, TF acknowledges the Israel Science Foundation grant no. 2706/19.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4536989&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 586visibility views 586 download downloads 70 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4536989&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 Germany, France, FrancePublisher:Public Library of Science (PLoS) Herbert Siegel; Gaute Lavik; Carolin R. Löscher; Harald Schunck; Harald Schunck; Markus Schilhabel; Dhwani K. Desai; Dhwani K. Desai; Sergio Contreras; Sergio Contreras; Marcel M. M. Kuypers; Philip Rosenstiel; Ruth A. Schmitz; Tobias Großkopf; Tobias Großkopf; Moritz Holtappels; Tim Kalvelage; Michelle Graco; Julie LaRoche; Julie LaRoche; Aurélien Paulmier;In Eastern Boundary Upwelling Systems nutrient-rich waters are transported to the ocean surface, fuelling high photoautotrophic primary production. Subsequent heterotrophic decomposition of the produced biomass increases the oxygen-depletion at intermediate water depths, which can result in the formation of oxygen minimum zones (OMZ). OMZs can sporadically accumulate hydrogen sulfide (H2S), which is toxic to most multicellular organisms and has been implicated in massive fish kills. During a cruise to the OMZ off Peru in January 2009 we found a sulfidic plume in continental shelf waters, covering an area >5500 km(2), which contained ∼2.2×10(4) tons of H2S. This was the first time that H2S was measured in the Peruvian OMZ and with ∼440 km(3) the largest plume ever reported for oceanic waters. We assessed the phylogenetic and functional diversity of the inhabiting microbial community by high-throughput sequencing of DNA and RNA, while its metabolic activity was determined with rate measurements of carbon fixation and nitrogen transformation processes. The waters were dominated by several distinct γ-, δ- and ε-proteobacterial taxa associated with either sulfur oxidation or sulfate reduction. Our results suggest that these chemolithoautotrophic bacteria utilized several oxidants (oxygen, nitrate, nitrite, nitric oxide and nitrous oxide) to detoxify the sulfidic waters well below the oxic surface. The chemolithoautotrophic activity at our sampling site led to high rates of dark carbon fixation. Assuming that these chemolithoautotrophic rates were maintained throughout the sulfidic waters, they could be representing as much as ∼30% of the photoautotrophic carbon fixation. Postulated changes such as eutrophication and global warming, which lead to an expansion and intensification of OMZs, might also increase the frequency of sulfidic waters. We suggest that the chemolithoautotrophically fixed carbon may be involved in a negative feedback loop that could fuel further sulfate reduction and potentially stabilize the sulfidic OMZ waters.
OceanRep arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverInstitut national des sciences de l'Univers: HAL-INSUArticle . 2013Full-Text: https://hal.science/hal-00998673Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2013 . Peer-reviewedData sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0068661&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 183 citations 183 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert OceanRep arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverInstitut national des sciences de l'Univers: HAL-INSUArticle . 2013Full-Text: https://hal.science/hal-00998673Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2013 . Peer-reviewedData sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0068661&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: James W. Heim; Randy L. Vander Wal;doi: 10.3390/min13101274
Rare earth element (REE) permanent magnets (NdFeB) are a critical element in a vast and growing number of industrial applications. In consumer electronics, a broad category encompassing computer, CD, and DVD hard drives, in addition to the ubiquitous cell phones, the nominal NdFeB magnet content may be small, but the global market share for this sector accounts for almost 30% of NdFeB demand, due to a large and continually increasing consumer base. It is estimated that wind turbines that primarily employ permanent magnets will add roughly 110 GW annually of on- and off-shore capability over the next few years. Electric vehicles (EVs) and E-bicycles (EBs) equipped with permanent magnet motors comprise the transportation contribution. Permanent magnet motors have garnered nearly 100% of the market share among EV manufacturers worldwide. Industrial, professional service, and personal robots, most using permanent magnets, are also included in the projected global need for rare earths, particularly Nd and Dy. The sector projects significant growth of approximately 10% across robotic categories. In this paper, we calculate the future demand for Nd and Dy through 2050 across these sectors using a compounded annual growth rate coupled with magnet weight and rare earth content. Uncertainties in the estimates, such as the true global production of Nd, a range of end-product scales and/or unit types in each sector, varied magnet compositions, and the variety of uses within a sector, are all considered.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/min13101274&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 10 citations 10 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/min13101274&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report 2016 United StatesPublisher:World Bank, Washington, DC Authors: Mot, Manuela; Bose, Ranjan; Burduja, Sebastian; Ionescu-Heroiu, Marcel;handle: 10986/24361
The Tool for Rapid Assessment of City Energy (TRACE) is used for conducting rapid assessments of energy use in cities. It helps prioritize sectors with significant energy savings potential, and identifies appropriate energy efficiency interventions across six sectors-transport, municipal buildings, water and waste water, public lighting, solid waste, and power and heat. It is a simple, low-cost, user-friendly, and practical tool that can be applied in any socioeconomic setting. While this work focuses on the growth poles in Romania, the analysis was limited to the boundary of the center city of Brasov, due to the difficulty of collecting individual indicators for all the constituent localities of a metropolitan area. The report details the analysis carried out and the recommendations derived as a result, for district heating maintenance and upgrade, non-motorized transport, public transport development, parking restraint measures, municipal buildings audit and retrofit, street lighting timing program, and active leakage of water and pressure management.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10986/24361&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10986/24361&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal , Preprint 2019Publisher:MDPI AG Authors: Arthur Trembanis; Alimjan Abla; Ken Haulsee; Carter DuVal;This study utilizes repeated geoacoustic mapping to quantify the morphodynamic response of the nearshore to storm-induced changes. The aim of this study was to quantitatively map the nearshore zone of Assateague Island National Seashore (ASIS) to determine what changes in bottom geomorphology and benthic habitats are attributable to storm events including hurricane Sandy and the passage of hurricane Joaquin. Specifically, (1) the entire domain of the National Parks Service offshore area was mapped with side-scan sonar and multibeam bathymetry at a resolution comparable to that of the existing pre-storm survey, (2) a subset of the benthic stations were resampled that represented all sediment strata previously identified, and (3) newly obtained data were compared to that from the pre-storm survey to determined changes that could be attributed to specific storms such as Sandy and Joaquin. Capturing event specific dynamics requires rapid response surveys in close temporal association of the before and after period. The time-lapse between the pre-storm surveys for Sandy and our study meant that only a time and storm integrated signature for that storm could be obtained whereas with hurricane Joaquin we could identify impacts to the habitat type and geomorphology more directly related to that particular storm. This storm impacts study provides for the National Park Service direct documentation of storm-related changes in sediments and marine habitats on multiple scales: From large scale, side-scan sonar maps and interpretation of acoustic bottom types, to characterize as fully as possible habitats from 1 to 10 m up to many kilometer scales, as well as from point benthic samples within each sediment stratum and these results can help guide management of the island resources.
Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.20944/prepr...Article . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse7100371&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.20944/prepr...Article . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse7100371&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 Germany, SpainPublisher:Public Library of Science (PLoS) Funded by:EC | EPOCAEC| EPOCALebrato, Mario; Molinero, Juan Carlos; Cartes, Joan E.; Lloris, Domingo; Melin, Frederic; Beni-Casadella, Laia;Particulate matter export fuels benthic ecosystems in continental margins and the deep sea, removing carbon from the upper ocean. Gelatinous zooplankton biomass provides a fast carbon vector that has been poorly studied. Observational data of a large-scale benthic trawling survey from 1994 to 2005 provided a unique opportunity to quantify jelly-carbon along an entire continental margin in the Mediterranean Sea and to assess potential links with biological and physical variables. Biomass depositions were sampled in shelves, slopes and canyons with peaks above 1000 carcasses per trawl, translating to standing stock values between 0.3 and 1.4 mg C m(2) after trawling and integrating between 30,000 and 175,000 m(2) of seabed. The benthopelagic jelly-carbon spatial distribution from the shelf to the canyons may be explained by atmospheric forcing related with NAO events and dense shelf water cascading, which are both known from the open Mediterranean. Over the decadal scale, we show that the jelly-carbon depositions temporal variability paralleled hydroclimate modifications, and that the enhanced jelly-carbon deposits are connected to a temperature-driven system where chlorophyll plays a minor role. Our results highlight the importance of gelatinous groups as indicators of large-scale ecosystem change, where jelly-carbon depositions play an important role in carbon and energy transport to benthic systems.
OceanRep arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2013 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0082070&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 10visibility views 10 download downloads 32 Powered bymore_vert OceanRep arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2013 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0082070&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu