- home
- Advanced Search
- Energy Research
- 6. Clean water
- US
- CN
- FR
- Transport Research
- Energy Research
- 6. Clean water
- US
- CN
- FR
- Transport Research
description Publicationkeyboard_double_arrow_right Article 2022 GermanyPublisher:Elsevier BV As the largest renewable electricity source, hydropower represents an alternative to fossil fuels to achieve a low-carbon future. However, increasing evidence suggests that hydropower reservoirs are an important source of biogenic greenhouse gases (GHGs), albeit with large uncertainties. Combining spatially resolved assessments of GHG fluxes and hydroelectric capacity databases, we assessed that global GHG emissions from reservoirs is 0.38 Pg CO2 eq.yr−1, accounting for 1.0% of global anthropogenic emissions. The median carbon intensity for hydropower is ∼63.0 kg CO2eq. MWh−1, which is lower than that for fossil fuels, but higher than that for other renewable energy sources. High carbon intensity is mostly linked to shallow (water storage depth <20 m) and eutrophic reservoirs. Furthermore, we found that the reservoir carbon intensity (CI) value would be markedly increased to 131.5 kg CO2eq. MWh−1 when considering the dams under construction and planning. A low-carbon future will benefit from optimal dam planning and management measures, i.e., applying sludge removal treatments, thereby reducing the proportion of shallow reservoirs and anthropogenic pollution.
OceanRep arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2022.112433&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert OceanRep arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2022.112433&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United States, Switzerland, DenmarkPublisher:Frontiers Media SA Funded by:NSF | Nitrous oxide cycling in ...NSF| Nitrous oxide cycling in the Western Arctic Ocean from stable isotopic and concentration dataAuthors:Amal Jayakumar;
Amal Jayakumar
Amal Jayakumar in OpenAIREXin Sun;
Xin Sun; Bess B. Ward; +5 AuthorsAmal Jayakumar;
Amal Jayakumar
Amal Jayakumar in OpenAIREXin Sun;
Xin Sun; Bess B. Ward;Laura A. Bristow;
Laura A. Bristow
Laura A. Bristow in OpenAIREClaudia Frey;
Nathaniel E. Ostrom;Claudia Frey
Claudia Frey in OpenAIREAnnie Bourbonnais;
Karen L. Casciotti;Annie Bourbonnais
Annie Bourbonnais in OpenAIRENitrous oxide (N2O) is a potent greenhouse gas and an ozone destroying substance. Yet, clear step-by-step protocols to measure N2O transformation rates in freshwater and marine environments are still lacking, challenging inter-comparability efforts. Here we present detailed protocols currently used by leading experts in the field to measure water-column N2O production and consumption rates in both marine and other aquatic environments. We present example 15N-tracer incubation experiments in marine environments as well as templates to calculate both N2O production and consumption rates. We discuss important considerations and recommendations regarding (1) precautions to prevent oxygen (O2) contamination during low-oxygen and anoxic incubations, (2) preferred bottles and stoppers, (3) procedures for 15N-tracer addition, and (4) the choice of a fixative. We finally discuss data reporting and archiving. We expect these protocols will make 15N-labeled N2O transformation rate measurements more accessible to the wider community and facilitate future inter-comparison between different laboratories.
University of South ... arrow_drop_down University of South Carolina Libraries: Scholar CommonsArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Frontiers in Marine ScienceArticle . 2021License: CC BYData sources: University of Southern Denmark Research OutputUniversity of Southern Denmark Research OutputArticle . 2021Data sources: University of Southern Denmark Research Outputadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2021.611937&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert University of South ... arrow_drop_down University of South Carolina Libraries: Scholar CommonsArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Frontiers in Marine ScienceArticle . 2021License: CC BYData sources: University of Southern Denmark Research OutputUniversity of Southern Denmark Research OutputArticle . 2021Data sources: University of Southern Denmark Research Outputadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2021.611937&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 Netherlands, Australia, Germany, France, Germany, United Kingdom, Netherlands, Germany, Switzerland, Germany, Netherlands, Germany, Netherlands, Netherlands, Netherlands, Australia, Germany, United KingdomPublisher:Copernicus GmbH Publicly fundedFunded by:RCN | Integrated Carbon Observa..., UKRI | Amazon Integrated Carbon ..., EC | AtlantOS +10 projectsRCN| Integrated Carbon Observation System (ICOS)-Norway and Ocean Thematic Centre (OTC) ,UKRI| Amazon Integrated Carbon Analysis / AMAZONICA ,EC| AtlantOS ,NWO| The distribution and evolution of inert and reactant scalars: from the atmospheric boundary layer to continental scales ,RCN| CICEP-Strategic Challenges in International Climate and Energy Policy ,EC| CRESCENDO ,EC| RINGO ,EC| FIXO3 ,EC| IMBALANCE-P ,EC| VERIFY ,EC| GEOCARBON ,RCN| Jordsystem-modellering av klimaforandringer i den antroposene tidsalder; Earth system modelling of climate Variations in the Anthropocene ,EC| QUINCYAuthors: C. Le Quéré;R. M. Andrew;
R. M. Andrew
R. M. Andrew in OpenAIREP. Friedlingstein;
P. Friedlingstein
P. Friedlingstein in OpenAIRES. Sitch;
+82 AuthorsS. Sitch
S. Sitch in OpenAIREC. Le Quéré;R. M. Andrew;
R. M. Andrew
R. M. Andrew in OpenAIREP. Friedlingstein;
P. Friedlingstein
P. Friedlingstein in OpenAIRES. Sitch;
S. Sitch
S. Sitch in OpenAIREJ. Hauck;
J. Hauck
J. Hauck in OpenAIREJ. Pongratz;
J. Pongratz;J. Pongratz
J. Pongratz in OpenAIREP. A. Pickers;
P. A. Pickers
P. A. Pickers in OpenAIREJ. I. Korsbakken;
J. I. Korsbakken
J. I. Korsbakken in OpenAIREG. P. Peters;
G. P. Peters
G. P. Peters in OpenAIREJ. G. Canadell;
J. G. Canadell
J. G. Canadell in OpenAIREA. Arneth;
V. K. Arora; L. Barbero; L. Barbero;A. Arneth
A. Arneth in OpenAIREA. Bastos;
A. Bastos
A. Bastos in OpenAIREL. Bopp;
F. Chevallier;
L. P. Chini; P. Ciais;F. Chevallier
F. Chevallier in OpenAIRES. C. Doney;
T. Gkritzalis;S. C. Doney
S. C. Doney in OpenAIRED. S. Goll;
D. S. Goll
D. S. Goll in OpenAIREI. Harris;
I. Harris
I. Harris in OpenAIREV. Haverd;
V. Haverd
V. Haverd in OpenAIREF. M. Hoffman;
M. Hoppema; R. A. Houghton;F. M. Hoffman
F. M. Hoffman in OpenAIREG. Hurtt;
T. Ilyina;G. Hurtt
G. Hurtt in OpenAIREA. K. Jain;
T. Johannessen; C. D. Jones;A. K. Jain
A. K. Jain in OpenAIREE. Kato;
R. F. Keeling;K. K. Goldewijk;
K. K. Goldewijk;K. K. Goldewijk
K. K. Goldewijk in OpenAIREP. Landschützer;
P. Landschützer
P. Landschützer in OpenAIREN. Lefèvre;
S. Lienert; Z. Liu; Z. Liu; D. Lombardozzi;N. Lefèvre
N. Lefèvre in OpenAIREN. Metzl;
D. R. Munro; J. E. M. S. Nabel;N. Metzl
N. Metzl in OpenAIRES.-I. Nakaoka;
C. Neill; C. Neill;S.-I. Nakaoka
S.-I. Nakaoka in OpenAIREA. Olsen;
T. Ono; P. Patra;A. Olsen
A. Olsen in OpenAIREA. Peregon;
W. Peters; W. Peters; P. Peylin; B. Pfeil; B. Pfeil; D. Pierrot; D. Pierrot;A. Peregon
A. Peregon in OpenAIREB. Poulter;
G. Rehder;B. Poulter
B. Poulter in OpenAIREL. Resplandy;
E. Robertson; M. Rocher; C. Rödenbeck; U. Schuster; J. Schwinger;L. Resplandy
L. Resplandy in OpenAIRER. Séférian;
R. Séférian
R. Séférian in OpenAIREI. Skjelvan;
T. Steinhoff;I. Skjelvan
I. Skjelvan in OpenAIREA. Sutton;
P. P. Tans;A. Sutton
A. Sutton in OpenAIREH. Tian;
B. Tilbrook;
B. Tilbrook;B. Tilbrook
B. Tilbrook in OpenAIREF. N. Tubiello;
I. T. van der Laan-Luijkx;F. N. Tubiello
F. N. Tubiello in OpenAIREG. R. van der Werf;
G. R. van der Werf
G. R. van der Werf in OpenAIREN. Viovy;
N. Viovy
N. Viovy in OpenAIREA. P. Walker;
A. J. Wiltshire;A. P. Walker
A. P. Walker in OpenAIRER. Wright;
R. Wright;R. Wright
R. Wright in OpenAIRES. Zaehle;
S. Zaehle
S. Zaehle in OpenAIREB. Zheng;
B. Zheng
B. Zheng in OpenAIREAbstract. Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the “global carbon budget” – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (EFF) are based on energy statistics and cement production data, while emissions from land use and land-use change (ELUC), mainly deforestation, are based on land use and land-use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly and its growth rate (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) and terrestrial CO2 sink (SLAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2008–2017), EFF was 9.4±0.5 GtC yr−1, ELUC 1.5±0.7 GtC yr−1, GATM 4.7±0.02 GtC yr−1, SOCEAN 2.4±0.5 GtC yr−1, and SLAND 3.2±0.8 GtC yr−1, with a budget imbalance BIM of 0.5 GtC yr−1 indicating overestimated emissions and/or underestimated sinks. For the year 2017 alone, the growth in EFF was about 1.6 % and emissions increased to 9.9±0.5 GtC yr−1. Also for 2017, ELUC was 1.4±0.7 GtC yr−1, GATM was 4.6±0.2 GtC yr−1, SOCEAN was 2.5±0.5 GtC yr−1, and SLAND was 3.8±0.8 GtC yr−1, with a BIM of 0.3 GtC. The global atmospheric CO2 concentration reached 405.0±0.1 ppm averaged over 2017. For 2018, preliminary data for the first 6–9 months indicate a renewed growth in EFF of +2.7 % (range of 1.8 % to 3.7 %) based on national emission projections for China, the US, the EU, and India and projections of gross domestic product corrected for recent changes in the carbon intensity of the economy for the rest of the world. The analysis presented here shows that the mean and trend in the five components of the global carbon budget are consistently estimated over the period of 1959–2017, but discrepancies of up to 1 GtC yr−1 persist for the representation of semi-decadal variability in CO2 fluxes. A detailed comparison among individual estimates and the introduction of a broad range of observations show (1) no consensus in the mean and trend in land-use change emissions, (2) a persistent low agreement among the different methods on the magnitude of the land CO2 flux in the northern extra-tropics, and (3) an apparent underestimation of the CO2 variability by ocean models, originating outside the tropics. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding the global carbon cycle compared with previous publications of this data set (Le Quéré et al., 2018, 2016, 2015a, b, 2014, 2013). All results presented here can be downloaded from https://doi.org/10.18160/GCP-2018.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2018 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryBern Open Repository and Information System (BORIS)Article . 2018 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Open Research ExeterArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10871/35123Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2018Full-Text: https://hal.science/hal-01951197Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Full-Text: https://hal.science/hal-01951197Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Full-Text: https://hal.science/hal-01951197Data sources: Bielefeld Academic Search Engine (BASE)Earth System Science Data (ESSD)Article . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Earth System Science Data (ESSD)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Earth System Science Data (ESSD)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Earth System Science Data (ESSD)Article . 2018Earth System Science Data (ESSD)Article . 2018License: CC BYData sources: University of Groningen Research PortalWageningen Staff PublicationsArticle . 2018License: CC BYData sources: Wageningen Staff PublicationsElectronic Publication Information CenterArticle . 2018Data sources: Electronic Publication Information CenterArchiMer - Institutional Archive of IfremerOther literature type . 2018Data sources: ArchiMer - Institutional Archive of IfremerEarth System Science Data (ESSD)Article . 2018 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-10-2141-2018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1K citations 1,246 popularity Top 0.01% influence Top 0.1% impulse Top 0.01% Powered by BIP!
more_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2018 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryBern Open Repository and Information System (BORIS)Article . 2018 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Open Research ExeterArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10871/35123Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2018Full-Text: https://hal.science/hal-01951197Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Full-Text: https://hal.science/hal-01951197Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Full-Text: https://hal.science/hal-01951197Data sources: Bielefeld Academic Search Engine (BASE)Earth System Science Data (ESSD)Article . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Earth System Science Data (ESSD)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Earth System Science Data (ESSD)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Earth System Science Data (ESSD)Article . 2018Earth System Science Data (ESSD)Article . 2018License: CC BYData sources: University of Groningen Research PortalWageningen Staff PublicationsArticle . 2018License: CC BYData sources: Wageningen Staff PublicationsElectronic Publication Information CenterArticle . 2018Data sources: Electronic Publication Information CenterArchiMer - Institutional Archive of IfremerOther literature type . 2018Data sources: ArchiMer - Institutional Archive of IfremerEarth System Science Data (ESSD)Article . 2018 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-10-2141-2018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors:Qiuwan Shen;
Zicheng Shao;Qiuwan Shen
Qiuwan Shen in OpenAIREShian Li;
Guogang Yang; +2 AuthorsShian Li
Shian Li in OpenAIREQiuwan Shen;
Zicheng Shao;Qiuwan Shen
Qiuwan Shen in OpenAIREShian Li;
Guogang Yang;Shian Li
Shian Li in OpenAIREJinliang Yuan;
Xinxiang Pan;Jinliang Yuan
Jinliang Yuan in OpenAIREdoi: 10.3390/jmse9060661
An effective approach for reducing CO2 emissions from marine exhaust is adopting oxyfuel combustion technology. A series of B-site doped BaCo0.8B0.2O3−δ (B=Ce, Al, Fe, Cu) perovskites as novel oxygen carrier applications were prepared by the sol-gel method. The oxygen desorption characteristics of the B-site doped BaCo0.8B0.2O3−δ perovskites and the effects of adsorption/desorption temperature, CO2 volume flow rate, CO2 partial pressures, and adsorption time were researched in the fixed bed reactor. The surface morphology and size of the oxygen carrier was observed by scanning electron microscope (SEM). Results showed that BaCo0.8Al0.2O3−δ and BaCo0.8Ce0.2O3−δ have comparable performance, considering the cost of the raw materials. BaCo0.8Al0.2O3−δ was selected as candidate for further study. The optimal adsorption/desorption temperature, CO2 volume flow rate, CO2 partial pressure and adsorption time for BaCo0.8Al0.2O3−δ were studied in detail. Results showed that the best operating parameters were determined to be 850 °C/850 °C for adsorption/desorption temperature, 200 mL/min for CO2 volume flow rate, 100% CO2 partial pressure, and 30 min for absorption time, respectively. Furthermore, multiple cycle results indicate that BaCo0.8Al0.2O3−δ sorbent has high reactivity and cyclic stability.
Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2077-1312/9/6/661/pdfData sources: Multidisciplinary Digital Publishing InstituteJournal of Marine Science and EngineeringArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse9060661&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2077-1312/9/6/661/pdfData sources: Multidisciplinary Digital Publishing InstituteJournal of Marine Science and EngineeringArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse9060661&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Yuan Li; Hao Chen; Ding Meijuan;Hongming Xu;
+2 AuthorsHongming Xu
Hongming Xu in OpenAIREYuan Li; Hao Chen; Ding Meijuan;Hongming Xu;
Zhao Wei; Li Yangyang;Hongming Xu
Hongming Xu in OpenAIREIn the usage phase, diesel engines fuelled with diesel-biodiesel blends produced lower soot, HC and CO emissions. However, the environmental effects should include the greenhouse gas (GHG) emissions. GHG variations of biodiesel production from three generation feedstocks were analyzed based on the land use change (LUC). Adequate land use change could keep the biodiversity and did not cause the increase of GHG emissions. The choice for feedstocks of biodiesel in China was comprehensively analyzed based on the land use type, the precipitation and the oil contents and the cultivation conditions of plants. Then, the suggestions for biodiesel development in China were given. Results showed that China should thoroughly abandon the first generation feedstocks due to the lack of arable land. Jatropha curcas (J. curcas), Pistacia chinensis Bunge (P. chinensis), Comus wilsoniana (C. wilsoniana) and Xanthoceras sorbifolium Bunge (X. sorbifolium) were considered as the most promising feedstocks for biodiesel production. It is suggested to plant X. sorbifolium in sand lands in the north and northwest of China with less natural rainfall and the others in south and southwest of China. The concern for microalgae should be transmitted to engineering microalgae cultivated in wastewater. The microalgae biodiesel refinery should be developed together with wastewater proposal industry and coal fired power plants. Lastly, only natural gas-based or biomass-based methanol can be used for biodiesel production.
Journal of Traffic a... arrow_drop_down Journal of Traffic and Transportation Engineering (English ed. Online)Article . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefJournal of Traffic and Transportation Engineering (English ed. Online)ArticleLicense: CC BY NC NDData sources: UnpayWallJournal of Traffic and Transportation Engineering (English ed. Online)Article . 2020Data sources: DOAJadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jtte.2020.10.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Traffic a... arrow_drop_down Journal of Traffic and Transportation Engineering (English ed. Online)Article . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefJournal of Traffic and Transportation Engineering (English ed. Online)ArticleLicense: CC BY NC NDData sources: UnpayWallJournal of Traffic and Transportation Engineering (English ed. Online)Article . 2020Data sources: DOAJadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jtte.2020.10.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018Publisher:MDPI AG doi: 10.3390/jmse6040132
A wave energy converter (WEC) system has the potential to convert the wave energy resource directly into the high-pressure flow that is needed by the desalination system to pump saltwater to the reverse-osmosis membrane and provide the required pressure level to generate freshwater. In this study, a wave-to-water numerical model was developed to investigate the potential use of a wave-powered desalination system (WPDS) for water production. The model was developed by coupling a time-domain radiation-and-diffraction method-based numerical tool (WEC-Sim) for predicting the hydrodynamic performance of WECs with a solution-diffusion model that was used to simulate the reverse-osmosis (RO) process. The objective of this research is to evaluate the WPDS dynamics and the overall efficiency of the system. To evaluate the feasibility of the WPDS, the wave-to-water numerical model was applied to simulate a desalination system that used an oscillating surge WEC device to pump seawater through the system. The hydrodynamics WEC-Sim simulation results for the oscillating surge WEC device were validated against existing experimental data. The RO simulation was verified by comparing the results to those from the Dow Chemical Company’s reverse osmosis system analysis (ROSA) model, which has been widely used to design and simulate RO systems. The wave-to-water model was then used to analyze the WPDS under a range of wave conditions and for a two-WECs-coupled RO system to evaluate the influence of pressure and flow rate fluctuation on the WPDS performance. The results show that the instantaneous energy fluctuation from waves has a significant influence on the responding hydraulic pressure and flow rate, as well as the recovery ratio and, ultimately, the water-production quality. Nevertheless, it is possible to reduce the hydraulic fluctuation for different sea states while maintaining a certain level of freshwater production, and a WEC array that produces water can be a viable, near-term solution to the nation’s water supply. A discussion on the dynamic impact of hydraulic fluctuation on the WPDS performance and potential options to reduce the fluctuation and their trade-offs is also presented.
Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2077-1312/6/4/132/pdfData sources: Multidisciplinary Digital Publishing InstituteJournal of Marine Science and EngineeringArticle . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse6040132&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 17 citations 17 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2077-1312/6/4/132/pdfData sources: Multidisciplinary Digital Publishing InstituteJournal of Marine Science and EngineeringArticle . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse6040132&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Zhongying Zhao; Lianhua Hou; Xia Luo; Yaao Chi; Zhenglian Pang;Senhu Lin;
Lijun Zhang;Senhu Lin
Senhu Lin in OpenAIREBo Liu;
doi: 10.3390/jmse11071363
The reservoir properties of low–medium-maturity shale undergo complex changes during the in situ conversion process (ICP). The experiments were performed at high temperature (up to 450 °C), high pressure (30 MPa), and a low heating rate (0.4 °C/h) on low–medium-maturity shale samples of the Chang 7 Member shale in the southern Ordos Basin. The changes in the shale composition, pore structure, and reservoir properties during the ICP were quantitatively characterized by X-ray diffraction (XRD), microscopic observation, vitrinite reflectance (Ro), scanning electron microscopy (SEM), and reservoir physical property measurements. The results showed that a sharp change occurred in mineral and maceral composition, pore structure, porosity, and permeability at a temperature threshold of 350 °C. In the case of a temperature > 350 °C, pyrite, K-feldspar, ankerite, and siderite were almost completely decomposed, and organic matter (OM) was cracked into large quantities of oil and gas. Furthermore, a three-scale millimeter–micrometer–nanometer pore–fracture network was formed along the shale bedding, between OM and mineral particles and within OM, respectively. During the ICP, porosity and permeability showed a substantial improvement, with porosity increasing by approximately 10-times and permeability by 2- to 4-orders of magnitude. Kerogen pyrolysis, clay–mineral transformation, unstable mineral dissolution, and thermal stress were the main mechanisms for the substantial improvement in the reservoir’s physical properties. This study is expected to provide a basis for formulating a heating procedure and constructing a numerical model of reservoir properties for the ICP field pilot in the Chang 7 shale of the Ordos Basin.
Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2077-1312/11/7/1363/pdfData sources: Multidisciplinary Digital Publishing InstituteJournal of Marine Science and EngineeringArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse11071363&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2077-1312/11/7/1363/pdfData sources: Multidisciplinary Digital Publishing InstituteJournal of Marine Science and EngineeringArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse11071363&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Germany, GermanyPublisher:Springer Science and Business Media LLC Authors:Ketil Koop-Jakobsen;
Ketil Koop-Jakobsen
Ketil Koop-Jakobsen in OpenAIRETobias Dolch;
Tobias Dolch
Tobias Dolch in OpenAIREAbstractUnderstanding how the salt marsh vegetation will evolve under future climate conditions is essential for predicting the role of marsh ecosystem services in a warmer climate with higher CO2-concentrations. In a mesocosm experiment in the northern Wadden Sea, the impact of increased temperature (+ 3 °C) and CO2 (800 ppm) on salt marsh vegetation was investigated, assessing biomass production in the pioneer zone and low marsh. The pioneer zone, which was dominated by Spartina anglica and exposed to natural tidal inundations, demonstrated a differentiated response between belowground and aboveground biomass. Aboveground biomass increased in response to enhanced CO2 availability, and belowground biomass increased in response to raised temperatures. Other plant species accounted for less than 18% of the aboveground biomass, and their biomass was suppressed under high CO2 availability. Increased biomass by Spartina anglica may improve resilience toward sea level rise. Hence, the pioneer zone is expected to maintain its coastal protection and blue carbon storage capacity under future climate conditions. The low marsh, which was dominated by Elymus athericus, was exposed to higher than usual tidal inundations and resembled a scenario with increased sea level. The low marsh showed no response in biomass to increased CO2 or temperature, which may be due to the increased flooding. The positive response of Spartina anglica (C4 plant) and the lack of response in Elymus athericus (C3 plant) counter the notion that C3 plants are more productive under future climate conditions and demonstrate that C4 plants can also thrive in future salt marshes.
OceanRep arrow_drop_down Electronic Publication Information CenterArticle . 2023Data sources: Electronic Publication Information Centeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12526-023-01347-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert OceanRep arrow_drop_down Electronic Publication Information CenterArticle . 2023Data sources: Electronic Publication Information Centeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12526-023-01347-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Book , Journal 2019 United StatesPublisher:Washington, DC: World Bank Authors: Rozenberg, Julie; Fay, Marianne;handle: 10986/31291
Beyond the Gap: How Countries Can Afford the Infrastructure They Need while Protecting the Planet aims to shift the debate regarding investment needs away from a simple focus on spending more and toward a focus on spending better on the right objectives, using relevant metrics. It does so by offering a careful and systematic approach to estimating the funding needs to close the service gaps in water and sanitation, transportation, electricity, irrigation, and flood protection. Exploring thousands of scenarios, this report finds that funding needs depend on the service goals and policy choices of low- and middle-income countries and could range anywhere from 2 percent to 8 percent of GDP per year by 2030. Beyond the Gap also identifies a policy mix that will enable countries to achieve key international goals—universal access to water, sanitation, and electricity; greater mobility; improved food security; better protection from floods; and eventual full decarbonization—while limiting spending on new infrastructure to 4.5 percent of GDP per year. Importantly, the exploration of thousands of scenarios shows that infrastructure investment paths compatible with full decarbonization in the second half of the century need not cost more than more-polluting alternatives. Investment needs remain at 2 percent to 8 percent of GDP even when only the decarbonized scenarios are examined. The actual amount depends on the quality and quantity of services targeted, the timing of investments, construction costs, and complementary policies. Finally, investing in infrastructure is not enough; maintaining it also matters. Improving services requires much more than capital expenditure. Ensuring a steady flow of resources for operations and maintenance is a necessary condition for success. Good maintenance also generates substantial savings by reducing the total life-cycle cost of transport and water and sanitation infrastructure by more than 50 percent.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1596/978-1-4648-1363-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 85 citations 85 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1596/978-1-4648-1363-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Wiley Authors: Alan D. Jassby; Monika Winder; Ralph Charles Mac Nally;pmid: 21645194
Environmental perturbation, climate change and international commerce are important drivers for biological invasions. Climate anomalies can further increase levels of habitat disturbance and act synergistically to elevate invasion risk. Herein, we use a historical data set from the upper San Francisco Estuary to provide the first empirical evidence for facilitation of invasions by climate extremes. Invasive zooplankton species did not become established in this estuary until the 1970s when increasing propagule pressure from Asia coincided with extended drought periods. Hydrological management exacerbated the effects of post-1960 droughts and reduced freshwater inflow even further, increasing drought severity and allowing unusually extreme salinity intrusions. Native zooplankton experienced unprecedented conditions of high salinity and intensified benthic grazing, and life history attributes of invasive zooplankton were advantageous enough during droughts to outcompete native species and colonise the system. Extreme climatic events can therefore act synergistically with environmental perturbation to facilitate the establishment of invasive species.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1461-0248.2011.01635.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu66 citations 66 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1461-0248.2011.01635.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu