- home
- Advanced Search
- Energy Research
- 12. Responsible consumption
- 14. Life underwater
- US
- FR
- Transport Research
- Energy Research
- 12. Responsible consumption
- 14. Life underwater
- US
- FR
- Transport Research
description Publicationkeyboard_double_arrow_right Article , Journal 2014 Italy, Italy, United States, United Kingdom, United Kingdom, Germany, United Kingdom, Norway, United StatesPublisher:MDPI AG Funded by:RCN | Development of a transfor...RCN| Development of a transformative experimental evolution paradigm for single-celled eukaryotesHarvey, Ben P; Al Janabi, Balsam; BROSZEIT, STEFANIE; Cioffi, Rebekah; KUMAR, AMIT; Aranguren Gassis, Maria; Bailey, Allison; Green, Leon; Gsottbauer, Carina M.; Hall, Emilie F.; Lechler, Maria; MANCUSO, FRANCESCO PAOLO; Pereira, Camila O.; Ricevuto, Elena; Schram, Julie B.; Stapp, Laura S.; Stenberg, Simon; Santa Rosa, Lindzai T.;doi: 10.3390/w6113545
handle: 11250/276678 , 10447/636501 , 11585/579570 , 11122/12875
Research to date has suggested that both individual marine species and ecological processes are expected to exhibit diverse responses to the environmental effects of climate change. Evolutionary responses can occur on rapid (ecological) timescales, and yet studies typically do not consider the role that adaptive evolution will play in modulating biological responses to climate change. Investigations into such responses have typically been focused at particular biological levels (e.g., cellular, population, community), often lacking interactions among levels. Since all levels of biological organisation are sensitive to global climate change, there is a need to elucidate how different processes and hierarchical interactions will influence species fitness. Therefore, predicting the responses of communities and populations to global change will require multidisciplinary efforts across multiple levels of hierarchy, from the genetic and cellular to communities and ecosystems. Eventually, this may allow us to establish the role that acclimatisation and adaptation will play in determining marine community structures in future scenarios.
OceanRep arrow_drop_down Archivio istituzionale della ricerca - Università di PalermoArticle . 2014University of Alaska: ScholarWorks@UAArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w6113545&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert OceanRep arrow_drop_down Archivio istituzionale della ricerca - Università di PalermoArticle . 2014University of Alaska: ScholarWorks@UAArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w6113545&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2017 GermanyPublisher:Springer Science and Business Media LLC Funded by:NSERCNSERCP. Chan; J. Halfar; W. Adey; S. Hetzinger; T. Zack; G.W.K. Moore; U. G. Wortmann; B. Williams; A. Hou;AbstractAccelerated warming and melting of Arctic sea-ice has been associated with significant increases in phytoplankton productivity in recent years. Here, utilizing a multiproxy approach, we reconstruct an annually resolved record of Labrador Sea productivity related to sea-ice variability in Labrador, Canada that extends well into the Little Ice Age (LIA; 1646 AD). Barium-to-calcium ratios (Ba/Ca) and carbon isotopes (δ13C) measured in long-lived coralline algae demonstrate significant correlations to both observational and proxy records of sea-ice variability, and show persistent patterns of co-variability broadly consistent with the timing and phasing of the Atlantic Multidecadal Oscillation (AMO). Results indicate reduced productivity in the Subarctic Northwest Atlantic associated with AMO cool phases during the LIA, followed by a step-wise increase from 1910 to present levels—unprecedented in the last 363 years. Increasing phytoplankton productivity is expected to fundamentally alter marine ecosystems as warming and freshening is projected to intensify over the coming century.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ncomms15543&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 31 citations 31 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ncomms15543&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 AustraliaPublisher:Elsevier BV Gretta T. Pecl; Marcus Haward; Jonathan Sumby; Elizabeth A. Fulton; Elizabeth A. Fulton;This paper explores institutional responses from Regional Fisheries Bodies (RFBs) to climate change. Fisheries management is highly dependent on the stability or predictability of targeted fish populations. Oceanic changes occurring as a result of climate change will see continuing and potentially irreversible deviations from the conditions of fisheries past. These changes present challenges to fisheries management at all scales – from local to international – relating to food security, sustainability, and ecological integrity. Areas of measurably warmer ocean, or ‘hotspots’, are a very clear indicator of direct climate change effects. RFBs with hotspots in their areas of competence were chosen for this study. Three levels of institutional engagement were developed: Awareness of climate change; Learning about climate change; Action taken by the institutions. While 94% of institutions demonstrated awareness of climate change and 82% demonstrated learning about climate change, only 41% demonstrated some form of action; and these were mainly procedural and administrative. Only two of the RFBs considered made explicit statements about incorporating climate change into future fishing management plans. The inference is that RFBs are largely practising business-as-usual, with the implication that many exploited fish populations will face additional survival pressure as the sea around them alters.
Marine Policy arrow_drop_down University of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.marpol.2020.104284&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Marine Policy arrow_drop_down University of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.marpol.2020.104284&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2006 AustraliaPublisher:SAGE Publications Authors: Hendrickson, Chris T; Cicas, Gyorgyi; Matthews, Scott;Indicators of sustainability and environmental performance can be useful for comparing modes, discerning trends, and formulating appropriate policies. This paper considers the performance of U.S. transportation service sectors through use of 1992 and 1997 benchmark input–output models. Use of these models permits assessment of not only the direct performance of the sectors but also the supply chain impacts required for operation of the transportation sectors. Consideration of indirect impacts is critical for assessment of the overall costs and impacts of particular products or services. Six transportation service sectors (air, rail, water, truck, transit, and pipeline) are examined. Economic impact, energy, greenhouse gas emissions, and toxic emissions are examined. The transportation sectors use large amounts of energy, both in total and per dollar of output and on a per service basis. Pipeline and water transportation have particularly large energy requirements per dollar of output, likely reflecting higher energy intensity and lower labor intensity in these modes. Truck transportation is the most energy intensive of the freight transportation modes per ton-mile of service, but it has a trend toward greater energy efficiency. For greenhouse gas emissions, truck, water, and air transportation have the highest emissions per dollar of output. Water transportation freight rates are sufficiently low that emissions on a per ton-mile basis would be correspondingly low. Finally, the supply chain (indirect) toxic emissions per dollar of output are highest for rail and pipeline transportation. There is considerable work to be done to improve the overall sustainability of the different transportation modes.
Transportation Resea... arrow_drop_down Transportation Research Record Journal of the Transportation Research BoardArticle . 2006 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/0361198106198300120&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Average influence Average impulse Average Powered by BIP!
more_vert Transportation Resea... arrow_drop_down Transportation Research Record Journal of the Transportation Research BoardArticle . 2006 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/0361198106198300120&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 FrancePublisher:Applied Energy Innovation Institute (AEii) Deroubaix, P.; Kobashi, T.; Gurriaran, L.; Benkhelifa, F.; Ciais, Philippe; Tanaka, K.;Since the Paris Agreement adopted in 2015, global societies are increasingly aware of the needs to limit global warming to 1.5 C and reach global carbon neutrality by 2050. However, current commitments of global societies are not sufficient, party owing to the lack of cost-effective decarbonization measures. The SolarEV City concept is proposed for cost-effective urban decarbonization combining rooftop PV with EV through bi-directional charging in a city scale. In this study, we conducted techno-economic analyses to test the concept in Paris and Ile-de-France. PV+EV systems are found to add value to rooftop PV systems raising selfconsumption and self-sufficiency, when the roof coverage by PV is reached to 50-60% for Paris and 20-30% for Ile-de-France, allowing to bypass expensive stand-alone battery storage. The system allows CO2 emissions reduction through accelerated development of EV.
Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Full-Text: https://hal.science/hal-04201378Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-04201378Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.46855/energy-proceedings-10226&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Full-Text: https://hal.science/hal-04201378Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-04201378Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.46855/energy-proceedings-10226&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 United KingdomPublisher:MDPI AG Funded by:UKRI | VertIBase - Supporting ev...UKRI| VertIBase - Supporting evidence-based decision-making on marine vertebrate interactions with wave and tidal energy technologiesJames Slingsby; Beth E. Scott; Louise Kregting; Jason McIlvenny; Jared Wilson; Ana Couto; Deon Roos; Marion Yanez; Benjamin J. Williamson;doi: 10.3390/jmse9050484
handle: 2164/16545
High-flow tidal stream environments, targeted for tidal turbine installations, exhibit turbulent features, at fine spatio-temporal scales (metres and seconds), created by site-specific topography and bathymetry. Bed-derived turbulent features (kolk-boils) are thought to have detrimental effects on tidal turbines. Characterisation of kolk-boils is therefore essential to inform turbine reliability, control, and maintenance strategies. It will also improve the understanding of potential ecological interactions with turbines, as marine animals use these sites for foraging. Unmanned aerial vehicle (UAV), or drone, imagery offers a novel approach to take precise measurements of kolk-boil characteristics (distribution, presence, and area) at the surface. This study carried out sixty-three UAV surveys within the Inner Sound of the Pentland Firth, Scotland, UK, over four-day periods in 2016 and 2018. Kolk-boil characteristics were examined against relevant environmental covariates to investigate potential drivers of presence and area. The results show that distribution at the surface could be predicted based on tidal phase, with current velocity significantly influencing presence above 3.0 m/s. The technique can be used to inform turbine development, micro-siting and provide better understanding of environmental implications of turbine operation. Finally, it highlights the suitability of UAVs for capturing rapid fine-scale hydrodynamic data in the absence of in situ measurements.
Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2077-1312/9/5/484/pdfData sources: Multidisciplinary Digital Publishing InstituteAberdeen University Research Archive (AURA)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/2164/16545Data sources: Bielefeld Academic Search Engine (BASE)Journal of Marine Science and EngineeringArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefQueen's University Belfast Research PortalArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse9050484&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2077-1312/9/5/484/pdfData sources: Multidisciplinary Digital Publishing InstituteAberdeen University Research Archive (AURA)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/2164/16545Data sources: Bielefeld Academic Search Engine (BASE)Journal of Marine Science and EngineeringArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefQueen's University Belfast Research PortalArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse9050484&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Authors: Nita Yodo; Tanzina Afrin;doi: 10.3390/su12114660
Traffic congestion is a perpetual problem for the sustainability of transportation development. Traffic congestion causes delays, inconvenience, and economic losses to drivers, as well as air pollution. Identification and quantification of traffic congestion are crucial for decision-makers to initiate mitigation strategies to improve the overall transportation system’s sustainability. In this paper, the currently available measures are detailed and compared by implementing them on a daily and weekly traffic historical dataset. The results showed each measure showed significant variations in congestion states while indicating a similar congestion trend. The advantages and disadvantages of each measure are identified from the data analysis. This study summarizes the current road traffic congestion measures and provides a constructive insight into the development of a sustainable and resilient traffic management system.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12114660&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 296 citations 296 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12114660&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Book , Research , Report 2010 United StatesPublisher:World Bank, Washington, DC Kumar, Monika; Rubinfield, Adam; Moore, Judith; Raposa, Sarah; Fyodorova, Maria;doi: 10.1596/27467
handle: 10986/27467
The World Bank Group (WBG) has focused on reducing the environmental impacts of its internal operations and improving corporate environmental practices since 2002, when the WBG President announced WBG's commitment to Corporate Social Responsibility (CSR). The objective of this document is to summarize the actions WBG has taken thus far to reduce environmental impacts from internal operations and present an action plan to further integrate sustainability into WBG's internal operations. Although this work focuses on the environmental impact associated with WBG daily operations, the links between WBG policies and actions related to environmental management and the financial/social considerations are significant. The International Finance Corporation (IFC) footprint and World Bank corporate responsibility teams facilitate the sustainability commitment of the WBG and monitor and track its progress. These teams provide technical information and research support to a dedicated group of champions throughout the WBG who implement emission reduction activities. Budget for these activities flows primarily through the environment department, the general services department, and IFC facilities management and administration. The environment department and IFC facilities management each resource one staff member to provide back-up research support and to monitor and report on environmental metrics, with building engineers and managers and project officers from across the WBG contributing.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1596/27467&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1596/27467&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2022 GermanyPublisher:Frontiers Media SA Funded by:DFG | Climate Engineering: Risk...DFG| Climate Engineering: Risks, Challenges, Opportunities?Malgorzata Borchers; Daniela Thrän; Daniela Thrän; Yaxuan Chi; Nicolaus Dahmen; Roland Dittmeyer; Tobias Dolch; Christian Dold; Johannes Förster; Michael Herbst; Dominik Heß; Aram Kalhori; Ketil Koop-Jakobsen; Zhan Li; Nadine Mengis; Thorsten B. H. Reusch; Imke Rhoden; Torsten Sachs; Cornelia Schmidt-Hattenberger; Angela Stevenson; Terese Thoni; Jiajun Wu; Christopher Yeates;In its latest assessment report the IPCC stresses the need for carbon dioxide removal (CDR) to counterbalance residual emissions to achieve net zero carbon dioxide or greenhouse gas emissions. There are currently a wide variety of CDR measures available. Their potential and feasibility, however, depends on context specific conditions, as among others biophysical site characteristics, or availability of infrastructure and resources. In our study, we selected 13 CDR concepts which we present in the form of exemplary CDR units described in dedicated fact sheets. They cover technical CO2 removal (two concepts of direct air carbon capture), hybrid solutions (six bioenergy with carbon capture technologies) and five options for natural sink enhancement. Our estimates for their CO2 removal potentials in 2050 range from 0.06 to 30 million tons of CO2, depending on the option. Ten of the 13 CDR concepts provide technical removal potentials higher than 1 million tons of CO2 per year. To better understand the potential contribution of analyzed CDR options to reaching net-zero CO2 emissions, we compare our results with the current CO2 emissions and potential residual CO2 emissions in 2050 in Germany. To complement the necessary information on technology-based and hybrid options, we also provide an overview on possible solutions for CO2 storage for Germany. Taking biophysical conditions and infrastructure into account, northern Germany seems a preferable area for deployment of many concepts. However, for their successful implementation further socio-economic analysis, clear regulations, and policy incentives are necessary.
OceanRep arrow_drop_down GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)GFZ German Research Centre for GeosciencesArticle . 2022License: CC BYData sources: GFZ German Research Centre for GeosciencesElectronic Publication Information CenterArticle . 2022Data sources: Electronic Publication Information Centeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fclim.2022.810343&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert OceanRep arrow_drop_down GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)GFZ German Research Centre for GeosciencesArticle . 2022License: CC BYData sources: GFZ German Research Centre for GeosciencesElectronic Publication Information CenterArticle . 2022Data sources: Electronic Publication Information Centeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fclim.2022.810343&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Fadia Ticona Rollano; Thanh Toan Tran; Yi-Hsiang Yu; Gabriel García-Medina; Zhaoqing Yang;doi: 10.3390/jmse8030171
Industry-specific tools for analyzing and optimizing the design of wave energy converters (WECs) and associated power systems are essential to advancing marine renewable energy. This study aims to quantify the influence of phase information on the device power output of a virtual WEC array. We run the phase-resolving wave model FUNWAVE-TVD (Total Variation Diminishing) to generate directional waves at the PacWave South site offshore from Newport, Oregon, where future WECs are expected to be installed for testing. The two broad cases presented correspond to mean wave climates during warm months (March–August) and cold months (September–February). FUNWAVE-TVD time series of sea-surface elevation are then used in WEC-Sim, a time domain numerical model, to simulate the hydrodynamic response of each device in the array and estimate their power output. For comparison, WEC-Sim is also run with wave energy spectra calculated from the FUNWAVE-TVD simulations, which do not retain phase information, and with wave spectra computed using the phase-averaged model Simulating WAves Nearshore (SWAN). The use of spectral data in WEC-Sim requires a conversion from frequency to time domain by means of random superposition of wave components, which are not necessarily consistent because of the linear assumption implicit in this method. Thus, power response is characterized by multiple realizations of the wave climates.
Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2077-1312/8/3/171/pdfData sources: Multidisciplinary Digital Publishing InstituteJournal of Marine Science and EngineeringArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse8030171&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2077-1312/8/3/171/pdfData sources: Multidisciplinary Digital Publishing InstituteJournal of Marine Science and EngineeringArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse8030171&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2014 Italy, Italy, United States, United Kingdom, United Kingdom, Germany, United Kingdom, Norway, United StatesPublisher:MDPI AG Funded by:RCN | Development of a transfor...RCN| Development of a transformative experimental evolution paradigm for single-celled eukaryotesHarvey, Ben P; Al Janabi, Balsam; BROSZEIT, STEFANIE; Cioffi, Rebekah; KUMAR, AMIT; Aranguren Gassis, Maria; Bailey, Allison; Green, Leon; Gsottbauer, Carina M.; Hall, Emilie F.; Lechler, Maria; MANCUSO, FRANCESCO PAOLO; Pereira, Camila O.; Ricevuto, Elena; Schram, Julie B.; Stapp, Laura S.; Stenberg, Simon; Santa Rosa, Lindzai T.;doi: 10.3390/w6113545
handle: 11250/276678 , 10447/636501 , 11585/579570 , 11122/12875
Research to date has suggested that both individual marine species and ecological processes are expected to exhibit diverse responses to the environmental effects of climate change. Evolutionary responses can occur on rapid (ecological) timescales, and yet studies typically do not consider the role that adaptive evolution will play in modulating biological responses to climate change. Investigations into such responses have typically been focused at particular biological levels (e.g., cellular, population, community), often lacking interactions among levels. Since all levels of biological organisation are sensitive to global climate change, there is a need to elucidate how different processes and hierarchical interactions will influence species fitness. Therefore, predicting the responses of communities and populations to global change will require multidisciplinary efforts across multiple levels of hierarchy, from the genetic and cellular to communities and ecosystems. Eventually, this may allow us to establish the role that acclimatisation and adaptation will play in determining marine community structures in future scenarios.
OceanRep arrow_drop_down Archivio istituzionale della ricerca - Università di PalermoArticle . 2014University of Alaska: ScholarWorks@UAArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w6113545&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert OceanRep arrow_drop_down Archivio istituzionale della ricerca - Università di PalermoArticle . 2014University of Alaska: ScholarWorks@UAArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w6113545&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2017 GermanyPublisher:Springer Science and Business Media LLC Funded by:NSERCNSERCP. Chan; J. Halfar; W. Adey; S. Hetzinger; T. Zack; G.W.K. Moore; U. G. Wortmann; B. Williams; A. Hou;AbstractAccelerated warming and melting of Arctic sea-ice has been associated with significant increases in phytoplankton productivity in recent years. Here, utilizing a multiproxy approach, we reconstruct an annually resolved record of Labrador Sea productivity related to sea-ice variability in Labrador, Canada that extends well into the Little Ice Age (LIA; 1646 AD). Barium-to-calcium ratios (Ba/Ca) and carbon isotopes (δ13C) measured in long-lived coralline algae demonstrate significant correlations to both observational and proxy records of sea-ice variability, and show persistent patterns of co-variability broadly consistent with the timing and phasing of the Atlantic Multidecadal Oscillation (AMO). Results indicate reduced productivity in the Subarctic Northwest Atlantic associated with AMO cool phases during the LIA, followed by a step-wise increase from 1910 to present levels—unprecedented in the last 363 years. Increasing phytoplankton productivity is expected to fundamentally alter marine ecosystems as warming and freshening is projected to intensify over the coming century.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ncomms15543&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 31 citations 31 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ncomms15543&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 AustraliaPublisher:Elsevier BV Gretta T. Pecl; Marcus Haward; Jonathan Sumby; Elizabeth A. Fulton; Elizabeth A. Fulton;This paper explores institutional responses from Regional Fisheries Bodies (RFBs) to climate change. Fisheries management is highly dependent on the stability or predictability of targeted fish populations. Oceanic changes occurring as a result of climate change will see continuing and potentially irreversible deviations from the conditions of fisheries past. These changes present challenges to fisheries management at all scales – from local to international – relating to food security, sustainability, and ecological integrity. Areas of measurably warmer ocean, or ‘hotspots’, are a very clear indicator of direct climate change effects. RFBs with hotspots in their areas of competence were chosen for this study. Three levels of institutional engagement were developed: Awareness of climate change; Learning about climate change; Action taken by the institutions. While 94% of institutions demonstrated awareness of climate change and 82% demonstrated learning about climate change, only 41% demonstrated some form of action; and these were mainly procedural and administrative. Only two of the RFBs considered made explicit statements about incorporating climate change into future fishing management plans. The inference is that RFBs are largely practising business-as-usual, with the implication that many exploited fish populations will face additional survival pressure as the sea around them alters.
Marine Policy arrow_drop_down University of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.marpol.2020.104284&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Marine Policy arrow_drop_down University of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.marpol.2020.104284&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2006 AustraliaPublisher:SAGE Publications Authors: Hendrickson, Chris T; Cicas, Gyorgyi; Matthews, Scott;Indicators of sustainability and environmental performance can be useful for comparing modes, discerning trends, and formulating appropriate policies. This paper considers the performance of U.S. transportation service sectors through use of 1992 and 1997 benchmark input–output models. Use of these models permits assessment of not only the direct performance of the sectors but also the supply chain impacts required for operation of the transportation sectors. Consideration of indirect impacts is critical for assessment of the overall costs and impacts of particular products or services. Six transportation service sectors (air, rail, water, truck, transit, and pipeline) are examined. Economic impact, energy, greenhouse gas emissions, and toxic emissions are examined. The transportation sectors use large amounts of energy, both in total and per dollar of output and on a per service basis. Pipeline and water transportation have particularly large energy requirements per dollar of output, likely reflecting higher energy intensity and lower labor intensity in these modes. Truck transportation is the most energy intensive of the freight transportation modes per ton-mile of service, but it has a trend toward greater energy efficiency. For greenhouse gas emissions, truck, water, and air transportation have the highest emissions per dollar of output. Water transportation freight rates are sufficiently low that emissions on a per ton-mile basis would be correspondingly low. Finally, the supply chain (indirect) toxic emissions per dollar of output are highest for rail and pipeline transportation. There is considerable work to be done to improve the overall sustainability of the different transportation modes.
Transportation Resea... arrow_drop_down Transportation Research Record Journal of the Transportation Research BoardArticle . 2006 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/0361198106198300120&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Average influence Average impulse Average Powered by BIP!
more_vert Transportation Resea... arrow_drop_down Transportation Research Record Journal of the Transportation Research BoardArticle . 2006 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/0361198106198300120&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 FrancePublisher:Applied Energy Innovation Institute (AEii) Deroubaix, P.; Kobashi, T.; Gurriaran, L.; Benkhelifa, F.; Ciais, Philippe; Tanaka, K.;Since the Paris Agreement adopted in 2015, global societies are increasingly aware of the needs to limit global warming to 1.5 C and reach global carbon neutrality by 2050. However, current commitments of global societies are not sufficient, party owing to the lack of cost-effective decarbonization measures. The SolarEV City concept is proposed for cost-effective urban decarbonization combining rooftop PV with EV through bi-directional charging in a city scale. In this study, we conducted techno-economic analyses to test the concept in Paris and Ile-de-France. PV+EV systems are found to add value to rooftop PV systems raising selfconsumption and self-sufficiency, when the roof coverage by PV is reached to 50-60% for Paris and 20-30% for Ile-de-France, allowing to bypass expensive stand-alone battery storage. The system allows CO2 emissions reduction through accelerated development of EV.
Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Full-Text: https://hal.science/hal-04201378Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-04201378Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.46855/energy-proceedings-10226&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Full-Text: https://hal.science/hal-04201378Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-04201378Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.46855/energy-proceedings-10226&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 United KingdomPublisher:MDPI AG Funded by:UKRI | VertIBase - Supporting ev...UKRI| VertIBase - Supporting evidence-based decision-making on marine vertebrate interactions with wave and tidal energy technologiesJames Slingsby; Beth E. Scott; Louise Kregting; Jason McIlvenny; Jared Wilson; Ana Couto; Deon Roos; Marion Yanez; Benjamin J. Williamson;doi: 10.3390/jmse9050484
handle: 2164/16545
High-flow tidal stream environments, targeted for tidal turbine installations, exhibit turbulent features, at fine spatio-temporal scales (metres and seconds), created by site-specific topography and bathymetry. Bed-derived turbulent features (kolk-boils) are thought to have detrimental effects on tidal turbines. Characterisation of kolk-boils is therefore essential to inform turbine reliability, control, and maintenance strategies. It will also improve the understanding of potential ecological interactions with turbines, as marine animals use these sites for foraging. Unmanned aerial vehicle (UAV), or drone, imagery offers a novel approach to take precise measurements of kolk-boil characteristics (distribution, presence, and area) at the surface. This study carried out sixty-three UAV surveys within the Inner Sound of the Pentland Firth, Scotland, UK, over four-day periods in 2016 and 2018. Kolk-boil characteristics were examined against relevant environmental covariates to investigate potential drivers of presence and area. The results show that distribution at the surface could be predicted based on tidal phase, with current velocity significantly influencing presence above 3.0 m/s. The technique can be used to inform turbine development, micro-siting and provide better understanding of environmental implications of turbine operation. Finally, it highlights the suitability of UAVs for capturing rapid fine-scale hydrodynamic data in the absence of in situ measurements.
Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2077-1312/9/5/484/pdfData sources: Multidisciplinary Digital Publishing InstituteAberdeen University Research Archive (AURA)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/2164/16545Data sources: Bielefeld Academic Search Engine (BASE)Journal of Marine Science and EngineeringArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefQueen's University Belfast Research PortalArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse9050484&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2077-1312/9/5/484/pdfData sources: Multidisciplinary Digital Publishing InstituteAberdeen University Research Archive (AURA)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/2164/16545Data sources: Bielefeld Academic Search Engine (BASE)Journal of Marine Science and EngineeringArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefQueen's University Belfast Research PortalArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse9050484&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Authors: Nita Yodo; Tanzina Afrin;doi: 10.3390/su12114660
Traffic congestion is a perpetual problem for the sustainability of transportation development. Traffic congestion causes delays, inconvenience, and economic losses to drivers, as well as air pollution. Identification and quantification of traffic congestion are crucial for decision-makers to initiate mitigation strategies to improve the overall transportation system’s sustainability. In this paper, the currently available measures are detailed and compared by implementing them on a daily and weekly traffic historical dataset. The results showed each measure showed significant variations in congestion states while indicating a similar congestion trend. The advantages and disadvantages of each measure are identified from the data analysis. This study summarizes the current road traffic congestion measures and provides a constructive insight into the development of a sustainable and resilient traffic management system.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12114660&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 296 citations 296 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12114660&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Book , Research , Report 2010 United StatesPublisher:World Bank, Washington, DC Kumar, Monika; Rubinfield, Adam; Moore, Judith; Raposa, Sarah; Fyodorova, Maria;doi: 10.1596/27467
handle: 10986/27467
The World Bank Group (WBG) has focused on reducing the environmental impacts of its internal operations and improving corporate environmental practices since 2002, when the WBG President announced WBG's commitment to Corporate Social Responsibility (CSR). The objective of this document is to summarize the actions WBG has taken thus far to reduce environmental impacts from internal operations and present an action plan to further integrate sustainability into WBG's internal operations. Although this work focuses on the environmental impact associated with WBG daily operations, the links between WBG policies and actions related to environmental management and the financial/social considerations are significant. The International Finance Corporation (IFC) footprint and World Bank corporate responsibility teams facilitate the sustainability commitment of the WBG and monitor and track its progress. These teams provide technical information and research support to a dedicated group of champions throughout the WBG who implement emission reduction activities. Budget for these activities flows primarily through the environment department, the general services department, and IFC facilities management and administration. The environment department and IFC facilities management each resource one staff member to provide back-up research support and to monitor and report on environmental metrics, with building engineers and managers and project officers from across the WBG contributing.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1596/27467&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1596/27467&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2022 GermanyPublisher:Frontiers Media SA Funded by:DFG | Climate Engineering: Risk...DFG| Climate Engineering: Risks, Challenges, Opportunities?Malgorzata Borchers; Daniela Thrän; Daniela Thrän; Yaxuan Chi; Nicolaus Dahmen; Roland Dittmeyer; Tobias Dolch; Christian Dold; Johannes Förster; Michael Herbst; Dominik Heß; Aram Kalhori; Ketil Koop-Jakobsen; Zhan Li; Nadine Mengis; Thorsten B. H. Reusch; Imke Rhoden; Torsten Sachs; Cornelia Schmidt-Hattenberger; Angela Stevenson; Terese Thoni; Jiajun Wu; Christopher Yeates;In its latest assessment report the IPCC stresses the need for carbon dioxide removal (CDR) to counterbalance residual emissions to achieve net zero carbon dioxide or greenhouse gas emissions. There are currently a wide variety of CDR measures available. Their potential and feasibility, however, depends on context specific conditions, as among others biophysical site characteristics, or availability of infrastructure and resources. In our study, we selected 13 CDR concepts which we present in the form of exemplary CDR units described in dedicated fact sheets. They cover technical CO2 removal (two concepts of direct air carbon capture), hybrid solutions (six bioenergy with carbon capture technologies) and five options for natural sink enhancement. Our estimates for their CO2 removal potentials in 2050 range from 0.06 to 30 million tons of CO2, depending on the option. Ten of the 13 CDR concepts provide technical removal potentials higher than 1 million tons of CO2 per year. To better understand the potential contribution of analyzed CDR options to reaching net-zero CO2 emissions, we compare our results with the current CO2 emissions and potential residual CO2 emissions in 2050 in Germany. To complement the necessary information on technology-based and hybrid options, we also provide an overview on possible solutions for CO2 storage for Germany. Taking biophysical conditions and infrastructure into account, northern Germany seems a preferable area for deployment of many concepts. However, for their successful implementation further socio-economic analysis, clear regulations, and policy incentives are necessary.
OceanRep arrow_drop_down GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)GFZ German Research Centre for GeosciencesArticle . 2022License: CC BYData sources: GFZ German Research Centre for GeosciencesElectronic Publication Information CenterArticle . 2022Data sources: Electronic Publication Information Centeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fclim.2022.810343&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert OceanRep arrow_drop_down GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)GFZ German Research Centre for GeosciencesArticle . 2022License: CC BYData sources: GFZ German Research Centre for GeosciencesElectronic Publication Information CenterArticle . 2022Data sources: Electronic Publication Information Centeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fclim.2022.810343&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Fadia Ticona Rollano; Thanh Toan Tran; Yi-Hsiang Yu; Gabriel García-Medina; Zhaoqing Yang;doi: 10.3390/jmse8030171
Industry-specific tools for analyzing and optimizing the design of wave energy converters (WECs) and associated power systems are essential to advancing marine renewable energy. This study aims to quantify the influence of phase information on the device power output of a virtual WEC array. We run the phase-resolving wave model FUNWAVE-TVD (Total Variation Diminishing) to generate directional waves at the PacWave South site offshore from Newport, Oregon, where future WECs are expected to be installed for testing. The two broad cases presented correspond to mean wave climates during warm months (March–August) and cold months (September–February). FUNWAVE-TVD time series of sea-surface elevation are then used in WEC-Sim, a time domain numerical model, to simulate the hydrodynamic response of each device in the array and estimate their power output. For comparison, WEC-Sim is also run with wave energy spectra calculated from the FUNWAVE-TVD simulations, which do not retain phase information, and with wave spectra computed using the phase-averaged model Simulating WAves Nearshore (SWAN). The use of spectral data in WEC-Sim requires a conversion from frequency to time domain by means of random superposition of wave components, which are not necessarily consistent because of the linear assumption implicit in this method. Thus, power response is characterized by multiple realizations of the wave climates.
Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2077-1312/8/3/171/pdfData sources: Multidisciplinary Digital Publishing InstituteJournal of Marine Science and EngineeringArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse8030171&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2077-1312/8/3/171/pdfData sources: Multidisciplinary Digital Publishing InstituteJournal of Marine Science and EngineeringArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse8030171&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu