- home
- Advanced Search
- Energy Research
- Restricted
- Open Source
- EU
- CN
- Transport Research
- Energy Research
- Restricted
- Open Source
- EU
- CN
- Transport Research
description Publicationkeyboard_double_arrow_right Article 2022 GermanyPublisher:Elsevier BV As the largest renewable electricity source, hydropower represents an alternative to fossil fuels to achieve a low-carbon future. However, increasing evidence suggests that hydropower reservoirs are an important source of biogenic greenhouse gases (GHGs), albeit with large uncertainties. Combining spatially resolved assessments of GHG fluxes and hydroelectric capacity databases, we assessed that global GHG emissions from reservoirs is 0.38 Pg CO2 eq.yr−1, accounting for 1.0% of global anthropogenic emissions. The median carbon intensity for hydropower is ∼63.0 kg CO2eq. MWh−1, which is lower than that for fossil fuels, but higher than that for other renewable energy sources. High carbon intensity is mostly linked to shallow (water storage depth <20 m) and eutrophic reservoirs. Furthermore, we found that the reservoir carbon intensity (CI) value would be markedly increased to 131.5 kg CO2eq. MWh−1 when considering the dams under construction and planning. A low-carbon future will benefit from optimal dam planning and management measures, i.e., applying sludge removal treatments, thereby reducing the proportion of shallow reservoirs and anthropogenic pollution.
OceanRep arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2022.112433&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert OceanRep arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2022.112433&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 DenmarkPublisher:Elsevier BV Authors:Jingzheng Ren;
Hanwei Liang; Jing Yu; Weishi Zhang; +3 AuthorsJingzheng Ren
Jingzheng Ren in OpenAIREJingzheng Ren;
Hanwei Liang; Jing Yu; Weishi Zhang; Linmao Ma;Jingzheng Ren
Jingzheng Ren in OpenAIRELong Zhang;
Long Zhang;Long Zhang
Long Zhang in OpenAIREAbstract Fuel Cell Vehicles (FCVs) has been introduced to the market around the world in recent years. As the largest automobile market of the world, China is also one of the potential FCVs market. However, a series of factors and barriers influence the willingness of China's customers to accept FCVs. By using Fishbone Diagram, field survey and workshop discussions, this paper proposes a group of factors that may affect customers' preferences on FCVs. Furthermore, Fuzzy AHP and Pareto Analysis are employed to prioritize these factors, and identify the critical ones. The results indicate that fuel availability, vehicle performance, and economic costs are the most important dimensions in affecting customers' attitude towards FCVs. More specifically, vehicle reliability and safety, purchasing cost, industry development, vehicle model and space contribute the most significance in customers' purchase decision. According to the results, some policy implications are proposed from the prospective of improving and demonstrating vehicle performance, government leading facility construction and operation, and costs reductions.
PURE Aarhus Universi... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Southern Denmark Research OutputArticle . 2016Data sources: University of Southern Denmark Research OutputInternational Journal of Hydrogen EnergyArticle . 2016Data sources: University of Southern Denmark Research Outputadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2016.08.044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert PURE Aarhus Universi... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Southern Denmark Research OutputArticle . 2016Data sources: University of Southern Denmark Research OutputInternational Journal of Hydrogen EnergyArticle . 2016Data sources: University of Southern Denmark Research Outputadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2016.08.044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 SwedenPublisher:Institute of Electrical and Electronics Engineers (IEEE) Funded by:EC | RE-SIZEDEC| RE-SIZEDAuthors:Konstantinos N. Genikomsakis;
Ignacio Angulo Gutierrez;Konstantinos N. Genikomsakis
Konstantinos N. Genikomsakis in OpenAIREDimitrios Thomas;
Dimitrios Thomas
Dimitrios Thomas in OpenAIREChristos S. Ioakimidis;
Christos S. Ioakimidis
Christos S. Ioakimidis in OpenAIRECarsharing is a mode of transportation that provides access to a set of vehicles in the form of organized short-term car rental, serving as a substitute for private car ownership with a number of transportation, environmental, and social benefits. Combining the mobility concept of carsharing with electric vehicles (EVs), referred to as e-carsharing, can contribute not only to more efficient use of the shared vehicles, but also to more sustainable urban mobility in smart cities. In this context, this paper advances the concept of university-based e-carsharing, to serve the mobility needs of an academic community in Bilbao, Spain, focusing on the technical design aspects to cover the energy requirements of the EV fleet of the proposed system through the installation of fast charging posts based on a battery-to-battery approach. In this regard, a MATLAB/Simulink model is implemented to simulate the fast charging infrastructure using the real-world data collected from the university parking lot in order to represent the potential utilization of the EVs. The simulation results confirm the effectiveness of the proposed system design, ensuring that the energy demand of the EVs is successfully covered and concurrently the charging station batteries operate out of the low charge zone.
Publikationer från K... arrow_drop_down IEEE Transactions on Intelligent Transportation SystemsArticle . 2018 . Peer-reviewedLicense: IEEE CopyrightData sources: CrossrefIEEE Transactions on Intelligent Transportation SystemsJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tits.2017.2767779&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Publikationer från K... arrow_drop_down IEEE Transactions on Intelligent Transportation SystemsArticle . 2018 . Peer-reviewedLicense: IEEE CopyrightData sources: CrossrefIEEE Transactions on Intelligent Transportation SystemsJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tits.2017.2767779&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 SwedenPublisher:Elsevier BV Funded by:EC | CONVENIENTEC| CONVENIENTAuthors: Khodabakhshian, Mohammad;Feng, Lei;
Börjesson, Stefan; Lindgärde, Olof; +1 AuthorsFeng, Lei
Feng, Lei in OpenAIREKhodabakhshian, Mohammad;Feng, Lei;
Börjesson, Stefan; Lindgärde, Olof; Wikander, Jan;Feng, Lei
Feng, Lei in OpenAIREThe electric engine cooling system, where the coolant pump and the radiator fan are driven by electric motors, admits advanced control methods to decrease auxiliary energy consumption. Recent publications show the fuel saving potential of optimal control strategies for the electric cooling system through offline simulations. These strategies often assume full knowledge of the drive cycle and compute the optimal control sequence by expensive global optimization methods. In reality, the full drive cycle is unknown during driving and global optimization not directly applicable on resource-constrained truck electronic control units. This paper reports state-of-the-art engineering achievements of exploiting vehicular onboard prediction for a limited time horizon and minimizing the auxiliary energy consumption of the electric cooling system through real-time optimization. The prediction and optimization are integrated into a model predictive controller (MPC), which is implemented on a dSPACE MicroAutoBox and tested on a truck on a public road. Systematic simulations show that the new method reduces fuel consumption of a 40-tonne truck by 0.36% and a 60-tonne truck by 0.69% in a real drive cycle compared to a base-line controller. The reductions on auxiliary fuel consumption for the 40-tonne and 60-tonne trucks are about 26% and 38%, respectively. Truck experiments validate the consistency between simulations and experiments and confirm the real-time feasibility of the MPC controller.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.11.118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.11.118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 GermanyPublisher:Elsevier BV Guangqing Zhang; Pu Wang; Meirong Tang; Kuangsheng Zhang; Dawei Zhou; Dawei Zhou;Abstract The effects of CO2-brine-rock interaction on the physical and macro-mechanical properties of rock have been extensively studied in CO2 sequestration-related research. However, there are few studies focus on mechanochemical effects of the interaction of supercritical CO2 (SC−CO2), water, and rock and its effects on micromechanical properties of sandstone. In this work, we studied the micromechanical mechanism of crack initiation induced by SC−CO2-water saturated sandstone. A micromechanical model including parameters of fracture cohesive strength, friction coefficient, and fracture energy was proposed, which extended the “sliding surface” to include not only the friction, but also the cohesions on the surfaces and the tensile resistance at the crack-tips. To this end, tests of two saturation conditions, water and SC−CO2-water, were conducted on 25 mm diameter by 50 mm length Sichuan sandstone with a porosity of ∼15.57 % for 15 days and 30 days under temperature of 80 ℃ and pressure of 30 MPa. Afterward, samples were subjected to triaxial compression tests with confining pressure up to 24 MPa. The mineralogical alteration and induced crack morphology were examined to better understand the mechanism of mechanochemical coupling on compression failure induced by SC−CO2-water-rock interaction. Experimentally, mineralogical and microstructural changes induced by illite and kaolinite dissolution, weaken the quartz grain contacts in SC−CO2-water saturated sandstone. Compared to water-saturated sandstone, the SC−CO2-water saturated sandstone exhibits a maximum reduction by 18.82 % and 21.21 % in compressive strength and crack initiation stress respectively under unconfined condition. Additionally, reductions of 5%, 50 %, and 37.3 % were observed in friction coefficient, fracture energy, and cohesive strength respectively for SC−CO2-water saturated sandstone. The reductions of these three parameters, especially the fracture energy and cohesive strength, significantly weaken SC−CO2-water saturated sandstone. The results are representative for the partly saturated zone where SC−CO2 is displacing the in-situ pore fluid and could be used to analyze effects of CO2 injection on stability and integrity of storage formation under mechanochemical coupling effects of SC−CO2-water on sandstone.
OceanRep arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2020.103040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu30 citations 30 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert OceanRep arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2020.103040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 GermanyPublisher:Elsevier BV Funded by:UKRI | Impacts of ocean acidific..., EC | ECO2, UKRI | Quantifying and Monitorin... +1 projectsUKRI| Impacts of ocean acidification on key benthic ecosystems, communities, habitats, species and life cycles ,EC| ECO2 ,UKRI| Quantifying and Monitoring Potential Ecosystem Impacts of Geological Carbon Storage ,UKRI| Impacts of ocean acidification on key benthic ecosystems, communities, habitats, species and life cyclesAuthors:Ana M. Queirós;
Peter Taylor; Adam Cowles; Andy Reynolds; +2 AuthorsAna M. Queirós
Ana M. Queirós in OpenAIREAna M. Queirós;
Peter Taylor; Adam Cowles; Andy Reynolds; Stephen Widdicombe;Ana M. Queirós
Ana M. Queirós in OpenAIREHenrik Stahl;
Henrik Stahl
Henrik Stahl in OpenAIREAvailable methods for measuring the impact of ocean acidification (OA) and leakage from carbon capture and storage (CCS) on marine sedimentary pH profiles are unsuitable for replicated experimental setups. To overcome this issue, a novel optical sensor application is presented, using off-the-shelf optode technology (MOPP). The application is validated using microprofiling, during a CCS leakage experiment, where the impact and recovery from a high CO2 plume was investigated in two types of natural marine sediment. MOPP offered user-friendliness, speed of data acquisition, robustness to sediment type, and large sediment depth range. This ensemble of characteristics overcomes many of the challenges found with other pH measuring methods, in OA and CCS research. The impact varied greatly between sediment types, depending on baseline pH variability and sediment permeability. Sedimentary pH profile recovery was quick, with profiles close to control conditions 24 h after the cessation of the leak. However, variability of pH within the finer sediment was still apparent 4 days into the recovery phase. Habitat characteristics need therefore to be considered, to truly disentangle high CO2 perturbation impacts on benthic systems. Impacts on natural communities depend not only on the pH gradient caused by perturbation, but also on other processes that outlive the perturbation, adding complexity to recovery.
OceanRep arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttp://dx.doi.org/10.1016/j.ij...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2014.10.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu26 citations 26 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert OceanRep arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttp://dx.doi.org/10.1016/j.ij...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2014.10.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017 Argentina, Germany, ArgentinaPublisher:Elsevier BV Funded by:EC | OCEAN-CERTAINEC| OCEAN-CERTAINAuthors:M. Celeste López Abbate;
Juan Carlos Molinero;M. Celeste López Abbate
M. Celeste López Abbate in OpenAIREValeria A. Guinder;
Valeria A. Guinder
Valeria A. Guinder in OpenAIREGerardo M.E. Perillo;
+4 AuthorsGerardo M.E. Perillo
Gerardo M.E. Perillo in OpenAIREM. Celeste López Abbate;
Juan Carlos Molinero;M. Celeste López Abbate
M. Celeste López Abbate in OpenAIREValeria A. Guinder;
Valeria A. Guinder
Valeria A. Guinder in OpenAIREGerardo M.E. Perillo;
R. Hugo Freije; Ulrich Sommer; Carla V. Spetter; Jorge E. Marcovecchio;Gerardo M.E. Perillo
Gerardo M.E. Perillo in OpenAIREEstuaries are among the most valuable aquatic systems by their services to human welfare. However, increasing human activities at the watershed along with the pressure of climate change are fostering the co-occurrence of multiple environmental drivers, and warn of potential negative impacts on estuaries resources. At present, no clear understanding of how coastal ecosystems will respond to the non-stationary effect of multiple drivers. Here we analysed the temporal interaction among multiple environmental drivers and their changing priority on shaping phytoplankton response in the Bahía Blanca Estuary, SW Atlantic Ocean. The interaction among environmental drivers and the number of significant direct and indirect effects on chlorophyll concentration increased over time in concurrence with enhanced anthropogenic stress, changing winter climate and wind patterns. Over the period 1978-1993, proximal variables such as nutrients, water temperature and salinity, showed a dominant effect on chlorophyll, whereas in more recent years (1993-2009) climate signals (SAM and ENSO) boosted indirect effects through its influence on precipitation, wind, water temperature and turbidity. Turbidity emerged as the dominant driver of chlorophyll while in recent years acted synergistically with the concentration of dissolved nitrogen. As a result, chlorophyll concentration showed a significant negative trend and a loss of seasonal peaks reflecting a pronounced reorganisation of the phytoplankton community. We stress the need to account for the changing priority of drivers to understand, and eventually forecast, biological responses under projected scenarios of global anthropogenic change.
OceanRep arrow_drop_down The Science of The Total EnvironmentArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttp://dx.doi.org/https://doi....Other literature typeData sources: European Union Open Data Portalhttp://dx.doi.org/10.1016/j.sc...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2017.08.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert OceanRep arrow_drop_down The Science of The Total EnvironmentArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttp://dx.doi.org/https://doi....Other literature typeData sources: European Union Open Data Portalhttp://dx.doi.org/10.1016/j.sc...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2017.08.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 GermanyPublisher:Elsevier BV Authors:Yizhao Wan;
Nengyou Wu; Qiang Chen; Wentao Li; +3 AuthorsYizhao Wan
Yizhao Wan in OpenAIREYizhao Wan;
Nengyou Wu; Qiang Chen; Wentao Li; Gaowei Hu; Li Huang; Weiping Ouyang;Yizhao Wan
Yizhao Wan in OpenAIREGas production from hydrates induced by depressurization is a complex thermal-hydrodynamic-mechanical–chemical (THMC) coupled process. In this paper, we present a THMC coupled model to simulate the fluid flow in hydrate-bearing sediments (HBS) and the geomechanical behavior of HBS. The model is made of two subsystems, which are the fluid part of non-isothermal multi-phase flow with hydrate kinetic and solid part of geomechanical deformation. It accounts for two-way coupling effects between these two subsystems, i.e. the effect of pore pressure and hydrate dissociation on the solid mechanical behavior and the effect of stress on the hydraulic behavior. A new numerical method based on the hybrid control volume finite element method (CVFEM)-finite element method (FEM) is developed to solve the mathematical models. The local conservative CVFEM is used for the fluid part, and the standard FEM for the solid part. In the framework of hybrid CVFEM-FEM, the local conservation is reserved and the primary variables for the two subsystem are co-located. A multi-point flux approximation (MPFA) is adopted without orthogonal meshes so that it is very flexible to build complex geometrical models. The accuracy and reliability of the newly developed simulator QIMGHyd-THMC are tested by comparing with two experimental examples and a large-scale benchmark problem of other popular simulators.
OceanRep arrow_drop_down Computers and GeotechnicsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.compgeo.2022.104692&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu45 citations 45 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert OceanRep arrow_drop_down Computers and GeotechnicsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.compgeo.2022.104692&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 GermanyPublisher:Elsevier BV Yongming He; Jingchen Ding; Jingchen Ding; Changhui Yan; Changcheng Wang;Abstract Tight gas reservoirs always have a low natural gas recovery because of the poor reservoir properties. Effective means on achieving enhanced gas recovery (EGR) in this type of reservoir remain a challenging task. In this study, experimental investigations on supercritical carbon dioxide (SCCO2) sequestration and EGR in tight gas reservoirs were presented. Results of phase behavior testing revealed that the adsorption capacity of SCCO2 in tight sandstone is more than 50 % higher than that of natural gas in tight sandstone, and the diffusion coefficient of SCCO2 in natural gas is too low (
OceanRep arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2020.103234&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert OceanRep arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2020.103234&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 GermanyPublisher:Elsevier BV Funded by:EC | EPOCAEC| EPOCAAuthors:Frommel, Andrea;
Hermann, Bernd T.; Michael, K.;Frommel, Andrea
Frommel, Andrea in OpenAIRELucassen, M.;
+3 AuthorsLucassen, M.
Lucassen, M. in OpenAIREFrommel, Andrea;
Hermann, Bernd T.; Michael, K.;Frommel, Andrea
Frommel, Andrea in OpenAIRELucassen, M.;
Lucassen, M.
Lucassen, M. in OpenAIREClemmesen, Catriona;
Hanel, Reinhold; Reusch, Thorsten B. H.;Clemmesen, Catriona
Clemmesen, Catriona in OpenAIREpmid: 32461151
Elevated environmental carbon dioxide (pCO2) levels have been found to cause organ damage in the early life stages of different commercial fish species, including Atlantic cod (Gadus morhua). To illuminate the underlying mechanisms causing pathologies in the intestines, the kidney, the pancreas and the liver in response to elevated pCO2, we examined related gene expression patterns in Atlantic cod reared for two months under three different pCO2 regimes: 380 μatm (control), 1800 μatm (medium) and 4200 μatm (high). We extracted RNA from whole fish sampled during the larval (32 dph) and early juvenile stage (46 dph) for relative expression analysis of 18 different genes related to essential metabolic pathways. At 32 dph, larvae subjected to the medium treatment displayed an up-regulation of genes mainly associated with fatty acid and glycogen synthesis (GYS2, 6PGL, ACoA, CPTA1, FAS and PPAR1b). Larvae exposed to the high pCO2 treatment upregulated fewer but similar genes (6PGL, ACoA and PPAR1b,). These data suggest stress-induced alterations in the lipid and fatty acid metabolism and a disrupted lipid homeostasis in larvae, providing a mechanistic link to the findings of lipid droplet overload in the liver and organ pathologies. At 46 dph, no significant differences in gene expression were detected, confirming a higher resilience of juveniles in comparison to larvae when exposed to elevated pCO2 up to 4200 μatm.
OceanRep arrow_drop_down Comparative Biochemistry and Physiology Part A Molecular & Integrative PhysiologyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cbpa.2020.110740&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert OceanRep arrow_drop_down Comparative Biochemistry and Physiology Part A Molecular & Integrative PhysiologyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cbpa.2020.110740&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu