- home
- Advanced Search
- Energy Research
- biological sciences
- JP
- KR
- Transport Research
- Energy Research
- biological sciences
- JP
- KR
- Transport Research
description Publicationkeyboard_double_arrow_right Article , Journal 2016 United Kingdom, United Kingdom, France, United Kingdom, Germany, France, FrancePublisher:Elsevier BV Ilka Peeken; Matt O'Regan; Sanna Majaneva; Makoto Sampei; Monika Kędra; Kirstin Werner; Marcel Nicolaus; Nathalie Morata; Mathilde Jacquot; Carolyn Wegner; Alexey Pavlov; Michael Fritz; Michael Fritz; Angelika H. H. Renner; Kathrin Keil; Helen S. Findlay; Anna Nikolopoulos; Stefan Hendricks;Understanding and responding to the rapidly occurring environmental changes in the Arctic over the past few decades require new approaches in science. This includes improved collaborations within the scientific community but also enhanced dialogue between scientists and societal stakeholders, especially with Arctic communities. As a contribution to the Third International Conference on Arctic Research Planning (ICARPIII), the Arctic in Rapid Transition (ART) network held an international workshop in France, in October 2014, in order to discuss high-priority requirements for future Arctic marine and coastal research from an early-career scientists (ECS) perspective. The discussion encompassed a variety of research fields, including topics of oceanographic conditions, sea-ice monitoring, marine biodiversity, land-ocean interactions, and geological reconstructions, as well as law and governance issues. Participants of the workshop strongly agreed on the need to enhance interdisciplinarity in order to collect comprehensive knowledge about the modern and past Arctic Ocean's geo-ecological dynamics. Such knowledge enables improved predictions of Arctic developments and provides the basis for elaborate decision-making on future actions under plausible environmental and climate scenarios in the high northern latitudes. Priority research sheets resulting from the workshop's discussions were distributed during the ICARPIII meetings in April 2015 in Japan, and are publicly available online.
Plymouth Marine Scie... arrow_drop_down Plymouth Marine Science Electronic Archive (PlyMEA)Article . 2016License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)OceanRepArticle . 2016 . Peer-reviewedFull-Text: http://oceanrep.geomar.de/34573/1/Werner.pdfData sources: OceanRepINRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverElectronic Publication Information CenterArticle . 2016Data sources: Electronic Publication Information CenterUniversité de Bretagne Occidentale: HALArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.polar.2016.04.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Plymouth Marine Scie... arrow_drop_down Plymouth Marine Science Electronic Archive (PlyMEA)Article . 2016License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)OceanRepArticle . 2016 . Peer-reviewedFull-Text: http://oceanrep.geomar.de/34573/1/Werner.pdfData sources: OceanRepINRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverElectronic Publication Information CenterArticle . 2016Data sources: Electronic Publication Information CenterUniversité de Bretagne Occidentale: HALArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.polar.2016.04.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 Germany, United Kingdom, Russian Federation, United States, Russian Federation, United StatesPublisher:Springer Science and Business Media LLC Funded by:FCT | SFRH/BPD/95372/2013, NWO | Age of Deep-Sea SquidFCT| SFRH/BPD/95372/2013 ,NWO| Age of Deep-Sea SquidAlexey V. Golikov; Filipe R. Ceia; Rushan M. Sabirov; Jonathan D. Ablett; Ian G. Gleadall; Gudmundur Gudmundsson; Hendrik J. Hoving; Heather Judkins; Jónbjörn Pálsson; Amanda L. Reid; Rigoberto Rosas-Luis; Elizabeth K. Shea; Richard Schwarz; José C. Xavier;AbstractVampyroteuthis infernalis Chun, 1903, is a widely distributed deepwater cephalopod with unique morphology and phylogenetic position. We assessed its habitat and trophic ecology on a global scale via stable isotope analyses of a unique collection of beaks from 104 specimens from the Atlantic, Pacific and Indian Oceans. Cephalopods typically are active predators occupying a high trophic level (TL) and exhibit an ontogenetic increase in δ15N and TL. Our results, presenting the first global comparison for a deep-sea invertebrate, demonstrate that V. infernalis has an ontogenetic decrease in δ15N and TL, coupled with niche broadening. Juveniles are mobile zooplanktivores, while larger Vampyroteuthis are slow-swimming opportunistic consumers and ingest particulate organic matter. Vampyroteuthis infernalis occupies the same TL (3.0–4.3) over its global range and has a unique niche in deep-sea ecosystems. These traits have enabled the success and abundance of this relict species inhabiting the largest ecological realm on the planet.
OceanRep arrow_drop_down Digital Commons University of South Florida (USF)Article . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of South Florida St. Petersburg: Digital USFSPArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-019-55719-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 25 citations 25 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 2visibility views 2 download downloads 69 Powered bymore_vert OceanRep arrow_drop_down Digital Commons University of South Florida (USF)Article . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of South Florida St. Petersburg: Digital USFSPArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-019-55719-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Authors: Keiko Udo; Sompratana Ritphring; Hiroaki Shirakawa; Pattrakorn Nidhinarangkoon;doi: 10.3390/jmse9060588
In the 21st century, global sea level rise associated with climate change will affect beach areas, which provide a number of benefits that include benefits to the recreational sector of the economy. In Thailand, the adoption of structural measures in order to slow down beach erosion and handle the impact of sea level rise is commonly implemented. However, structural measures often bring about negative effects on nearby coastal areas. For this reason, suitable adaptation measures should be determined, in order to protect beach areas and to sustain the tourism carrying capacity of the beach. This study analyzed historical shoreline changes using satellite images, and assessed beach value with the hedonic pricing method. We used a benefit–cost ratio analysis to evaluate the economic valuation assessment of Pattaya beach and Chalatat beach. The results showed that the beach values of Pattaya beach and Chalatat beach were 1,072,250 and 92,092 USD, respectively. The benefit–cost ratio analysis proposed that it is worth implementing beach nourishment for the adaptation measure to address all climate change scenarios. In response to climate change, recommendations could be applied to support beach tourism.
Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse9060588&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse9060588&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2022 France, GermanyPublisher:Frontiers Media SA Funded by:EC | TRIATLAS, ANR | TADEC| TRIATLAS ,ANR| TADLaetitia Drago; Thelma Panaïotis; Jean-Olivier Irisson; Marcel Babin; Tristan Biard; François Carlotti; François Carlotti; Laurent Coppola; Laurent Coppola; Lionel Guidi; Helena Hauss; Lee Karp-Boss; Fabien Lombard; Fabien Lombard; Andrew M. P. McDonnell; Marc Picheral; Andreas Rogge; Anya M. Waite; Lars Stemmann; Rainer Kiko;Zooplankton plays a major role in ocean food webs and biogeochemical cycles, and provides major ecosystem services as a main driver of the biological carbon pump and in sustaining fish communities. Zooplankton is also sensitive to its environment and reacts to its changes. To better understand the importance of zooplankton, and to inform prognostic models that try to represent them, spatially-resolved biomass estimates of key plankton taxa are desirable. In this study we predict, for the first time, the global biomass distribution of 19 zooplankton taxa (1-50 mm Equivalent Spherical Diameter) using observations with the Underwater Vision Profiler 5, a quantitative in situ imaging instrument. After classification of 466,872 organisms from more than 3,549 profiles (0-500 m) obtained between 2008 and 2019 throughout the globe, we estimated their individual biovolumes and converted them to biomass using taxa-specific conversion factors. We then associated these biomass estimates with climatologies of environmental variables (temperature, salinity, oxygen, etc.), to build habitat models using boosted regression trees. The results reveal maximal zooplankton biomass values around 60°N and 55°S as well as minimal values around the oceanic gyres. An increased zooplankton biomass is also predicted for the equator. Global integrated biomass (0-500 m) was estimated at 0.403 PgC. It was largely dominated by Copepoda (35.7%, mostly in polar regions), followed by Eumalacostraca (26.6%) Rhizaria (16.4%, mostly in the intertropical convergence zone). The machine learning approach used here is sensitive to the size of the training set and generates reliable predictions for abundant groups such as Copepoda (R2 ≈ 20-66%) but not for rare ones (Ctenophora, Cnidaria, R2 < 5%). Still, this study offers a first protocol to estimate global, spatially resolved zooplankton biomass and community composition from in situ imaging observations of individual organisms. The underlying dataset covers a period of 10 years while approaches that rely on net samples utilized datasets gathered since the 1960s. Increased use of digital imaging approaches should enable us to obtain zooplankton biomass distribution estimates at basin to global scales in shorter time frames in the future.
OceanRep arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Electronic Publication Information CenterArticle . 2022Data sources: Electronic Publication Information Centeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2022.894372&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 35 citations 35 popularity Top 10% influence Average impulse Top 1% Powered by BIP!
more_vert OceanRep arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Electronic Publication Information CenterArticle . 2022Data sources: Electronic Publication Information Centeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2022.894372&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Min Ho Son; Chung Il Lee; Joo Myun Park; Hyun Jung Kim; Ralf Riedel; Inseo Hwang; Young-Nam Kim; Hae Kun Jung;doi: 10.3390/jmse8100782
Recent global climate change often leads to poleward expansions of habitat range of marine organisms in response to increasing water temperature at high latitude. This study investigated latitudinal distribution patterns of Turbo sazae from 2009 to 2018 along the southern and eastern coasts of Korea to verify whether gradual increases in seawater temperature in the East Sea/Sea of Japan (hereafter East/Japan Sea) accelerate changes in the geographic distribution of T. sazae. Between 2009 and 2018, underwater SCUBA surveys were conducted at 19 subtidal rocky shore habitats from the southern and eastern coast of the Korean Peninsula, including Jeju Island. Additionally, long-term seawater temperature records over the last 40 years (between 1980s and 2010s) from the East/Japan Sea were analyzed to verify how changes of water temperature corresponded to geographical distributions of T. sazae. The habitat range of T. sazae was found to have extended from latitude 34°02′ N to latitude 37°06′ N from 2009 to 2018. Although seawater temperature has gradually increased since the 1990s in the East/Japan Sea, habitat expansion was particularly evident during the rapid rise of coastal seawater temperature in the 2010s. Because the strong northward expansion of the Tsushima Current can accelerate the rise of seawater temperature in the East/Japan Sea, studies of the effects of climate change on marine ecosystems of the Korean Peninsula should include data from monitoring the dynamics of the Tsushima Current.
Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse8100782&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse8100782&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 Australia, France, France, Germany, AustraliaPublisher:Frontiers Media SA Funded by:ARC | ARC Future Fellowships - ..., NSF | Collaborative Research: C..., NSF | Collaborative Research: T... +2 projectsARC| ARC Future Fellowships - Grant ID: FT190100599 ,NSF| Collaborative Research: Core Support for the U.S. Hub of the Future Earth Secretariat ,NSF| Collaborative Research: The role of a keystone pathogen in the geographic and local-scale ecology of eelgrass decline in the eastern Pacific ,NSF| Research Coordination Networks (RCN): Sustained Multidisciplinary Ocean Observations ,EC| BYONICAuthors: Erin V. Satterthwaite; Erin V. Satterthwaite; Erin V. Satterthwaite; Nicholas J. Bax; +44 AuthorsErin V. Satterthwaite; Erin V. Satterthwaite; Erin V. Satterthwaite; Nicholas J. Bax; Nicholas J. Bax; Patricia Miloslavich; Patricia Miloslavich; Lavenia Ratnarajah; Lavenia Ratnarajah; Gabrielle Canonico; Daniel Dunn; Samantha E. Simmons; Roxanne J. Carini; Karen Evans; Valerie Allain; Ward Appeltans; Sonia Batten; Lisandro Benedetti-Cecchi; Anthony T. F. Bernard; Anthony T. F. Bernard; Sky Bristol; Abigail Benson; Pier Luigi Buttigieg; Leopoldo Cavaleri Gerhardinger; Sanae Chiba; Tammy E. Davies; J. Emmett Duffy; Alfredo Giron-Nava; Astrid J. Hsu; Alexandra C. Kraberg; Raphael M. Kudela; Dan Lear; Enrique Montes; Frank E. Muller-Karger; Todd D. O’Brien; David Obura; Pieter Provoost; Sara Pruckner; Lisa-Maria Rebelo; Elizabeth R. Selig; Olav Sigurd Kjesbu; Craig Starger; Rick D. Stuart-Smith; Marjo Vierros; John Waller; Lauren V. Weatherdon; Tristan P. Wellman; Anna Zivian;handle: 10568/116179
Maintaining healthy, productive ecosystems in the face of pervasive and accelerating human impacts including climate change requires globally coordinated and sustained observations of marine biodiversity. Global coordination is predicated on an understanding of the scope and capacity of existing monitoring programs, and the extent to which they use standardized, interoperable practices for data management. Global coordination also requires identification of gaps in spatial and ecosystem coverage, and how these gaps correspond to management priorities and information needs. We undertook such an assessment by conducting an audit and gap analysis from global databases and structured surveys of experts. Of 371 survey respondents, 203 active, long-term (>5 years) observing programs systematically sampled marine life. These programs spanned about 7% of the ocean surface area, mostly concentrated in coastal regions of the United States, Canada, Europe, and Australia. Seagrasses, mangroves, hard corals, and macroalgae were sampled in 6% of the entire global coastal zone. Two-thirds of all observing programs offered accessible data, but methods and conditions for access were highly variable. Our assessment indicates that the global observing system is largely uncoordinated which results in a failure to deliver critical information required for informed decision-making such as, status and trends, for the conservation and sustainability of marine ecosystems and provision of ecosystem services. Based on our study, we suggest four key steps that can increase the sustainability, connectivity and spatial coverage of biological Essential Ocean Variables in the global ocean: (1) sustaining existing observing programs and encouraging coordination among these; (2) continuing to strive for data strategies that follow FAIR principles (findable, accessible, interoperable, and reusable); (3) utilizing existing ocean observing platforms and enhancing support to expand observing along coasts of developing countries, in deep ocean basins, and near the poles; and (4) targeting capacity building efforts. Following these suggestions could help create a coordinated marine biodiversity observing system enabling ecological forecasting and better planning for a sustainable use of ocean resources.
OceanRep arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/10568/116179Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2021.737416&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert OceanRep arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/10568/116179Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2021.737416&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 JapanPublisher:Elsevier BV Authors: Haya, La Ode Muhammad Yasir; Fujii, Masahiko;handle: 2115/86449
Abstract Coral reefs in the world’s tropical and subtropical oceans have long been under considerable threat. The aims of this study were to identify the types of threat affecting coral reefs, to conduct a sensitivity analysis to assess the sustainability of coral reef ecosystems, and to suggest alternative strategies that should be deployed to improve the status of coral reef ecosystems in the Pangkajene and Kepulauan (PANGKEP) Regency, Spermonde Archipelago, Indonesia. The data obtained were analyzed using the rapid appraisal technique for fisheries (RAPFISH) and the analytic hierarchy process (AHP). The RAPFISH analysis identified 41 types of threat to the status of coral reef ecosystems, based on five indices: economic (51.92), social (47.33), technological (47.26), legal and institutional (45.60), and ecological (37.65). The averaged cumulative index of coral reef ecosystem sustainability was 45.95, within a threshold denoting a “less sustainable” status. The AHP analysis suggested that several alternative strategies are needed to improve the status of coral reef ecosystems, with greater prioritization of socialization, campaigns, and education, followed by law enforcement, selectivity in the use of fishing gear, rehabilitation of coral reef ecosystems, and restocking of fish in coral reefs. The findings of this study can be used as points of reference when local policymakers begin to formulate appropriate strategies for the sustainable use of coral reef ecosystems.
Hokkaido University ... arrow_drop_down Hokkaido University Collection of Scholarly and Academic PapersArticleLicense: CC BY NC NDFull-Text: http://hdl.handle.net/2115/86449Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.marpol.2020.104028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Hokkaido University ... arrow_drop_down Hokkaido University Collection of Scholarly and Academic PapersArticleLicense: CC BY NC NDFull-Text: http://hdl.handle.net/2115/86449Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.marpol.2020.104028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United Kingdom, United Kingdom, United States, United KingdomPublisher:The Royal Society Funded by:NSF | LTER: Biodiversity, Multi..., DFG | German Centre for Integra..., NSF | RCN: Coordination of the ...NSF| LTER: Biodiversity, Multiple Drivers of Environmental Change and Ecosystem Functioning at the Prairie Forest Border ,DFG| German Centre for Integrative Biodiversity Research - iDiv ,NSF| RCN: Coordination of the Nutrient Network (NutNet), global manipulations of nutrients and consumersAuthors: Aleksandra M. Lewandowska; Antje Biermann; Elizabeth T. Borer; Miguel A. Cebrián-Piqueras; +30 AuthorsAleksandra M. Lewandowska; Antje Biermann; Elizabeth T. Borer; Miguel A. Cebrián-Piqueras; Steven A. J. Declerck; Luc De Meester; Ellen Van Donk; Lars Gamfeldt; Daniel S. Gruner; Nicole Hagenah; W. Stanley Harpole; Kevin P. Kirkman; Christopher A. Klausmeier; Michael Kleyer; Johannes M. H. Knops; Pieter Lemmens; Eric M. Lind; Elena Litchman; Jasmin Mantilla-Contreras; Koen Martens; Sandra Meier; Vanessa Minden; Joslin L. Moore; Harry Olde Venterink; Eric W. Seabloom; Ulrich Sommer; Maren Striebel; Anastasia Trenkamp; Juliane Trinogga; Jotaro Urabe; Wim Vyverman; Dedmer B. Van de Waal; Claire E. Widdicombe; Helmut Hillebrand;pmid: 27114584
pmc: PMC4843703
Numerous studies show that increasing species richness leads to higher ecosystem productivity. This effect is often attributed to more efficient portioning of multiple resources in communities with higher numbers of competing species, indicating the role of resource supply and stoichiometry for biodiversity–ecosystem functioning relationships. Here, we merged theory on ecological stoichiometry with a framework of biodiversity–ecosystem functioning to understand how resource use transfers into primary production. We applied a structural equation model to define patterns of diversity–productivity relationships with respect to available resources. Meta-analysis was used to summarize the findings across ecosystem types ranging from aquatic ecosystems to grasslands and forests. As hypothesized, resource supply increased realized productivity and richness, but we found significant differences between ecosystems and study types. Increased richness was associated with increased productivity, although this effect was not seen in experiments. More even communities had lower productivity, indicating that biomass production is often maintained by a few dominant species, and reduced dominance generally reduced ecosystem productivity. This synthesis, which integrates observational and experimental studies in a variety of ecosystems and geographical regions, exposes common patterns and differences in biodiversity–functioning relationships, and increases the mechanistic understanding of changes in ecosystems productivity.
Philosophical Transa... arrow_drop_down Philosophical Transactions of the Royal Society B Biological SciencesArticleData sources: UnpayWallPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Philosophical Transactions of the Royal Society B Biological SciencesArticle . 2016 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2017Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rstb.2015.0283&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Philosophical Transa... arrow_drop_down Philosophical Transactions of the Royal Society B Biological SciencesArticleData sources: UnpayWallPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Philosophical Transactions of the Royal Society B Biological SciencesArticle . 2016 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2017Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rstb.2015.0283&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 Australia, France, United Kingdom, Italy, Germany, Australia, Germany, NorwayPublisher:Frontiers Media SA Publicly fundedFunded by:EC | SeaDataCloud, EC | FIXO3, EC | ODIP 2 +6 projectsEC| SeaDataCloud ,EC| FIXO3 ,EC| ODIP 2 ,NSF| Research Coordination Networks (RCN): Sustained Multidisciplinary Ocean Observations ,EC| AtlantOS ,EC| WeObserve ,EC| FREYA ,NSF| RCN:OceanObsNetwork ,NSF| Support for International Ocean Science Activities Through SCORPearlman, J; Bushnell, M; Coppola, L; Karstensen, J; Buttigieg, PL; Pearlman, F; Simpson, P; Barbier, M; Muller-Karger, FE; Munoz-Mas, C; Pissierssens, P; Chandler, C; Hermes, J; Heslop, E; Jenkyns, R; Achterberg, EP; Bensi, M; Bittig, HC; Blandin, J; Bosch, J; Bourles, B; Bozzano, R; Buck, JJH; Burger, EF; Cano, D; Cardin, V; Llorens, MC; Cianca, A; Chen, H; Cusack, C; Delory, E; Garello, R; Giovanetti, G; Harscoat, V; Hartman, S; Heitsenrether, R; Jirka, S; Lara-Lopez, A; Lanteri, N; Leadbetter, A; Manzella, G; Maso, J; McCurdy, A; Moussat, E; Ntoumas, M; Pensieri, S; Petihakis, G; Pinardi, N; Pouliquen, S; Przeslawski, R; Roden, NP; Silke, J; Tamburri, MN; Tang, H; Tanhua, T; Telszewski, M; Testor, P; Thomas, J; Waldmann, C; Whoriskey, F;handle: 1912/24338 , 1956/23485
The oceans play a key role in global issues such as climate change, food security, and human health. Given their vast dimensions and internal complexity, efficient monitoring and predicting of the planet's ocean must be a collaborative effort of both regional and global scale. A first and foremost requirement for such collaborative ocean observing is the need to follow well-defined and reproducible methods across activities: from strategies for structuring observing systems, sensor deployment and usage, and the generation of data and information products, to ethical and governance aspects when executing ocean observing. To meet the urgent, planet-wide challenges we face, methods across all aspects of ocean observing should be broadly adopted by the ocean community and, where appropriate, should evolve into "Ocean Best Practices." While many groups have created best practices, they are scattered across the Web or buried in local repositories and many have yet to be digitized. To reduce this fragmentation, we introduce a new open access, permanent, digital repository of best practices documentation (oceanbestpractices.org) that is part of the Ocean Best Practices System (OBPS). The new OBPS provides an opportunity space for the centralized and coordinated improvement of ocean observing methods. The OBPS repository employs user-friendly software to significantly improve discovery and access to methods. The software includes advanced semantic technologies for search capabilities to enhance repository operations. In addition to the repository, the OBPS also includes a peer reviewed journal research topic, a forum for community discussion and a training activity for use of best practices. Together, these components serve to realize a core objective of the OBPS, which is to enable the ocean community to create superior methods for every activity in ocean observing from research to operations to applications that are agreed upon and broadly adopted across communities. Using selected ocean observing examples, we show how the OBPS supports this objective. This paper lays out a future vision of ocean best practices and how OBPS will contribute to improving ocean observing in the decade to come.
Frontiers in Marine ... arrow_drop_down MINES ParisTech: Open Archive (HAL)Article . 2019Full-Text: https://hal.science/hal-02156636Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2019Full-Text: https://hal.science/hal-02156636Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Full-Text: https://hal.science/hal-02156636Data sources: Bielefeld Academic Search Engine (BASE)Université de Bretagne Occidentale: HALArticle . 2019Full-Text: https://hal.science/hal-02156636Data sources: Bielefeld Academic Search Engine (BASE)Woods Hole Open Access ServerArticle . 2019License: CC BYFull-Text: https://doi.org/10.3389/fmars.2019.00277Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Full-Text: https://hal.science/hal-02156636Data sources: Bielefeld Academic Search Engine (BASE)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/1956/23485Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Electronic Publication Information CenterArticle . 2019Data sources: Electronic Publication Information CenterBergen Open Research Archive - UiBArticle . 2019 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBUniversity of Tasmania: UTas ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2019.00277&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 118 citations 118 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 12visibility views 12 download downloads 1 Powered bymore_vert Frontiers in Marine ... arrow_drop_down MINES ParisTech: Open Archive (HAL)Article . 2019Full-Text: https://hal.science/hal-02156636Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2019Full-Text: https://hal.science/hal-02156636Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Full-Text: https://hal.science/hal-02156636Data sources: Bielefeld Academic Search Engine (BASE)Université de Bretagne Occidentale: HALArticle . 2019Full-Text: https://hal.science/hal-02156636Data sources: Bielefeld Academic Search Engine (BASE)Woods Hole Open Access ServerArticle . 2019License: CC BYFull-Text: https://doi.org/10.3389/fmars.2019.00277Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Full-Text: https://hal.science/hal-02156636Data sources: Bielefeld Academic Search Engine (BASE)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/1956/23485Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Electronic Publication Information CenterArticle . 2019Data sources: Electronic Publication Information CenterBergen Open Research Archive - UiBArticle . 2019 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBUniversity of Tasmania: UTas ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2019.00277&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Harshna Charan; Eri Inomata; Hikaru Endo; Yoichi Sato; Yutaka Okumura; Masakazu N. Aoki;doi: 10.3390/jmse10040479
Heatwaves under global warming have negative impacts on ecosystem primary producers. This warming effect may be synergized or antagonized by local environments such as light and nutrient availability. However, little is known about the interactive effects of warming, irradiance, and nutrients on physiology of marine macroalgae, which are dominant in coastal ecosystems. The present study examined the combined effects of warming (23 and 26 °C), irradiance (30 and 150 µmol photon m−2 s−1), and nutrients (enriched and non-enriched) on specific growth rate (SGR) and biochemical compositions of the canopy-forming marine macroalga Sargassum fusiforme. The negative effect of warming on SGR and ratio of chlorophyll (Chl) c to Chl a was antagonized by decreased irradiance. Moreover, the negative effect of temperature elevation on carbon content was antagonized by nutrient enrichment. These results suggest that the effect of warming on the growth and carbon accumulation of this species can be mitigated by decreased irradiance and nutrient enrichment.
Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse10040479&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse10040479&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2016 United Kingdom, United Kingdom, France, United Kingdom, Germany, France, FrancePublisher:Elsevier BV Ilka Peeken; Matt O'Regan; Sanna Majaneva; Makoto Sampei; Monika Kędra; Kirstin Werner; Marcel Nicolaus; Nathalie Morata; Mathilde Jacquot; Carolyn Wegner; Alexey Pavlov; Michael Fritz; Michael Fritz; Angelika H. H. Renner; Kathrin Keil; Helen S. Findlay; Anna Nikolopoulos; Stefan Hendricks;Understanding and responding to the rapidly occurring environmental changes in the Arctic over the past few decades require new approaches in science. This includes improved collaborations within the scientific community but also enhanced dialogue between scientists and societal stakeholders, especially with Arctic communities. As a contribution to the Third International Conference on Arctic Research Planning (ICARPIII), the Arctic in Rapid Transition (ART) network held an international workshop in France, in October 2014, in order to discuss high-priority requirements for future Arctic marine and coastal research from an early-career scientists (ECS) perspective. The discussion encompassed a variety of research fields, including topics of oceanographic conditions, sea-ice monitoring, marine biodiversity, land-ocean interactions, and geological reconstructions, as well as law and governance issues. Participants of the workshop strongly agreed on the need to enhance interdisciplinarity in order to collect comprehensive knowledge about the modern and past Arctic Ocean's geo-ecological dynamics. Such knowledge enables improved predictions of Arctic developments and provides the basis for elaborate decision-making on future actions under plausible environmental and climate scenarios in the high northern latitudes. Priority research sheets resulting from the workshop's discussions were distributed during the ICARPIII meetings in April 2015 in Japan, and are publicly available online.
Plymouth Marine Scie... arrow_drop_down Plymouth Marine Science Electronic Archive (PlyMEA)Article . 2016License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)OceanRepArticle . 2016 . Peer-reviewedFull-Text: http://oceanrep.geomar.de/34573/1/Werner.pdfData sources: OceanRepINRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverElectronic Publication Information CenterArticle . 2016Data sources: Electronic Publication Information CenterUniversité de Bretagne Occidentale: HALArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.polar.2016.04.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Plymouth Marine Scie... arrow_drop_down Plymouth Marine Science Electronic Archive (PlyMEA)Article . 2016License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)OceanRepArticle . 2016 . Peer-reviewedFull-Text: http://oceanrep.geomar.de/34573/1/Werner.pdfData sources: OceanRepINRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverElectronic Publication Information CenterArticle . 2016Data sources: Electronic Publication Information CenterUniversité de Bretagne Occidentale: HALArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.polar.2016.04.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 Germany, United Kingdom, Russian Federation, United States, Russian Federation, United StatesPublisher:Springer Science and Business Media LLC Funded by:FCT | SFRH/BPD/95372/2013, NWO | Age of Deep-Sea SquidFCT| SFRH/BPD/95372/2013 ,NWO| Age of Deep-Sea SquidAlexey V. Golikov; Filipe R. Ceia; Rushan M. Sabirov; Jonathan D. Ablett; Ian G. Gleadall; Gudmundur Gudmundsson; Hendrik J. Hoving; Heather Judkins; Jónbjörn Pálsson; Amanda L. Reid; Rigoberto Rosas-Luis; Elizabeth K. Shea; Richard Schwarz; José C. Xavier;AbstractVampyroteuthis infernalis Chun, 1903, is a widely distributed deepwater cephalopod with unique morphology and phylogenetic position. We assessed its habitat and trophic ecology on a global scale via stable isotope analyses of a unique collection of beaks from 104 specimens from the Atlantic, Pacific and Indian Oceans. Cephalopods typically are active predators occupying a high trophic level (TL) and exhibit an ontogenetic increase in δ15N and TL. Our results, presenting the first global comparison for a deep-sea invertebrate, demonstrate that V. infernalis has an ontogenetic decrease in δ15N and TL, coupled with niche broadening. Juveniles are mobile zooplanktivores, while larger Vampyroteuthis are slow-swimming opportunistic consumers and ingest particulate organic matter. Vampyroteuthis infernalis occupies the same TL (3.0–4.3) over its global range and has a unique niche in deep-sea ecosystems. These traits have enabled the success and abundance of this relict species inhabiting the largest ecological realm on the planet.
OceanRep arrow_drop_down Digital Commons University of South Florida (USF)Article . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of South Florida St. Petersburg: Digital USFSPArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-019-55719-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 25 citations 25 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 2visibility views 2 download downloads 69 Powered bymore_vert OceanRep arrow_drop_down Digital Commons University of South Florida (USF)Article . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of South Florida St. Petersburg: Digital USFSPArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-019-55719-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Authors: Keiko Udo; Sompratana Ritphring; Hiroaki Shirakawa; Pattrakorn Nidhinarangkoon;doi: 10.3390/jmse9060588
In the 21st century, global sea level rise associated with climate change will affect beach areas, which provide a number of benefits that include benefits to the recreational sector of the economy. In Thailand, the adoption of structural measures in order to slow down beach erosion and handle the impact of sea level rise is commonly implemented. However, structural measures often bring about negative effects on nearby coastal areas. For this reason, suitable adaptation measures should be determined, in order to protect beach areas and to sustain the tourism carrying capacity of the beach. This study analyzed historical shoreline changes using satellite images, and assessed beach value with the hedonic pricing method. We used a benefit–cost ratio analysis to evaluate the economic valuation assessment of Pattaya beach and Chalatat beach. The results showed that the beach values of Pattaya beach and Chalatat beach were 1,072,250 and 92,092 USD, respectively. The benefit–cost ratio analysis proposed that it is worth implementing beach nourishment for the adaptation measure to address all climate change scenarios. In response to climate change, recommendations could be applied to support beach tourism.
Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse9060588&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse9060588&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2022 France, GermanyPublisher:Frontiers Media SA Funded by:EC | TRIATLAS, ANR | TADEC| TRIATLAS ,ANR| TADLaetitia Drago; Thelma Panaïotis; Jean-Olivier Irisson; Marcel Babin; Tristan Biard; François Carlotti; François Carlotti; Laurent Coppola; Laurent Coppola; Lionel Guidi; Helena Hauss; Lee Karp-Boss; Fabien Lombard; Fabien Lombard; Andrew M. P. McDonnell; Marc Picheral; Andreas Rogge; Anya M. Waite; Lars Stemmann; Rainer Kiko;Zooplankton plays a major role in ocean food webs and biogeochemical cycles, and provides major ecosystem services as a main driver of the biological carbon pump and in sustaining fish communities. Zooplankton is also sensitive to its environment and reacts to its changes. To better understand the importance of zooplankton, and to inform prognostic models that try to represent them, spatially-resolved biomass estimates of key plankton taxa are desirable. In this study we predict, for the first time, the global biomass distribution of 19 zooplankton taxa (1-50 mm Equivalent Spherical Diameter) using observations with the Underwater Vision Profiler 5, a quantitative in situ imaging instrument. After classification of 466,872 organisms from more than 3,549 profiles (0-500 m) obtained between 2008 and 2019 throughout the globe, we estimated their individual biovolumes and converted them to biomass using taxa-specific conversion factors. We then associated these biomass estimates with climatologies of environmental variables (temperature, salinity, oxygen, etc.), to build habitat models using boosted regression trees. The results reveal maximal zooplankton biomass values around 60°N and 55°S as well as minimal values around the oceanic gyres. An increased zooplankton biomass is also predicted for the equator. Global integrated biomass (0-500 m) was estimated at 0.403 PgC. It was largely dominated by Copepoda (35.7%, mostly in polar regions), followed by Eumalacostraca (26.6%) Rhizaria (16.4%, mostly in the intertropical convergence zone). The machine learning approach used here is sensitive to the size of the training set and generates reliable predictions for abundant groups such as Copepoda (R2 ≈ 20-66%) but not for rare ones (Ctenophora, Cnidaria, R2 < 5%). Still, this study offers a first protocol to estimate global, spatially resolved zooplankton biomass and community composition from in situ imaging observations of individual organisms. The underlying dataset covers a period of 10 years while approaches that rely on net samples utilized datasets gathered since the 1960s. Increased use of digital imaging approaches should enable us to obtain zooplankton biomass distribution estimates at basin to global scales in shorter time frames in the future.
OceanRep arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Electronic Publication Information CenterArticle . 2022Data sources: Electronic Publication Information Centeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2022.894372&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 35 citations 35 popularity Top 10% influence Average impulse Top 1% Powered by BIP!
more_vert OceanRep arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Electronic Publication Information CenterArticle . 2022Data sources: Electronic Publication Information Centeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2022.894372&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Min Ho Son; Chung Il Lee; Joo Myun Park; Hyun Jung Kim; Ralf Riedel; Inseo Hwang; Young-Nam Kim; Hae Kun Jung;doi: 10.3390/jmse8100782
Recent global climate change often leads to poleward expansions of habitat range of marine organisms in response to increasing water temperature at high latitude. This study investigated latitudinal distribution patterns of Turbo sazae from 2009 to 2018 along the southern and eastern coasts of Korea to verify whether gradual increases in seawater temperature in the East Sea/Sea of Japan (hereafter East/Japan Sea) accelerate changes in the geographic distribution of T. sazae. Between 2009 and 2018, underwater SCUBA surveys were conducted at 19 subtidal rocky shore habitats from the southern and eastern coast of the Korean Peninsula, including Jeju Island. Additionally, long-term seawater temperature records over the last 40 years (between 1980s and 2010s) from the East/Japan Sea were analyzed to verify how changes of water temperature corresponded to geographical distributions of T. sazae. The habitat range of T. sazae was found to have extended from latitude 34°02′ N to latitude 37°06′ N from 2009 to 2018. Although seawater temperature has gradually increased since the 1990s in the East/Japan Sea, habitat expansion was particularly evident during the rapid rise of coastal seawater temperature in the 2010s. Because the strong northward expansion of the Tsushima Current can accelerate the rise of seawater temperature in the East/Japan Sea, studies of the effects of climate change on marine ecosystems of the Korean Peninsula should include data from monitoring the dynamics of the Tsushima Current.
Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse8100782&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse8100782&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 Australia, France, France, Germany, AustraliaPublisher:Frontiers Media SA Funded by:ARC | ARC Future Fellowships - ..., NSF | Collaborative Research: C..., NSF | Collaborative Research: T... +2 projectsARC| ARC Future Fellowships - Grant ID: FT190100599 ,NSF| Collaborative Research: Core Support for the U.S. Hub of the Future Earth Secretariat ,NSF| Collaborative Research: The role of a keystone pathogen in the geographic and local-scale ecology of eelgrass decline in the eastern Pacific ,NSF| Research Coordination Networks (RCN): Sustained Multidisciplinary Ocean Observations ,EC| BYONICAuthors: Erin V. Satterthwaite; Erin V. Satterthwaite; Erin V. Satterthwaite; Nicholas J. Bax; +44 AuthorsErin V. Satterthwaite; Erin V. Satterthwaite; Erin V. Satterthwaite; Nicholas J. Bax; Nicholas J. Bax; Patricia Miloslavich; Patricia Miloslavich; Lavenia Ratnarajah; Lavenia Ratnarajah; Gabrielle Canonico; Daniel Dunn; Samantha E. Simmons; Roxanne J. Carini; Karen Evans; Valerie Allain; Ward Appeltans; Sonia Batten; Lisandro Benedetti-Cecchi; Anthony T. F. Bernard; Anthony T. F. Bernard; Sky Bristol; Abigail Benson; Pier Luigi Buttigieg; Leopoldo Cavaleri Gerhardinger; Sanae Chiba; Tammy E. Davies; J. Emmett Duffy; Alfredo Giron-Nava; Astrid J. Hsu; Alexandra C. Kraberg; Raphael M. Kudela; Dan Lear; Enrique Montes; Frank E. Muller-Karger; Todd D. O’Brien; David Obura; Pieter Provoost; Sara Pruckner; Lisa-Maria Rebelo; Elizabeth R. Selig; Olav Sigurd Kjesbu; Craig Starger; Rick D. Stuart-Smith; Marjo Vierros; John Waller; Lauren V. Weatherdon; Tristan P. Wellman; Anna Zivian;handle: 10568/116179
Maintaining healthy, productive ecosystems in the face of pervasive and accelerating human impacts including climate change requires globally coordinated and sustained observations of marine biodiversity. Global coordination is predicated on an understanding of the scope and capacity of existing monitoring programs, and the extent to which they use standardized, interoperable practices for data management. Global coordination also requires identification of gaps in spatial and ecosystem coverage, and how these gaps correspond to management priorities and information needs. We undertook such an assessment by conducting an audit and gap analysis from global databases and structured surveys of experts. Of 371 survey respondents, 203 active, long-term (>5 years) observing programs systematically sampled marine life. These programs spanned about 7% of the ocean surface area, mostly concentrated in coastal regions of the United States, Canada, Europe, and Australia. Seagrasses, mangroves, hard corals, and macroalgae were sampled in 6% of the entire global coastal zone. Two-thirds of all observing programs offered accessible data, but methods and conditions for access were highly variable. Our assessment indicates that the global observing system is largely uncoordinated which results in a failure to deliver critical information required for informed decision-making such as, status and trends, for the conservation and sustainability of marine ecosystems and provision of ecosystem services. Based on our study, we suggest four key steps that can increase the sustainability, connectivity and spatial coverage of biological Essential Ocean Variables in the global ocean: (1) sustaining existing observing programs and encouraging coordination among these; (2) continuing to strive for data strategies that follow FAIR principles (findable, accessible, interoperable, and reusable); (3) utilizing existing ocean observing platforms and enhancing support to expand observing along coasts of developing countries, in deep ocean basins, and near the poles; and (4) targeting capacity building efforts. Following these suggestions could help create a coordinated marine biodiversity observing system enabling ecological forecasting and better planning for a sustainable use of ocean resources.
OceanRep arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/10568/116179Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2021.737416&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert OceanRep arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/10568/116179Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2021.737416&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 JapanPublisher:Elsevier BV Authors: Haya, La Ode Muhammad Yasir; Fujii, Masahiko;handle: 2115/86449
Abstract Coral reefs in the world’s tropical and subtropical oceans have long been under considerable threat. The aims of this study were to identify the types of threat affecting coral reefs, to conduct a sensitivity analysis to assess the sustainability of coral reef ecosystems, and to suggest alternative strategies that should be deployed to improve the status of coral reef ecosystems in the Pangkajene and Kepulauan (PANGKEP) Regency, Spermonde Archipelago, Indonesia. The data obtained were analyzed using the rapid appraisal technique for fisheries (RAPFISH) and the analytic hierarchy process (AHP). The RAPFISH analysis identified 41 types of threat to the status of coral reef ecosystems, based on five indices: economic (51.92), social (47.33), technological (47.26), legal and institutional (45.60), and ecological (37.65). The averaged cumulative index of coral reef ecosystem sustainability was 45.95, within a threshold denoting a “less sustainable” status. The AHP analysis suggested that several alternative strategies are needed to improve the status of coral reef ecosystems, with greater prioritization of socialization, campaigns, and education, followed by law enforcement, selectivity in the use of fishing gear, rehabilitation of coral reef ecosystems, and restocking of fish in coral reefs. The findings of this study can be used as points of reference when local policymakers begin to formulate appropriate strategies for the sustainable use of coral reef ecosystems.
Hokkaido University ... arrow_drop_down Hokkaido University Collection of Scholarly and Academic PapersArticleLicense: CC BY NC NDFull-Text: http://hdl.handle.net/2115/86449Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.marpol.2020.104028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Hokkaido University ... arrow_drop_down Hokkaido University Collection of Scholarly and Academic PapersArticleLicense: CC BY NC NDFull-Text: http://hdl.handle.net/2115/86449Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.marpol.2020.104028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United Kingdom, United Kingdom, United States, United KingdomPublisher:The Royal Society Funded by:NSF | LTER: Biodiversity, Multi..., DFG | German Centre for Integra..., NSF | RCN: Coordination of the ...NSF| LTER: Biodiversity, Multiple Drivers of Environmental Change and Ecosystem Functioning at the Prairie Forest Border ,DFG| German Centre for Integrative Biodiversity Research - iDiv ,NSF| RCN: Coordination of the Nutrient Network (NutNet), global manipulations of nutrients and consumersAuthors: Aleksandra M. Lewandowska; Antje Biermann; Elizabeth T. Borer; Miguel A. Cebrián-Piqueras; +30 AuthorsAleksandra M. Lewandowska; Antje Biermann; Elizabeth T. Borer; Miguel A. Cebrián-Piqueras; Steven A. J. Declerck; Luc De Meester; Ellen Van Donk; Lars Gamfeldt; Daniel S. Gruner; Nicole Hagenah; W. Stanley Harpole; Kevin P. Kirkman; Christopher A. Klausmeier; Michael Kleyer; Johannes M. H. Knops; Pieter Lemmens; Eric M. Lind; Elena Litchman; Jasmin Mantilla-Contreras; Koen Martens; Sandra Meier; Vanessa Minden; Joslin L. Moore; Harry Olde Venterink; Eric W. Seabloom; Ulrich Sommer; Maren Striebel; Anastasia Trenkamp; Juliane Trinogga; Jotaro Urabe; Wim Vyverman; Dedmer B. Van de Waal; Claire E. Widdicombe; Helmut Hillebrand;pmid: 27114584
pmc: PMC4843703
Numerous studies show that increasing species richness leads to higher ecosystem productivity. This effect is often attributed to more efficient portioning of multiple resources in communities with higher numbers of competing species, indicating the role of resource supply and stoichiometry for biodiversity–ecosystem functioning relationships. Here, we merged theory on ecological stoichiometry with a framework of biodiversity–ecosystem functioning to understand how resource use transfers into primary production. We applied a structural equation model to define patterns of diversity–productivity relationships with respect to available resources. Meta-analysis was used to summarize the findings across ecosystem types ranging from aquatic ecosystems to grasslands and forests. As hypothesized, resource supply increased realized productivity and richness, but we found significant differences between ecosystems and study types. Increased richness was associated with increased productivity, although this effect was not seen in experiments. More even communities had lower productivity, indicating that biomass production is often maintained by a few dominant species, and reduced dominance generally reduced ecosystem productivity. This synthesis, which integrates observational and experimental studies in a variety of ecosystems and geographical regions, exposes common patterns and differences in biodiversity–functioning relationships, and increases the mechanistic understanding of changes in ecosystems productivity.
Philosophical Transa... arrow_drop_down Philosophical Transactions of the Royal Society B Biological SciencesArticleData sources: UnpayWallPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Philosophical Transactions of the Royal Society B Biological SciencesArticle . 2016 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2017Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rstb.2015.0283&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Philosophical Transa... arrow_drop_down Philosophical Transactions of the Royal Society B Biological SciencesArticleData sources: UnpayWallPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Philosophical Transactions of the Royal Society B Biological SciencesArticle . 2016 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2017Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rstb.2015.0283&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 Australia, France, United Kingdom, Italy, Germany, Australia, Germany, NorwayPublisher:Frontiers Media SA Publicly fundedFunded by:EC | SeaDataCloud, EC | FIXO3, EC | ODIP 2 +6 projectsEC| SeaDataCloud ,EC| FIXO3 ,EC| ODIP 2 ,NSF| Research Coordination Networks (RCN): Sustained Multidisciplinary Ocean Observations ,EC| AtlantOS ,EC| WeObserve ,EC| FREYA ,NSF| RCN:OceanObsNetwork ,NSF| Support for International Ocean Science Activities Through SCORPearlman, J; Bushnell, M; Coppola, L; Karstensen, J; Buttigieg, PL; Pearlman, F; Simpson, P; Barbier, M; Muller-Karger, FE; Munoz-Mas, C; Pissierssens, P; Chandler, C; Hermes, J; Heslop, E; Jenkyns, R; Achterberg, EP; Bensi, M; Bittig, HC; Blandin, J; Bosch, J; Bourles, B; Bozzano, R; Buck, JJH; Burger, EF; Cano, D; Cardin, V; Llorens, MC; Cianca, A; Chen, H; Cusack, C; Delory, E; Garello, R; Giovanetti, G; Harscoat, V; Hartman, S; Heitsenrether, R; Jirka, S; Lara-Lopez, A; Lanteri, N; Leadbetter, A; Manzella, G; Maso, J; McCurdy, A; Moussat, E; Ntoumas, M; Pensieri, S; Petihakis, G; Pinardi, N; Pouliquen, S; Przeslawski, R; Roden, NP; Silke, J; Tamburri, MN; Tang, H; Tanhua, T; Telszewski, M; Testor, P; Thomas, J; Waldmann, C; Whoriskey, F;handle: 1912/24338 , 1956/23485
The oceans play a key role in global issues such as climate change, food security, and human health. Given their vast dimensions and internal complexity, efficient monitoring and predicting of the planet's ocean must be a collaborative effort of both regional and global scale. A first and foremost requirement for such collaborative ocean observing is the need to follow well-defined and reproducible methods across activities: from strategies for structuring observing systems, sensor deployment and usage, and the generation of data and information products, to ethical and governance aspects when executing ocean observing. To meet the urgent, planet-wide challenges we face, methods across all aspects of ocean observing should be broadly adopted by the ocean community and, where appropriate, should evolve into "Ocean Best Practices." While many groups have created best practices, they are scattered across the Web or buried in local repositories and many have yet to be digitized. To reduce this fragmentation, we introduce a new open access, permanent, digital repository of best practices documentation (oceanbestpractices.org) that is part of the Ocean Best Practices System (OBPS). The new OBPS provides an opportunity space for the centralized and coordinated improvement of ocean observing methods. The OBPS repository employs user-friendly software to significantly improve discovery and access to methods. The software includes advanced semantic technologies for search capabilities to enhance repository operations. In addition to the repository, the OBPS also includes a peer reviewed journal research topic, a forum for community discussion and a training activity for use of best practices. Together, these components serve to realize a core objective of the OBPS, which is to enable the ocean community to create superior methods for every activity in ocean observing from research to operations to applications that are agreed upon and broadly adopted across communities. Using selected ocean observing examples, we show how the OBPS supports this objective. This paper lays out a future vision of ocean best practices and how OBPS will contribute to improving ocean observing in the decade to come.
Frontiers in Marine ... arrow_drop_down MINES ParisTech: Open Archive (HAL)Article . 2019Full-Text: https://hal.science/hal-02156636Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2019Full-Text: https://hal.science/hal-02156636Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Full-Text: https://hal.science/hal-02156636Data sources: Bielefeld Academic Search Engine (BASE)Université de Bretagne Occidentale: HALArticle . 2019Full-Text: https://hal.science/hal-02156636Data sources: Bielefeld Academic Search Engine (BASE)Woods Hole Open Access ServerArticle . 2019License: CC BYFull-Text: https://doi.org/10.3389/fmars.2019.00277Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Full-Text: https://hal.science/hal-02156636Data sources: Bielefeld Academic Search Engine (BASE)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/1956/23485Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Electronic Publication Information CenterArticle . 2019Data sources: Electronic Publication Information CenterBergen Open Research Archive - UiBArticle . 2019 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBUniversity of Tasmania: UTas ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2019.00277&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 118 citations 118 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 12visibility views 12 download downloads 1 Powered bymore_vert Frontiers in Marine ... arrow_drop_down MINES ParisTech: Open Archive (HAL)Article . 2019Full-Text: https://hal.science/hal-02156636Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2019Full-Text: https://hal.science/hal-02156636Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Full-Text: https://hal.science/hal-02156636Data sources: Bielefeld Academic Search Engine (BASE)Université de Bretagne Occidentale: HALArticle . 2019Full-Text: https://hal.science/hal-02156636Data sources: Bielefeld Academic Search Engine (BASE)Woods Hole Open Access ServerArticle . 2019License: CC BYFull-Text: https://doi.org/10.3389/fmars.2019.00277Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Full-Text: https://hal.science/hal-02156636Data sources: Bielefeld Academic Search Engine (BASE)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/1956/23485Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Electronic Publication Information CenterArticle . 2019Data sources: Electronic Publication Information CenterBergen Open Research Archive - UiBArticle . 2019 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBUniversity of Tasmania: UTas ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2019.00277&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Harshna Charan; Eri Inomata; Hikaru Endo; Yoichi Sato; Yutaka Okumura; Masakazu N. Aoki;doi: 10.3390/jmse10040479
Heatwaves under global warming have negative impacts on ecosystem primary producers. This warming effect may be synergized or antagonized by local environments such as light and nutrient availability. However, little is known about the interactive effects of warming, irradiance, and nutrients on physiology of marine macroalgae, which are dominant in coastal ecosystems. The present study examined the combined effects of warming (23 and 26 °C), irradiance (30 and 150 µmol photon m−2 s−1), and nutrients (enriched and non-enriched) on specific growth rate (SGR) and biochemical compositions of the canopy-forming marine macroalga Sargassum fusiforme. The negative effect of warming on SGR and ratio of chlorophyll (Chl) c to Chl a was antagonized by decreased irradiance. Moreover, the negative effect of temperature elevation on carbon content was antagonized by nutrient enrichment. These results suggest that the effect of warming on the growth and carbon accumulation of this species can be mitigated by decreased irradiance and nutrient enrichment.
Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse10040479&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse10040479&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu