- home
- Advanced Search
- Energy Research
- Transport Research
- Energy Research
- Transport Research
description Publicationkeyboard_double_arrow_right Article 2022 NetherlandsPublisher:Elsevier BV Authors: Andrea Mangipinto; Francesco Lombardi; Francesco Davide Sanvito; Matija Pavičević; +2 AuthorsAndrea Mangipinto; Francesco Lombardi; Francesco Davide Sanvito; Matija Pavičević; Sylvain Quoilin; Emanuela Colombo;The mass-scale integration of electric vehicles into the power system is a key pillar of the European energy transition agenda. Yet, the extent to which such integration would represent a burden for the power system of each member country is still an unanswered question. This is mainly due to a lack of accurate and context-specific representations of aggregate mobility and charging patterns for large electric vehicle fleets. Here, we develop and validate against empirical data an open-source model that simulates such patterns at high (1-min) temporal resolution, based on easy-to-gather, openly accessible data. We hence apply the model – which we name RAMP-mobility – to 28 European countries, showing for the first time the existence of marked differences in mobility and charging patterns across those, due to a combination of weather and socio-economic factors. We hence quantify the impact that fully-electric car fleets would have on the demand to be met by each country's power system: an uncontrolled deployment of electric vehicles would increase peak demand in the range 35–51%, whilst a plausible share of adoption of smart charging strategies could limit the increase to 30–41%. On the contrary, plausible technology (battery density) and infrastructure (charging power) developments would not provide substantial benefits. Efforts for electric vehicles integration should hence primarily focus on mechanisms to support smart vehicle-to-grid interaction. The approach is applicable generally beyond Europe and can provide policy makers with quantitatively reliable insights about electric vehicles impact on the power system. ; Energie and Industrie
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.118676&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 54 citations 54 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 31visibility views 31 download downloads 23 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.118676&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Zenodo Authors: Lombardi, Francesco; Pickering, Bryn;Output generated by the RAMP engine for use in the Sector-Coupled Euro-Calliope model. The three datasets in this repository are described briefly here and in more detail in the accompanying README files. Each dataset has an hourly temporal resolution spanning the years 2000 - 2018 (inclusive) and a national spatial resolution spanning 26* - 28** countries in Europe. All datasets are dimensionless; only the profile shapes are used in Euro-Calliope. Cooking energy demand profiles (ramp-cooking-profiles): Profiles of heat energy demand for cooking in buildings in Europe, stochastically generated using the RAMP model [1]. These profiles are used to distribute annual cooking energy demand in the Euro-Calliope workflow. This dataset covers 28 European countries**. Electric vehicle plug-in profiles (ramp-ev-plugin-profiles): Profiles of the percentage of parked electric vehicles, stochastically generated using the RAMP-Mobility model [2]. These profiles are used in Euro-Calliope to define the maximum number of electric vehicles that could be plugged in and therefore available to be charged at any given time, assuming controlled (or "smart") charging. This dataset covers 26 European countries*. Electric vehicle energy consumption profiles (ramp-ev-consumption-profiles): Profiles of the electricity consumption of electric vehicles, stochastically generated using the RAMP-Mobility model [2]. These profiles are aggregated in Euro-Calliope to provide a required percentage of total vehicle electricity demand that must be met in each month. This dataset covers 26 European countries*. * AUT, BEL, CHE, CZE, DEU, DNK, ESP, EST, FIN, FRA, GBR, HRV, HUN, IRL, ITA, LTU, LUX, LVA, NLD, NOR, POL, PRT, ROU, SVK, SVN, SWE ** (*) + BGR, SRB *** ALB, MKD, GRC, CYP, BIH, MNE, ISL [1] Lombardi, Francesco, Sergio Balderrama, Sylvain Quoilin, and Emanuela Colombo. 2019. ‘Generating High-Resolution Multi-Energy Load Profiles for Remote Areas with an Open-Source Stochastic Model’. Energy 177 (June): 433–44. https://doi.org/10.1016/j.energy.2019.04.097. [2] Mangipinto, Andrea, Francesco Lombardi, Francesco Davide Sanvito, Matija Pavičević, Sylvain Quoilin, and Emanuela Colombo. 2022. ‘Impact of Mass-Scale Deployment of Electric Vehicles and Benefits of Smart Charging across All European Countries’. Applied Energy 312 (April): 118676. https://doi.org/10.1016/j.apenergy.2022.118676. {"references": ["Lombardi, Francesco, Sergio Balderrama, Sylvain Quoilin, and Emanuela Colombo. 2019. 'Generating High-Resolution Multi-Energy Load Profiles for Remote Areas with an Open-Source Stochastic Model'. Energy 177 (June): 433\u201344. https://doi.org/10.1016/j.energy.2019.04.097", "Mangipinto, Andrea, Francesco Lombardi, Francesco Davide Sanvito, Matija Pavi\u010devi\u0107, Sylvain Quoilin, and Emanuela Colombo. 2022. 'Impact of Mass-Scale Deployment of Electric Vehicles and Benefits of Smart Charging across All European Countries'. Applied Energy 312 (April): 118676. https://doi.org/10.1016/j.apenergy.2022.118676"]}
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6579420&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 59visibility views 59 download downloads 89 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6579420&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2022 NetherlandsPublisher:Elsevier BV Authors: Andrea Mangipinto; Francesco Lombardi; Francesco Davide Sanvito; Matija Pavičević; +2 AuthorsAndrea Mangipinto; Francesco Lombardi; Francesco Davide Sanvito; Matija Pavičević; Sylvain Quoilin; Emanuela Colombo;The mass-scale integration of electric vehicles into the power system is a key pillar of the European energy transition agenda. Yet, the extent to which such integration would represent a burden for the power system of each member country is still an unanswered question. This is mainly due to a lack of accurate and context-specific representations of aggregate mobility and charging patterns for large electric vehicle fleets. Here, we develop and validate against empirical data an open-source model that simulates such patterns at high (1-min) temporal resolution, based on easy-to-gather, openly accessible data. We hence apply the model – which we name RAMP-mobility – to 28 European countries, showing for the first time the existence of marked differences in mobility and charging patterns across those, due to a combination of weather and socio-economic factors. We hence quantify the impact that fully-electric car fleets would have on the demand to be met by each country's power system: an uncontrolled deployment of electric vehicles would increase peak demand in the range 35–51%, whilst a plausible share of adoption of smart charging strategies could limit the increase to 30–41%. On the contrary, plausible technology (battery density) and infrastructure (charging power) developments would not provide substantial benefits. Efforts for electric vehicles integration should hence primarily focus on mechanisms to support smart vehicle-to-grid interaction. The approach is applicable generally beyond Europe and can provide policy makers with quantitatively reliable insights about electric vehicles impact on the power system. ; Energie and Industrie
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.118676&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 54 citations 54 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 31visibility views 31 download downloads 23 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.118676&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Zenodo Authors: Lombardi, Francesco; Pickering, Bryn;Output generated by the RAMP engine for use in the Sector-Coupled Euro-Calliope model. The three datasets in this repository are described briefly here and in more detail in the accompanying README files. Each dataset has an hourly temporal resolution spanning the years 2000 - 2018 (inclusive) and a national spatial resolution spanning 26* - 28** countries in Europe. All datasets are dimensionless; only the profile shapes are used in Euro-Calliope. Cooking energy demand profiles (ramp-cooking-profiles): Profiles of heat energy demand for cooking in buildings in Europe, stochastically generated using the RAMP model [1]. These profiles are used to distribute annual cooking energy demand in the Euro-Calliope workflow. This dataset covers 28 European countries**. Electric vehicle plug-in profiles (ramp-ev-plugin-profiles): Profiles of the percentage of parked electric vehicles, stochastically generated using the RAMP-Mobility model [2]. These profiles are used in Euro-Calliope to define the maximum number of electric vehicles that could be plugged in and therefore available to be charged at any given time, assuming controlled (or "smart") charging. This dataset covers 26 European countries*. Electric vehicle energy consumption profiles (ramp-ev-consumption-profiles): Profiles of the electricity consumption of electric vehicles, stochastically generated using the RAMP-Mobility model [2]. These profiles are aggregated in Euro-Calliope to provide a required percentage of total vehicle electricity demand that must be met in each month. This dataset covers 26 European countries*. * AUT, BEL, CHE, CZE, DEU, DNK, ESP, EST, FIN, FRA, GBR, HRV, HUN, IRL, ITA, LTU, LUX, LVA, NLD, NOR, POL, PRT, ROU, SVK, SVN, SWE ** (*) + BGR, SRB *** ALB, MKD, GRC, CYP, BIH, MNE, ISL [1] Lombardi, Francesco, Sergio Balderrama, Sylvain Quoilin, and Emanuela Colombo. 2019. ‘Generating High-Resolution Multi-Energy Load Profiles for Remote Areas with an Open-Source Stochastic Model’. Energy 177 (June): 433–44. https://doi.org/10.1016/j.energy.2019.04.097. [2] Mangipinto, Andrea, Francesco Lombardi, Francesco Davide Sanvito, Matija Pavičević, Sylvain Quoilin, and Emanuela Colombo. 2022. ‘Impact of Mass-Scale Deployment of Electric Vehicles and Benefits of Smart Charging across All European Countries’. Applied Energy 312 (April): 118676. https://doi.org/10.1016/j.apenergy.2022.118676. {"references": ["Lombardi, Francesco, Sergio Balderrama, Sylvain Quoilin, and Emanuela Colombo. 2019. 'Generating High-Resolution Multi-Energy Load Profiles for Remote Areas with an Open-Source Stochastic Model'. Energy 177 (June): 433\u201344. https://doi.org/10.1016/j.energy.2019.04.097", "Mangipinto, Andrea, Francesco Lombardi, Francesco Davide Sanvito, Matija Pavi\u010devi\u0107, Sylvain Quoilin, and Emanuela Colombo. 2022. 'Impact of Mass-Scale Deployment of Electric Vehicles and Benefits of Smart Charging across All European Countries'. Applied Energy 312 (April): 118676. https://doi.org/10.1016/j.apenergy.2022.118676"]}
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6579420&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 59visibility views 59 download downloads 89 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6579420&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu