- home
- Advanced Search
- Energy Research
- 14. Life underwater
- DE
- IT
- Transport Research
- Energy Research
- 14. Life underwater
- DE
- IT
- Transport Research
description Publicationkeyboard_double_arrow_right Article , Journal 2014 Italy, Italy, United States, United Kingdom, United Kingdom, Germany, United Kingdom, Norway, United StatesPublisher:MDPI AG Funded by:RCN | Development of a transfor...RCN| Development of a transformative experimental evolution paradigm for single-celled eukaryotesAuthors:Harvey, Ben P;
Al Janabi, Balsam;Harvey, Ben P
Harvey, Ben P in OpenAIREBROSZEIT, STEFANIE;
Cioffi, Rebekah; +14 AuthorsBROSZEIT, STEFANIE
BROSZEIT, STEFANIE in OpenAIREHarvey, Ben P;
Al Janabi, Balsam;Harvey, Ben P
Harvey, Ben P in OpenAIREBROSZEIT, STEFANIE;
Cioffi, Rebekah;BROSZEIT, STEFANIE
BROSZEIT, STEFANIE in OpenAIREKUMAR, AMIT;
KUMAR, AMIT
KUMAR, AMIT in OpenAIREAranguren Gassis, Maria;
Bailey, Allison;Aranguren Gassis, Maria
Aranguren Gassis, Maria in OpenAIREGreen, Leon;
Gsottbauer, Carina M.; Hall, Emilie F.; Lechler, Maria;Green, Leon
Green, Leon in OpenAIREMANCUSO, FRANCESCO PAOLO;
Pereira, Camila O.; Ricevuto, Elena;MANCUSO, FRANCESCO PAOLO
MANCUSO, FRANCESCO PAOLO in OpenAIRESchram, Julie B.;
Stapp, Laura S.;Schram, Julie B.
Schram, Julie B. in OpenAIREStenberg, Simon;
Santa Rosa, Lindzai T.;Stenberg, Simon
Stenberg, Simon in OpenAIREdoi: 10.3390/w6113545
handle: 11250/276678 , 10447/636501 , 11585/579570 , 11122/12875
Research to date has suggested that both individual marine species and ecological processes are expected to exhibit diverse responses to the environmental effects of climate change. Evolutionary responses can occur on rapid (ecological) timescales, and yet studies typically do not consider the role that adaptive evolution will play in modulating biological responses to climate change. Investigations into such responses have typically been focused at particular biological levels (e.g., cellular, population, community), often lacking interactions among levels. Since all levels of biological organisation are sensitive to global climate change, there is a need to elucidate how different processes and hierarchical interactions will influence species fitness. Therefore, predicting the responses of communities and populations to global change will require multidisciplinary efforts across multiple levels of hierarchy, from the genetic and cellular to communities and ecosystems. Eventually, this may allow us to establish the role that acclimatisation and adaptation will play in determining marine community structures in future scenarios.
OceanRep arrow_drop_down Archivio istituzionale della ricerca - Università di PalermoArticle . 2014University of Alaska: ScholarWorks@UAArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w6113545&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert OceanRep arrow_drop_down Archivio istituzionale della ricerca - Università di PalermoArticle . 2014University of Alaska: ScholarWorks@UAArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w6113545&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2017 GermanyPublisher:Springer Science and Business Media LLC Funded by:NSERCNSERCAuthors:P. Chan;
J. Halfar; W. Adey;S. Hetzinger;
+5 AuthorsS. Hetzinger
S. Hetzinger in OpenAIREP. Chan;
J. Halfar; W. Adey;S. Hetzinger;
S. Hetzinger
S. Hetzinger in OpenAIRET. Zack;
G.W.K. Moore;
G.W.K. Moore
G.W.K. Moore in OpenAIREU. G. Wortmann;
U. G. Wortmann
U. G. Wortmann in OpenAIREB. Williams;
B. Williams
B. Williams in OpenAIREA. Hou;
AbstractAccelerated warming and melting of Arctic sea-ice has been associated with significant increases in phytoplankton productivity in recent years. Here, utilizing a multiproxy approach, we reconstruct an annually resolved record of Labrador Sea productivity related to sea-ice variability in Labrador, Canada that extends well into the Little Ice Age (LIA; 1646 AD). Barium-to-calcium ratios (Ba/Ca) and carbon isotopes (δ13C) measured in long-lived coralline algae demonstrate significant correlations to both observational and proxy records of sea-ice variability, and show persistent patterns of co-variability broadly consistent with the timing and phasing of the Atlantic Multidecadal Oscillation (AMO). Results indicate reduced productivity in the Subarctic Northwest Atlantic associated with AMO cool phases during the LIA, followed by a step-wise increase from 1910 to present levels—unprecedented in the last 363 years. Increasing phytoplankton productivity is expected to fundamentally alter marine ecosystems as warming and freshening is projected to intensify over the coming century.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ncomms15543&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 31 citations 31 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ncomms15543&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 GermanyPublisher:Frontiers Media SA Authors: Hatje, Vanessa; Sarin, Manmohan;Sander, Sylvia G;
Sander, Sylvia G
Sander, Sylvia G in OpenAIREOmanović, Dario;
+4 AuthorsOmanović, Dario
Omanović, Dario in OpenAIREHatje, Vanessa; Sarin, Manmohan;Sander, Sylvia G;
Sander, Sylvia G
Sander, Sylvia G in OpenAIREOmanović, Dario;
Ramachandran, Purvaja; Völker, Christoph; Barra, Ricardo O; Tagliabue, Alessandro;Omanović, Dario
Omanović, Dario in OpenAIREThe effects of climate change (CC) on contaminants and their potential consequences to marine ecosystem services and human wellbeing are of paramount importance, as they pose overlapping risks. Here, we discuss how the interaction between CC and contaminants leads to poorly constrained impacts that affects the sensitivity of organisms to contamination leading to impaired ecosystem function, services and risk assessment evaluations. Climate drivers, such as ocean warming, ocean deoxygenation, changes in circulation, ocean acidification, and extreme events interact with trace metals, organic pollutants, excess nutrients, and radionuclides in a complex manner. Overall, the holistic consideration of the pollutants-climate change nexus has significant knowledge gaps, but will be important in understanding the fate, transport, speciation, bioavailability, toxicity, and inventories of contaminants. Greater focus on these uncertainties would facilitate improved predictions of future changes in the global biogeochemical cycling of contaminants and both human health and marine ecosystems.
OceanRep arrow_drop_down Electronic Publication Information CenterArticle . 2022Data sources: Electronic Publication Information Centeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2022.936109&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert OceanRep arrow_drop_down Electronic Publication Information CenterArticle . 2022Data sources: Electronic Publication Information Centeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2022.936109&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Italy, GermanyPublisher:Springer Science and Business Media LLC Authors:Rainer Froese;
Rainer Froese
Rainer Froese in OpenAIREEva Papaioannou;
Eva Papaioannou
Eva Papaioannou in OpenAIREMarco Scotti;
Marco Scotti
Marco Scotti in OpenAIREhandle: 20.500.14243/472253
AbstractClimate change and deoxygenation are affecting fish stocks on a global scale, but disentangling the impacts of these stressors from the effects of overfishing is a challenge. This study was conducted to distinguish between climate change and mismanagement as possible causes for the drastic decline in spawning stock size and reproductive success in cod (Gadus morhua) and herring (Clupea harengus) in the Western Baltic Sea, when compared with the good or satisfactory status and reproductive success of the other commercial species in the area. Available data on water temperature, wind speed, and plankton bloom during the spawning season did not reveal conclusive correlations between years with good and bad reproductive success of cod or herring. Notably, the other commercial species in the area have very similar life history traits suggesting similar resilience against stress caused by climate change or fishing. The study concludes that severe, sustained overfishing plus inappropriate size selectivity of the main fishing gears have caused the decline in spawning stock biomass of cod and herring to levels that are known to have a high probability of impaired reproductive success. It is pointed out that allowed catches were regulated by management and adhered to by the fishers, meaning that unregulated fishing did not occur. Thus, mismanagement (quotas that were too high and gears that selected too small sizes) and not climate change appears to be the primary cause of the bad status of cod and herring in the Western Baltic Sea.
IRIS Cnr arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10641-021-01209-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 12 citations 12 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10641-021-01209-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 ItalyPublisher:MDPI AG Farella; Giulio; Tassetti;Anna Nora;
Menegon; Stefano; Bocci; Martina; Ferrà; Carmen; Grati; Fabio; Fadini; Amedeo; Giovanardi; Otello; Fabi; Gianna; Raicevich; Sasa; Barbanti; Andrea;Anna Nora
Anna Nora in OpenAIREdoi: 10.3390/su13031211
handle: 20.500.14243/428365 , 11578/297606 , 11585/998454
Human pressures on marine ecosystems significantly increased during last decades. Among the intense anthropic activities, industrial fisheries have caused the alteration of habitats, the reduction of biodiversity and the main fish stocks. The aim of this research, carried out in the Adriatic Sea, was to test a repeatable Marine Spatial Planning framework aimed at enhancing fisheries sustainability through the application of Decision Support Tools and the composition of a catalog of possible measures. The use of these tools proved very useful to identify possible criticalities and facilitate an effective exchange with fisheries stakeholders, local authorities, and fishermen, whose involvement was an indispensable step in the process. Tool-based analyses allowed to assess the spatial footprint of a range of anthropogenic pressures from human activities (e.g., fisheries, maritime traffic, and aquaculture). Within this multi-pressure scenario, special attention was paid to fishing-related disturbances and potential conflicts across different fishing métier and with other sectors. Specifically, results highlighted the spatial features of the major fishing pressures (e.g., abrasion from trawling) affecting essential fish habitats, marine mammals and turtles in the study area. A portfolio of possible management measures is identified for the study area. It provides clear evidence that, in order to mitigate emerging conflicts and cumulative impacts, it is necessary to combine and integrate different types of measures: spatial measures modulated over time, monitoring and control, actions to fill knowledge gaps, concertation—involvement—co-management actions, improvement of governance systems, actions to support innovation in the sector, etc. Given the complex set of measures discussed, this work can provide a useful contribution to the management of fisheries both at local and regional level, fostering the transition to sustainable fisheries.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/3/1211/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13031211&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/3/1211/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13031211&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021Embargo end date: 20 Jul 2022 Austria, United Kingdom, United Kingdom, Spain, United Kingdom, Saudi Arabia, France, Sweden, France, Sweden, Australia, France, Spain, Saudi Arabia, United Kingdom, GermanyPublisher:Cambridge University Press (CUP) Funded by:EC | COMFORT, EC | ENGAGE, EC | ERA +6 projectsEC| COMFORT ,EC| ENGAGE ,EC| ERA ,EC| CONSTRAIN ,NSERC ,EC| PROTECT ,DFG ,EC| TiPACCs ,EC| FirEUriskAuthors: Martin, Maria;Sendra, Olga Alcaraz;
Sendra, Olga Alcaraz
Sendra, Olga Alcaraz in OpenAIREBastos, Ana;
Bastos, Ana
Bastos, Ana in OpenAIREBauer, Nico;
+63 AuthorsBauer, Nico
Bauer, Nico in OpenAIREMartin, Maria;Sendra, Olga Alcaraz;
Sendra, Olga Alcaraz
Sendra, Olga Alcaraz in OpenAIREBastos, Ana;
Bastos, Ana
Bastos, Ana in OpenAIREBauer, Nico;
Bertram, Christoph;Bauer, Nico
Bauer, Nico in OpenAIREBlenckner, Thorsten;
Blenckner, Thorsten
Blenckner, Thorsten in OpenAIREBowen, Kathryn;
Bowen, Kathryn
Bowen, Kathryn in OpenAIREBrando, Paulo;
Rudolph, Tanya Brodie;Brando, Paulo
Brando, Paulo in OpenAIREBüchs, Milena;
Bustamante, Mercedes;Büchs, Milena
Büchs, Milena in OpenAIREChen, Deliang;
Chen, Deliang
Chen, Deliang in OpenAIRECleugh, Helen;
Dasgupta, Purnamita; Denton, Fatima; Donges, Jonathan;Cleugh, Helen
Cleugh, Helen in OpenAIREDonkor, Felix Kwabena;
Donkor, Felix Kwabena
Donkor, Felix Kwabena in OpenAIREDuan, Hongbo;
Duan, Hongbo
Duan, Hongbo in OpenAIREDuarte, Carlos;
Ebi, Kristie;Duarte, Carlos
Duarte, Carlos in OpenAIREEdwards, Clea;
Edwards, Clea
Edwards, Clea in OpenAIREEngel, Anja;
Engel, Anja
Engel, Anja in OpenAIREFisher, Eleanor;
Fisher, Eleanor
Fisher, Eleanor in OpenAIREFuss, Sabine;
Gaertner, Juliana; Gettelman, Andrew; Girardin, Cécile A.J.;Fuss, Sabine
Fuss, Sabine in OpenAIREGolledge, Nicholas;
Green, Jessica; Grose, Michael; Hashizume, Masahiro;Golledge, Nicholas
Golledge, Nicholas in OpenAIREHebden, Sophie;
Hepach, Helmke; Hirota, Marina; Hsu, Huang-Hsiung; Kojima, Satoshi; Lele, Sharachchandra; Lorek, Sylvia; Lotze, Heike;Hebden, Sophie
Hebden, Sophie in OpenAIREMatthews, H. Damon;
Matthews, H. Damon
Matthews, H. Damon in OpenAIREMccauley, Darren;
Mebratu, Desta;Mccauley, Darren
Mccauley, Darren in OpenAIREMengis, Nadine;
Mengis, Nadine
Mengis, Nadine in OpenAIRENolan, Rachael;
Nolan, Rachael
Nolan, Rachael in OpenAIREPihl, Erik;
Rahmstorf, Stefan;Pihl, Erik
Pihl, Erik in OpenAIRERedman, Aaron;
Redman, Aaron
Redman, Aaron in OpenAIREReid, Colleen;
Reid, Colleen
Reid, Colleen in OpenAIRERockström, Johan;
Rockström, Johan
Rockström, Johan in OpenAIRERogelj, Joeri;
Rogelj, Joeri
Rogelj, Joeri in OpenAIRESaunois, Marielle;
Sayer, Lizzie; Schlosser, Peter;Saunois, Marielle
Saunois, Marielle in OpenAIRESioen, Giles;
Sioen, Giles
Sioen, Giles in OpenAIRESpangenberg, Joachim;
Spangenberg, Joachim
Spangenberg, Joachim in OpenAIREStammer, Detlef;
Sterner, Thomas N.S.;Stammer, Detlef
Stammer, Detlef in OpenAIREStevens, Nicola;
Stevens, Nicola
Stevens, Nicola in OpenAIREThonicke, Kirsten;
Thonicke, Kirsten
Thonicke, Kirsten in OpenAIRETian, Hanqin;
Winkelmann, Ricarda; Woodcock, James;Tian, Hanqin
Tian, Hanqin in OpenAIRESendra, Olga;
Rudolph, Tanya; Donkor, Felix; Girardin, Cécile; Sterner, Thomas;Sendra, Olga
Sendra, Olga in OpenAIRENon-technical summaryWe summarize some of the past year's most important findings within climate change-related research. New research has improved our understanding about the remaining options to achieve the Paris Agreement goals, through overcoming political barriers to carbon pricing, taking into account non-CO2factors, a well-designed implementation of demand-side and nature-based solutions, resilience building of ecosystems and the recognition that climate change mitigation costs can be justified by benefits to the health of humans and nature alone. We consider new insights about what to expect if we fail to include a new dimension of fire extremes and the prospect of cascading climate tipping elements.Technical summaryA synthesis is made of 10 topics within climate research, where there have been significant advances since January 2020. The insights are based on input from an international open call with broad disciplinary scope. Findings include: (1) the options to still keep global warming below 1.5 °C; (2) the impact of non-CO2factors in global warming; (3) a new dimension of fire extremes forced by climate change; (4) the increasing pressure on interconnected climate tipping elements; (5) the dimensions of climate justice; (6) political challenges impeding the effectiveness of carbon pricing; (7) demand-side solutions as vehicles of climate mitigation; (8) the potentials and caveats of nature-based solutions; (9) how building resilience of marine ecosystems is possible; and (10) that the costs of climate change mitigation policies can be more than justified by the benefits to the health of humans and nature.Social media summaryHow do we limit global warming to 1.5 °C and why is it crucial? See highlights of latest climate science.
CORE arrow_drop_down COREArticle . 2021License: CC BYFull-Text: https://eprints.whiterose.ac.uk/179965/1/ten-new-insights-in-climate-science-2021-a-horizon-scan.pdfData sources: CORECORE (RIOXX-UK Aggregator)Article . 2021License: CC BYFull-Text: https://eprints.whiterose.ac.uk/179965/1/ten-new-insights-in-climate-science-2021-a-horizon-scan.pdfData sources: CORE (RIOXX-UK Aggregator)Global SustainabilityArticleLicense: CC BYFull-Text: https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S2059479821000259Data sources: SygmaImperial College London: SpiralArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10044/1/93398Data sources: Bielefeld Academic Search Engine (BASE)Newcastle University Library ePrints ServiceArticleLicense: CC BYFull-Text: https://eprints.ncl.ac.uk/288587Data sources: Bielefeld Academic Search Engine (BASE)King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03448064Data sources: Bielefeld Academic Search Engine (BASE)The Nordic Africa Institute: Publications (DiVA)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/11343/301490Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03448064Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTASpiral - Imperial College Digital RepositoryArticle . 2021License: CC BYData sources: Spiral - Imperial College Digital RepositoryOxford University Research ArchiveArticle . 2021License: CC BY NC NDData sources: Oxford University Research ArchiveUPCommons. Portal del coneixement obert de la UPCArticle . 2021License: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2021 . Peer-reviewedUniversity of Western Sydney (UWS): Research DirectArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1017/sus.2021.25&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 38 citations 38 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 32visibility views 32 download downloads 68 Powered bymore_vert CORE arrow_drop_down COREArticle . 2021License: CC BYFull-Text: https://eprints.whiterose.ac.uk/179965/1/ten-new-insights-in-climate-science-2021-a-horizon-scan.pdfData sources: CORECORE (RIOXX-UK Aggregator)Article . 2021License: CC BYFull-Text: https://eprints.whiterose.ac.uk/179965/1/ten-new-insights-in-climate-science-2021-a-horizon-scan.pdfData sources: CORE (RIOXX-UK Aggregator)Global SustainabilityArticleLicense: CC BYFull-Text: https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S2059479821000259Data sources: SygmaImperial College London: SpiralArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10044/1/93398Data sources: Bielefeld Academic Search Engine (BASE)Newcastle University Library ePrints ServiceArticleLicense: CC BYFull-Text: https://eprints.ncl.ac.uk/288587Data sources: Bielefeld Academic Search Engine (BASE)King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03448064Data sources: Bielefeld Academic Search Engine (BASE)The Nordic Africa Institute: Publications (DiVA)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/11343/301490Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03448064Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTASpiral - Imperial College Digital RepositoryArticle . 2021License: CC BYData sources: Spiral - Imperial College Digital RepositoryOxford University Research ArchiveArticle . 2021License: CC BY NC NDData sources: Oxford University Research ArchiveUPCommons. Portal del coneixement obert de la UPCArticle . 2021License: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2021 . Peer-reviewedUniversity of Western Sydney (UWS): Research DirectArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1017/sus.2021.25&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 ItalyPublisher:MDPI AG Authors:Ghigo A.;
Cottura L.; Caradonna R.;Ghigo A.
Ghigo A. in OpenAIREBracco G.;
+1 AuthorsBracco G.
Bracco G. in OpenAIREGhigo A.;
Cottura L.; Caradonna R.;Ghigo A.
Ghigo A. in OpenAIREBracco G.;
Bracco G.
Bracco G. in OpenAIREMattiazzo G.;
Mattiazzo G.
Mattiazzo G. in OpenAIREdoi: 10.3390/jmse8110835
handle: 11583/2853990
Floating offshore wind represents a new frontier of renewable energies. The absence of a fixed structure allows exploiting wind potential in deep seas, like the Atlantic Ocean and Mediterranean Sea, characterized by high availability and wind potential. However, a floating offshore wind system, which includes an offshore turbine, floating platform, moorings, anchors, and electrical system, requires very high capital investments: one of the most relevant cost items is the floating substructure. This work focuses on the choice of a floating platform that minimizes the global weight, in order to reduce the material cost, but ensuring buoyancy and static stability. Subsequently, the optimized platform is used to define a wind farm located near the island of Pantelleria, Italy in order to meet the island’s electricity needs. A sensitivity analysis to estimate the Levelized Cost Of Energy is presented, analyzing the parameters that influence it most, like Capacity Factor, Weighted Average Capital Cost (WACC) and number of wind turbines.
Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2077-1312/8/11/835/pdfData sources: Multidisciplinary Digital Publishing InstitutePublications Open Repository TOrinoArticle . 2020License: CC BYData sources: Publications Open Repository TOrinoJournal of Marine Science and EngineeringArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse8110835&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 71 citations 71 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 4visibility views 4 download downloads 1 Powered bymore_vert Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2077-1312/8/11/835/pdfData sources: Multidisciplinary Digital Publishing InstitutePublications Open Repository TOrinoArticle . 2020License: CC BYData sources: Publications Open Repository TOrinoJournal of Marine Science and EngineeringArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse8110835&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United States, Switzerland, DenmarkPublisher:Frontiers Media SA Funded by:NSF | Nitrous oxide cycling in ...NSF| Nitrous oxide cycling in the Western Arctic Ocean from stable isotopic and concentration dataAuthors:Amal Jayakumar;
Amal Jayakumar
Amal Jayakumar in OpenAIREXin Sun;
Xin Sun; Bess B. Ward; +5 AuthorsAmal Jayakumar;
Amal Jayakumar
Amal Jayakumar in OpenAIREXin Sun;
Xin Sun; Bess B. Ward;Laura A. Bristow;
Laura A. Bristow
Laura A. Bristow in OpenAIREClaudia Frey;
Nathaniel E. Ostrom;Claudia Frey
Claudia Frey in OpenAIREAnnie Bourbonnais;
Karen L. Casciotti;Annie Bourbonnais
Annie Bourbonnais in OpenAIRENitrous oxide (N2O) is a potent greenhouse gas and an ozone destroying substance. Yet, clear step-by-step protocols to measure N2O transformation rates in freshwater and marine environments are still lacking, challenging inter-comparability efforts. Here we present detailed protocols currently used by leading experts in the field to measure water-column N2O production and consumption rates in both marine and other aquatic environments. We present example 15N-tracer incubation experiments in marine environments as well as templates to calculate both N2O production and consumption rates. We discuss important considerations and recommendations regarding (1) precautions to prevent oxygen (O2) contamination during low-oxygen and anoxic incubations, (2) preferred bottles and stoppers, (3) procedures for 15N-tracer addition, and (4) the choice of a fixative. We finally discuss data reporting and archiving. We expect these protocols will make 15N-labeled N2O transformation rate measurements more accessible to the wider community and facilitate future inter-comparison between different laboratories.
University of South ... arrow_drop_down University of South Carolina Libraries: Scholar CommonsArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Frontiers in Marine ScienceArticle . 2021License: CC BYData sources: University of Southern Denmark Research OutputUniversity of Southern Denmark Research OutputArticle . 2021Data sources: University of Southern Denmark Research Outputadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2021.611937&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert University of South ... arrow_drop_down University of South Carolina Libraries: Scholar CommonsArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Frontiers in Marine ScienceArticle . 2021License: CC BYData sources: University of Southern Denmark Research OutputUniversity of Southern Denmark Research OutputArticle . 2021Data sources: University of Southern Denmark Research Outputadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2021.611937&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2012 France, United States, Denmark, Spain, United States, United States, United Kingdom, United States, Germany, Spain, United KingdomPublisher:Copernicus GmbH Funded by:NSF | Quantification of Trichod..., NSF | COLLABORATIVE RESEARCH: N...NSF| Quantification of Trichodesmium spp. vertical and horizontal abundance patterns and nitrogen fixation in the western North Atlantic ,NSF| COLLABORATIVE RESEARCH: Nitrogen Fixation and its Coupling with Denitrification in the Eastern Tropical North PacificJonathan P. Zehr; Yuh-ling Lee Chen; Lasse Riemann; Kjärstin H Boström; Eric A. Webb;Julie LaRoche;
Tracy A. Villareal; Douglas G. Capone; Satoshi Kitajima;Julie LaRoche
Julie LaRoche in OpenAIREMar Benavides;
Ilana Berman-Frank;Mar Benavides
Mar Benavides in OpenAIREPia H. Moisander;
Pia H. Moisander; Marta M. Varela;Pia H. Moisander
Pia H. Moisander in OpenAIREAjit Subramaniam;
John E. Dore; Laurence A. Anderson; Patrick Raimbault; Dennis J. McGillicuddy;Ajit Subramaniam
Ajit Subramaniam in OpenAIREAnnette M. Hynes;
Annette M. Hynes;Annette M. Hynes
Annette M. Hynes in OpenAIREKen Furuya;
Jingfeng Wu;Ken Furuya
Ken Furuya in OpenAIRERebecca Langlois;
Rebecca Langlois
Rebecca Langlois in OpenAIREMatthew J. Church;
Eyal Rahav;Matthew J. Church
Matthew J. Church in OpenAIREScott C. Doney;
Kendra A. Turk-Kubo; Toby Tyrrell; Edward J. Carpenter; David M. Karl;Scott C. Doney
Scott C. Doney in OpenAIREMargaret R. Mulholland;
Andrew P. Rees;Margaret R. Mulholland
Margaret R. Mulholland in OpenAIRESophie Bonnet;
Sophie Bonnet
Sophie Bonnet in OpenAIRERicardo M. Letelier;
K. M. Orcutt;Ricardo M. Letelier
Ricardo M. Letelier in OpenAIREAntonio Bode;
Antonio Bode
Antonio Bode in OpenAIREAlex J. Poulton;
Alex J. Poulton
Alex J. Poulton in OpenAIRELuisa I. Falcón;
Daniela Böttjer;Luisa I. Falcón
Luisa I. Falcón in OpenAIRERachel A. Foster;
Takuhei Shiozaki;Rachel A. Foster
Rachel A. Foster in OpenAIREC. M. Moore;
C. M. Moore
C. M. Moore in OpenAIREEmilio Marañón;
Kjell Gundersen;Emilio Marañón
Emilio Marañón in OpenAIREAngelicque E. White;
Joseph A. Needoba;Angelicque E. White
Angelicque E. White in OpenAIREFernando Gómez;
Ana Belén Méndez Fernández;Fernando Gómez
Fernando Gómez in OpenAIREBeatriz Mouriño-Carballido;
Beatriz Mouriño-Carballido
Beatriz Mouriño-Carballido in OpenAIREYa-Wei Luo;
Ya-Wei Luo
Ya-Wei Luo in OpenAIREhandle: 10508/8323 , 10261/316259
Abstract. Marine N2 fixing microorganisms, termed diazotrophs, are a key functional group in marine pelagic ecosystems. The biological fixation of dinitrogen (N2) to bioavailable nitrogen provides an important new source of nitrogen for pelagic marine ecosystems and influences primary productivity and organic matter export to the deep ocean. As one of a series of efforts to collect biomass and rates specific to different phytoplankton functional groups, we have constructed a database on diazotrophic organisms in the global pelagic upper ocean by compiling about 12 000 direct field measurements of cyanobacterial diazotroph abundances (based on microscopic cell counts or qPCR assays targeting the nifH genes) and N2 fixation rates. Biomass conversion factors are estimated based on cell sizes to convert abundance data to diazotrophic biomass. The database is limited spatially, lacking large regions of the ocean especially in the Indian Ocean. The data are approximately log-normal distributed, and large variances exist in most sub-databases with non-zero values differing 5 to 8 orders of magnitude. Lower mean N2 fixation rate was found in the North Atlantic Ocean than the Pacific Ocean. Reporting the geometric mean and the range of one geometric standard error below and above the geometric mean, the pelagic N2 fixation rate in the global ocean is estimated to be 62 (53–73) Tg N yr−1 and the pelagic diazotrophic biomass in the global ocean is estimated to be 4.7 (2.3–9.6) Tg C from cell counts and to 89 (40–200) Tg C from nifH-based abundances. Uncertainties related to biomass conversion factors can change the estimate of geometric mean pelagic diazotrophic biomass in the global ocean by about ±70%. This evolving database can be used to study spatial and temporal distributions and variations of marine N2 fixation, to validate geochemical estimates and to parameterize and validate biogeochemical models. The database is stored in PANGAEA (http://doi.pangaea.de/10.1594/PANGAEA.774851).
NERC Open Research A... arrow_drop_down Old Dominion University: ODU Digital CommonsArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2012License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/essdd-...Article . 2012 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2012 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2012Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2012License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2012Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2012Data sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional Digital del IEOArticle . 2012License: CC BY NC NDData sources: Repositorio Institucional Digital del IEOCopenhagen University Research Information SystemArticle . 2012Data sources: Copenhagen University Research Information SystemINRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverUniversity of Copenhagen: ResearchArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essdd-5-47-2012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 327 citations 327 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 48visibility views 48 Powered bymore_vert NERC Open Research A... arrow_drop_down Old Dominion University: ODU Digital CommonsArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2012License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/essdd-...Article . 2012 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2012 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2012Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2012License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2012Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2012Data sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional Digital del IEOArticle . 2012License: CC BY NC NDData sources: Repositorio Institucional Digital del IEOCopenhagen University Research Information SystemArticle . 2012Data sources: Copenhagen University Research Information SystemINRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverUniversity of Copenhagen: ResearchArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essdd-5-47-2012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015 United Kingdom, Australia, Germany, Finland, AustraliaPublisher:Copernicus GmbH Funded by:EC | MESOAQUAEC| MESOAQUAAuthors:Lennart T. Bach;
Yves Trense; Yves Trense;Lennart T. Bach
Lennart T. Bach in OpenAIREKai G. Schulz;
+11 AuthorsKai G. Schulz
Kai G. Schulz in OpenAIRELennart T. Bach;
Yves Trense; Yves Trense;Lennart T. Bach
Lennart T. Bach in OpenAIREKai G. Schulz;
Kai G. Schulz;Kai G. Schulz
Kai G. Schulz in OpenAIREAllanah J. Paul;
Allanah J. Paul
Allanah J. Paul in OpenAIREMichael Sswat;
Jan Czerny; Monika Nausch; Dana Hellemann; Dana Hellemann; Eric P. Achterberg; Eric P. Achterberg;Michael Sswat
Michael Sswat in OpenAIRETim Boxhammer;
Tim Boxhammer
Tim Boxhammer in OpenAIREUlf Riebesell;
Ulf Riebesell
Ulf Riebesell in OpenAIREhandle: 10138/161802
Abstract. Ocean acidification is expected to influence plankton community structure and biogeochemical element cycles. To date, the response of plankton communities to elevated CO2 has been studied primarily during nutrient-stimulated blooms. In this CO2 manipulation study, we used large-volume (~ 55 m3) pelagic in situ mesocosms to enclose a natural summer, post-spring-bloom plankton assemblage in the Baltic Sea to investigate the response of organic matter pools to ocean acidification. The carbonate system in the six mesocosms was manipulated to yield average fCO2 ranging between 365 and ~ 1230 μatm with no adjustment of naturally available nutrient concentrations. Plankton community development and key biogeochemical element pools were subsequently followed in this nitrogen-limited ecosystem over a period of 7 weeks. We observed higher sustained chlorophyll a and particulate matter concentrations (~ 25 % higher) and lower inorganic phosphate concentrations in the water column in the highest fCO2 treatment (1231 μatm) during the final 2 weeks of the study period (Phase III), when there was low net change in particulate and dissolved matter pools. Size-fractionated phytoplankton pigment analyses indicated that these differences were driven by picophytoplankton (< 2 μm) and were already established early in the experiment during an initial warm and more productive period with overall elevated chlorophyll a and particulate matter concentrations. However, the influence of picophytoplankton on bulk organic matter pools was masked by high biomass of larger plankton until Phase III, when the contribution of the small size fraction (< 2 μm) increased to up to 90 % of chlorophyll a. In this phase, a CO2-driven increase in water column particulate carbon did not lead to enhanced sinking material flux but was instead reflected in increased dissolved organic carbon concentrations. Hence ocean acidification may induce changes in organic matter partitioning in the upper water column during the low-nitrogen summer period in the Baltic Sea.
OceanRep arrow_drop_down HELDA - Digital Repository of the University of HelsinkiArticle . 2016 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiSouthern Cross University: epublications@SCUArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-12-6181-2015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 65 citations 65 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert OceanRep arrow_drop_down HELDA - Digital Repository of the University of HelsinkiArticle . 2016 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiSouthern Cross University: epublications@SCUArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-12-6181-2015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu