- home
- Advanced Search
- Energy Research
- 12. Responsible consumption
- US
- RO
- COVID-19
- Energy Research
- 12. Responsible consumption
- US
- RO
- COVID-19
Research data keyboard_double_arrow_right Dataset 2022Publisher:Zenodo Authors: Gonzalez, Alan R.; Lin, Ting;{"references": ["Liu, Z., Ciais, P., Deng, Z., Lei, R., Davis, S. J., Feng, S., Zheng, B., Cui, D., Dou, X., Zhu, B., Guo, R., Ke, P., Sun, T., Lu, C., He, P., Wang, Y., Yue, X., Wang, Y., Lei, Y., Zhou, H., Cai, Z., Wu, Y., Guo, R., Han, T., Xue, J., Boucher, O., Boucher, E., Chevallier, F., Tanaka, K., Wei, Y., Zhong, H., Kang, C., Zhang, N., Chen, B., Xi, F., Liu, M., Br\u00e9on, F.-M., Lu, Y., Zhang, Q., Guan, D., Gong, P., Kammen, D. M., He, K. & Schellnhuber, H. J. (2020). Near-real-time monitoring of global CO2 emissions reveals the effects of the COVID-19 pandemic. Nature Communications 11, 5172 (2020). https://doi.org/10.1038/s41467-020-18922-7", "Meinshausen, M., Smith, S. J., Calvin, K., Daniel, J. S., Kainuma, M. L. T., Lamarque, J. F., Matsumoto, K., Montzka, S. A., Raper, S. C. B., Riahi, K., Thomson, A., Velders, G. J. M., & van Vuuren, D. P. (2011). The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change, 109(1\u20132), 213\u2013241. https://doi.org/10.1007/s10584-011-0156-z", "Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., van Vuuren, D. P., Carter, T. R., Emori, S., Kainuma, M., Kram, T., Meehl, G. A., Mitchell, J. F. B., Nakicenovic, N., Riahi, K., Smith, S. J., Stouffer, R. J., Thomson, A. M., Weyant, J. P. & Wilbanks, T. J. (2010). The next generation of scenarios for climate change research and assessment. Nature, 463(7282), 747\u2013756. https://doi.org/10.1038/nature08823", "Myhre, G., Highwood, E. J., Shine, K. P., & Stordal, F. (1998). New estimates of radiative forcing due to well mixed greenhouse gases. Geophysical Research Letters, 25(14), 2715\u20132718. https://doi.org/10.1029/98gl01908", "Strassmann, K. M. and Joos, F. (2018). The Bern Simple Climate Model (BernSCM) v1.0: an extensible and fully documented open-source re-implementation of the Bern reduced-form model for global carbon cycle\u2013climate simulations, Geosci. Model Dev., 11, 1887\u20131908, https://doi.org/10.5194/gmd-11-1887-2018", "Thomas, M. A., and Lin, T. (2018). A dual model for emulation of thermosteric and dynamic sea-level change. Climatic Change, 148(1\u20132), 311\u2013324. https://doi.org/10.1007/s10584-018-2198-y"]} Supplementary materials for Gonzalez, A. R., & Lin, T. (2022). Translated Emission Pathways (TEPs): Long-Term Simulations of COVID-19 CO2 Emissions and Thermosteric Sea Level Rise Projections. Earth's Future. In Press. Summary: This study introduces climate science to a broader audience by presenting an accessible research framework and environmental data related to the ongoing COVID-19 pandemic. A series of translated emission pathways (TEPs) were constructed based on the CO2 emission patterns from the various phases of COVID-19 response. In addition to resembling the forcing scenarios used within climate research, a thermosteric sea level rise analysis was incorporated to further emphasize the environmental benefits that can be obtained from long-term sustainability. As a promising start for including the general public in climate change discussion, this research promotes collective environmental action that mirrors the recommendations of the scientific community. We acknowledge the Carbon Monitor initiative (Liu et al., 2020) for providing the COVID-19 CO2 sectoral emission data used to construct the proposed TEPs. In addition, we acknowledge the developers of the BernSCM (Strassmann and Joos, 2018) that was utilized in this study to relate TEP CO2 emissions to their respective CO2 atmospheric concentrations. Furthermore, we thank the Texas Tech University McNair Scholars Program and the Multi-Hazard Sustainability (HazSus) research group for guidance and support throughout the course of this study. Analyses presented herein were performed using the RedRaider computing cluster at Texas Tech University. We thank the team at the High Performance Computing Center (HPCC) for their generous support. In addition, the equipment support from the Vice President for Research & Innovation for T.L.'s HazSus Research Group is gratefully acknowledged.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6506928&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 87visibility views 87 download downloads 5 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6506928&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Authors: Janet Fleetwood;doi: 10.3390/su12125027
The United Nations’ Sustainable Development Goals (SDGs) rest on a set of broadly accepted values within a human rights framework. The SDGs seek to improve human lives, improve the planet, and foster prosperity. This paper examines the human rights framework and the principles of social justice and shows that, while the SDGs do not specifically state that there is human right to food, the SDGs do envision a better, more just, world which rests upon the sufficiency of the global food supply, on environmental sustainability, and on food security for all. Then the paper examines the interrelationships between the SDGs, food access and waste, and human rights within a framework of social justice. Finally, it looks at the potential pandemic of hunger wrought by COVID-19, showing that COVID-19 serves as an example of a crisis that has raised unprecedented challenges to food loss and waste in the global food supply system and tests our commitment to the principles espoused by the SDGs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12125027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 58 citations 58 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12125027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Frontiers Media SA Authors: Kheir Al-Kodmany;This article examines outstanding “sustainable” skyscrapers that received international recognition, including LEED certification. It identifies vital green features in each building and summarizes the prominent elements for informing future projects. Overall, this research is significant because, given the mega-scale of skyscrapers, any improvement in their design, engineering, and construction will have mega impacts and major savings (e.g., structural materials, potable water, energy, etc.). Therefore, the extracted design elements, principles, and recommendations from the reviewed case studies are substantial. Further, the article debates controversial design elements such as wind turbines, photovoltaic panels, glass skin, green roofs, aerodynamic forms, and mixed-use schemes. Finally, it discusses greenwashing and the impact of COVID-19 on sustainable design.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/frsc.2022.782007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/frsc.2022.782007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:Elsevier BV Authors: Takashi Yamagata; Takashi Yamagata; L. Vanessa Smith; Nori Tarui;We assess the effect of the COVID-19 pandemic on global fossil fuel consumption and CO2 emissions over the two-year horizon 2020Q1-2021Q4. We apply a global vector autoregressive (GVAR) model, which captures complex spatial-temporal interdependencies across countries associated with the international propagation of economic impact due to the virus spread. The model makes use of a unique quarterly data set of coal, natural gas, and oil consumption, output, exchange rates and equity prices, including global fossil fuel prices for 32 major CO2 emitting countries spanning the period 1984Q1-2019Q4. We produce forecasts of coal, natural gas and oil consumption, conditional on GDP growth scenarios based on alternative IMF World Economic Outlook forecasts that were made before and after the outbreak. We also simulate the effect of a relative price change in fossil fuels, due to global scale carbon pricing, on consumption and output. Our results predict fossil fuel consumption and CO2 emissions to return to their pre-crisis levels, and even exceed them, within the two-year horizon despite the large reductions in the first quarter following the outbreak. Our forecasts anticipate more robust growth for emerging than for advanced economies. The model predicts recovery to the pre-crisis levels even if another wave of pandemic occurs within a year. Our counterfactual carbon pricing scenario indicates that an increase in coal prices is expected to have a smaller impact on GDP than on fossil fuel consumption. Thus, the COVID-19 pandemic would not provide countries with a strong reason to delay climate change mitigation efforts.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eneco.2021.105170&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 111 citations 111 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 9visibility views 9 download downloads 5 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eneco.2021.105170&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 AustraliaPublisher:Elsevier BV Authors: Rajvikram Madurai Elavarasan; Rishi Pugazhendhi; G.M. Shafiullah; Muhammad Irfan; +1 AuthorsRajvikram Madurai Elavarasan; Rishi Pugazhendhi; G.M. Shafiullah; Muhammad Irfan; Amjad Anvari-Moghaddam;The COVID-19 pandemic affects all of society and hinders day-to-day activities from a straightforward perspective. The pandemic has an influential impact on almost everything and the characteristics of the pandemic remain unclear. This ultimately leads to ineffective strategic planning to manage the pandemic. This study aims to elucidate the typical pandemic characteristics in line with various temporal phases and its associated measures that proved effective in controlling the pandemic. Besides, an insight into diverse country's approaches towards pandemic and their consequences is provided in brief. Understanding the role of technologies in supporting humanity gives new perspectives to effectively manage the pandemic. Such role of technologies is expressed from the viewpoint of seamless connectivity, rapid communication, mobility, technological influence in healthcare, digitalization influence, surveillance and security, Artificial Intelligence (AI), and Internet of Things (IoT). Furthermore, some insightful scenarios are framed where the full-fledged implementation of technologies is assumed, and the reflected pandemic impacts in such scenarios are analyzed. The framed scenarios revolve around the digitalized energy sector, an enhanced supply chain system with effective customer-retailer relationships to support the city during the pandemic scenario, and an advanced tracking system for containing virus spread. The study is further extended to frame revitalization strategies to highlight the expertise where significant attention needs to be provided in the post-pandemic period as well as to nurture sustainable development. Finally, the current pandemic scenario is analyzed in terms of occurred changes and is mapped into SWOT factors. Using Fuzzy Technique for Order of Preference by Similarity to Ideal Solution based Multi-Criteria Decision Analysis, these SWOT factors are analyzed to determine where prioritized efforts are needed to focus so as to traverse towards sustainable cities. The results indicate that the enhanced crisis management ability and situational need to restructure the economic model emerges to be the most-significant SWOT factor that can ultimately support humanity for making the cities sustainable.
Sustainable Cities a... arrow_drop_down Sustainable Cities and SocietyArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scs.2021.102789&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 78 citations 78 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Sustainable Cities a... arrow_drop_down Sustainable Cities and SocietyArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scs.2021.102789&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 MexicoPublisher:MDPI AG Authors: Nesrein M. Hashem; Eman M. Hassanein; Jean-François Hocquette; Antonio Gonzalez-Bulnes; +3 AuthorsNesrein M. Hashem; Eman M. Hassanein; Jean-François Hocquette; Antonio Gonzalez-Bulnes; Fayrouz A. Ahmed; Youssef A. Attia; Khalid A. Asiry;doi: 10.3390/su13126521
handle: 10637/13561
In the near future, the year 2050, agricultural production should expand to fulfill the needs of approximately 9.7 billion inhabitants. Such an objective should be harmonized with social, economic, and environmental sustainability aspects to maintain safe food production and food security worldwide. For more than a year, the COVID-19 pandemic has raised and is still strongly disrupting the agro-livestock production sector, similar to several other economic sectors. In this sector, the relationships between suppliers, producers, and consumers should always continue to maintain the activity of the production chain, which are impaired by social distancing decisions taken following the emergence of the COVID-19 pandemic. In this study, a global cross-sectional survey (translated into four languages: Arabic, English, French, and Spanish) was shared with people belonging to the agricultural sector to identify: (1) the role of the agricultural information and communication technologies (ICTs) in agro-livestock farming systems sustainability during the period of COVID-19 pandemic, (2) the need for such technologies in the agricultural sector, and (3) the factors that affect the use of such technologies. The results showed that the most frequently used agricultural ICTs were social media (Facebook and/or WhatsApp; 27.3%) and online platforms and Internet services (26.3%), whereas robotic vehicles and/or drones (6.6%) were less frequently used. During the emergence of the pandemic, the major reasons impacting agro-livestock farming systems’ sustainability were social distancing (30.0%), shortage of labor (17.7%), maintaining precision farm management (14.8%), product marketing (14.2%), access production inputs (7.2%), and others (16.1%). Applying agricultural ICTs solved many obstacles related to the production process, such as maintaining precision farm management (25.6%), product marketing (23.6%), and access production inputs (16.1%). The subgroup analyses of the results considering the degree of country advancement, size of agribusinesses, and role/position of respondents in the farm highlighted the importance of supporting the use, availability, and awareness of agricultural ICTs at least for some groups of people such as those belong to developing countries, laborers, and small-scale agri-business holders. This cross-sectional study highlights the urgent need to turn to and to expand the use of new agricultural ICTs to meet the growing demand for food production in the world and to ensure the resilience and sustainability of farming systems, specifically under unexpected and extreme conditions.
CEU Institutional Re... arrow_drop_down CEU Institutional RepositoryArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10637/13561Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13126521&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 33 citations 33 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CEU Institutional Re... arrow_drop_down CEU Institutional RepositoryArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10637/13561Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13126521&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Sehneela Sara Aurpa; Sahadat Hossain; Md Azijul Islam;doi: 10.3390/su142315974
The COVID-19 pandemic has altered all aspects of human life since its breakout in March 2020 in the USA and around the world. There has been a tremendous increase in the use of plastic products as most of the PPE (masks, gloves, and other medical equipment) are made from plastic. Therefore, the generation of plastic waste was expected to increase significantly, which was also reported by many news agencies and organizations. This study determines the increase in plastic waste in municipal solid waste (MSW) and investigates its effect on landfill volume consumption during the COVID-19 pandemic. MSW samples were collected from the working face of Irving Hunter Ferrell landfill from May 2020 to December 2020. During every attempted sample collection, eight bags of MSW samples, each weighing 20–25 lbs., were collected. The MSW samples collected from the landfill were characterized and later the volume was estimated to evaluate the potential effects on landfill airspace. Based on the experimental investigations, it was found that plastic waste generation increased significantly during the pandemic (increasing from an 18.5% pre-pandemic level to 30% during the pandemic). Volumetric estimation suggests that the increased amount of plastic waste occupies 20% more volume in landfills. Quantification and estimation of the volume of the increased amount of plastic waste can be useful in predicting the impact of the pandemic on the lifetime of landfills.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su142315974&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su142315974&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Journal 2021Publisher:Elsevier BV Authors: Xiang Zhao; Fengqi You;Abstract The ongoing COVID-19 pandemic increases the consumption of respirators. In this work, we propose a novel and effective waste respirator processing system that aims to protect public health and mitigate climate change. Respirator sterilization and pre-processing technologies are incorporated simultaneously to resist viral infection and facilitate unit processes for manufacturing and separating products, so the greenhouse gas (GHG) emission can be reduced via carbon reallocation from CO2 to downstream products. High-fidelity process simulations are performed to extract detailed life cycle inventories used for evaluating environmental performance. Results reveal the economic viability in terms of the payback time (seven years) and the internal rate of return (21.5%). The proposed waste respirator processing system reduces GHG emissions by 59.08% compared to incineration, which reflects the potential of climate change mitigation.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1016/b978-0...Part of book or chapter of book . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/b978-0-323-88506-5.50007-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1016/b978-0...Part of book or chapter of book . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/b978-0-323-88506-5.50007-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Maria Cristina Bularca; Florin Nechita; Lilia Sargu; Gabriela Motoi; Adrian Otovescu; Claudiu Coman;doi: 10.3390/su14031554
Organizations in general, and higher education institutions in particular, had to face many challenges during the pandemic in order to carry out their usual activities. Since communications and interactions between universities and students were required to take place online, the messages sent by universities on their social media platforms held greater importance. In this regard, the purpose of the paper was to identify the promotion strategies used by European universities on Facebook and Instagram in the context of the COVID-19 pandemic. Thus, we were interested in identifying differences and similarities in the types of messages European universities sent on the two social networks, regarding the way they communicated about sustainability. The method used in order to conduct the research was content analysis, while having as an instrument a content analysis grid. We analyzed the activity of 20 European universities included in the World University Rankings 2021. The results of the research revealed that universities communicated more on Facebook than on Instagram, that the most frequent messages regarding sustainability were the ones about the actions carried out by universities in order to protect the environment, and that they registered a higher engagement rate on Instagram than on Facebook.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14031554&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14031554&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Frontiers Media SA Larisa Ivascu; Gadah Albasher; Muhammad Mohsin; Muddassar Sarfraz; Sobia Naseem;The COVID-19 pandemic has compelled countries worldwide to enforce stringent measures to maintain social distancing, by locking down populations and restricting all kinds of transport. Besides their impact on the virus, these dramatic changes may also have positively contributed to a sustainable environment. The study aims to measure the effect of COVID-19 on environmental sustainability by employing the autoregressive distributed lag (ARDL) model. The study is based on the daily data of COVID-19 confirmed cases; confirmed deaths; manually generated lockdown data by the indexing method; and NO2, NH3, SO2, and CO levels from March 3, 2020, to July 27, 2021. This research study investigates the long- and short-term relationship between COVID-19 and the aforementioned greenhouse gases. The findings suggest conclusively that NO2, SO2, and CO declined during the COVID-19 period in India because these gases are anthropologically emitted by transport, industries, and fossil fuel burning. On the other hand, the evolving NH3 is not related to COVID-19 confirmed cases and deaths but is impacted by lockdown because ammonia emission is directly related to agricultural activities. Therefore, a decline in pollutants such as greenhouse gases during the COVID-19 period until July 2021 was observed. This means the prioritized control of human activities can be helpful to enhance the quality of the environment.
Frontiers in Environ... arrow_drop_down Frontiers in Environmental ScienceArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenvs.2021.764294&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Frontiers in Environ... arrow_drop_down Frontiers in Environmental ScienceArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenvs.2021.764294&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2022Publisher:Zenodo Authors: Gonzalez, Alan R.; Lin, Ting;{"references": ["Liu, Z., Ciais, P., Deng, Z., Lei, R., Davis, S. J., Feng, S., Zheng, B., Cui, D., Dou, X., Zhu, B., Guo, R., Ke, P., Sun, T., Lu, C., He, P., Wang, Y., Yue, X., Wang, Y., Lei, Y., Zhou, H., Cai, Z., Wu, Y., Guo, R., Han, T., Xue, J., Boucher, O., Boucher, E., Chevallier, F., Tanaka, K., Wei, Y., Zhong, H., Kang, C., Zhang, N., Chen, B., Xi, F., Liu, M., Br\u00e9on, F.-M., Lu, Y., Zhang, Q., Guan, D., Gong, P., Kammen, D. M., He, K. & Schellnhuber, H. J. (2020). Near-real-time monitoring of global CO2 emissions reveals the effects of the COVID-19 pandemic. Nature Communications 11, 5172 (2020). https://doi.org/10.1038/s41467-020-18922-7", "Meinshausen, M., Smith, S. J., Calvin, K., Daniel, J. S., Kainuma, M. L. T., Lamarque, J. F., Matsumoto, K., Montzka, S. A., Raper, S. C. B., Riahi, K., Thomson, A., Velders, G. J. M., & van Vuuren, D. P. (2011). The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change, 109(1\u20132), 213\u2013241. https://doi.org/10.1007/s10584-011-0156-z", "Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., van Vuuren, D. P., Carter, T. R., Emori, S., Kainuma, M., Kram, T., Meehl, G. A., Mitchell, J. F. B., Nakicenovic, N., Riahi, K., Smith, S. J., Stouffer, R. J., Thomson, A. M., Weyant, J. P. & Wilbanks, T. J. (2010). The next generation of scenarios for climate change research and assessment. Nature, 463(7282), 747\u2013756. https://doi.org/10.1038/nature08823", "Myhre, G., Highwood, E. J., Shine, K. P., & Stordal, F. (1998). New estimates of radiative forcing due to well mixed greenhouse gases. Geophysical Research Letters, 25(14), 2715\u20132718. https://doi.org/10.1029/98gl01908", "Strassmann, K. M. and Joos, F. (2018). The Bern Simple Climate Model (BernSCM) v1.0: an extensible and fully documented open-source re-implementation of the Bern reduced-form model for global carbon cycle\u2013climate simulations, Geosci. Model Dev., 11, 1887\u20131908, https://doi.org/10.5194/gmd-11-1887-2018", "Thomas, M. A., and Lin, T. (2018). A dual model for emulation of thermosteric and dynamic sea-level change. Climatic Change, 148(1\u20132), 311\u2013324. https://doi.org/10.1007/s10584-018-2198-y"]} Supplementary materials for Gonzalez, A. R., & Lin, T. (2022). Translated Emission Pathways (TEPs): Long-Term Simulations of COVID-19 CO2 Emissions and Thermosteric Sea Level Rise Projections. Earth's Future. In Press. Summary: This study introduces climate science to a broader audience by presenting an accessible research framework and environmental data related to the ongoing COVID-19 pandemic. A series of translated emission pathways (TEPs) were constructed based on the CO2 emission patterns from the various phases of COVID-19 response. In addition to resembling the forcing scenarios used within climate research, a thermosteric sea level rise analysis was incorporated to further emphasize the environmental benefits that can be obtained from long-term sustainability. As a promising start for including the general public in climate change discussion, this research promotes collective environmental action that mirrors the recommendations of the scientific community. We acknowledge the Carbon Monitor initiative (Liu et al., 2020) for providing the COVID-19 CO2 sectoral emission data used to construct the proposed TEPs. In addition, we acknowledge the developers of the BernSCM (Strassmann and Joos, 2018) that was utilized in this study to relate TEP CO2 emissions to their respective CO2 atmospheric concentrations. Furthermore, we thank the Texas Tech University McNair Scholars Program and the Multi-Hazard Sustainability (HazSus) research group for guidance and support throughout the course of this study. Analyses presented herein were performed using the RedRaider computing cluster at Texas Tech University. We thank the team at the High Performance Computing Center (HPCC) for their generous support. In addition, the equipment support from the Vice President for Research & Innovation for T.L.'s HazSus Research Group is gratefully acknowledged.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6506928&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 87visibility views 87 download downloads 5 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6506928&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Authors: Janet Fleetwood;doi: 10.3390/su12125027
The United Nations’ Sustainable Development Goals (SDGs) rest on a set of broadly accepted values within a human rights framework. The SDGs seek to improve human lives, improve the planet, and foster prosperity. This paper examines the human rights framework and the principles of social justice and shows that, while the SDGs do not specifically state that there is human right to food, the SDGs do envision a better, more just, world which rests upon the sufficiency of the global food supply, on environmental sustainability, and on food security for all. Then the paper examines the interrelationships between the SDGs, food access and waste, and human rights within a framework of social justice. Finally, it looks at the potential pandemic of hunger wrought by COVID-19, showing that COVID-19 serves as an example of a crisis that has raised unprecedented challenges to food loss and waste in the global food supply system and tests our commitment to the principles espoused by the SDGs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12125027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 58 citations 58 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12125027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Frontiers Media SA Authors: Kheir Al-Kodmany;This article examines outstanding “sustainable” skyscrapers that received international recognition, including LEED certification. It identifies vital green features in each building and summarizes the prominent elements for informing future projects. Overall, this research is significant because, given the mega-scale of skyscrapers, any improvement in their design, engineering, and construction will have mega impacts and major savings (e.g., structural materials, potable water, energy, etc.). Therefore, the extracted design elements, principles, and recommendations from the reviewed case studies are substantial. Further, the article debates controversial design elements such as wind turbines, photovoltaic panels, glass skin, green roofs, aerodynamic forms, and mixed-use schemes. Finally, it discusses greenwashing and the impact of COVID-19 on sustainable design.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/frsc.2022.782007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/frsc.2022.782007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:Elsevier BV Authors: Takashi Yamagata; Takashi Yamagata; L. Vanessa Smith; Nori Tarui;We assess the effect of the COVID-19 pandemic on global fossil fuel consumption and CO2 emissions over the two-year horizon 2020Q1-2021Q4. We apply a global vector autoregressive (GVAR) model, which captures complex spatial-temporal interdependencies across countries associated with the international propagation of economic impact due to the virus spread. The model makes use of a unique quarterly data set of coal, natural gas, and oil consumption, output, exchange rates and equity prices, including global fossil fuel prices for 32 major CO2 emitting countries spanning the period 1984Q1-2019Q4. We produce forecasts of coal, natural gas and oil consumption, conditional on GDP growth scenarios based on alternative IMF World Economic Outlook forecasts that were made before and after the outbreak. We also simulate the effect of a relative price change in fossil fuels, due to global scale carbon pricing, on consumption and output. Our results predict fossil fuel consumption and CO2 emissions to return to their pre-crisis levels, and even exceed them, within the two-year horizon despite the large reductions in the first quarter following the outbreak. Our forecasts anticipate more robust growth for emerging than for advanced economies. The model predicts recovery to the pre-crisis levels even if another wave of pandemic occurs within a year. Our counterfactual carbon pricing scenario indicates that an increase in coal prices is expected to have a smaller impact on GDP than on fossil fuel consumption. Thus, the COVID-19 pandemic would not provide countries with a strong reason to delay climate change mitigation efforts.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eneco.2021.105170&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 111 citations 111 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 9visibility views 9 download downloads 5 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eneco.2021.105170&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 AustraliaPublisher:Elsevier BV Authors: Rajvikram Madurai Elavarasan; Rishi Pugazhendhi; G.M. Shafiullah; Muhammad Irfan; +1 AuthorsRajvikram Madurai Elavarasan; Rishi Pugazhendhi; G.M. Shafiullah; Muhammad Irfan; Amjad Anvari-Moghaddam;The COVID-19 pandemic affects all of society and hinders day-to-day activities from a straightforward perspective. The pandemic has an influential impact on almost everything and the characteristics of the pandemic remain unclear. This ultimately leads to ineffective strategic planning to manage the pandemic. This study aims to elucidate the typical pandemic characteristics in line with various temporal phases and its associated measures that proved effective in controlling the pandemic. Besides, an insight into diverse country's approaches towards pandemic and their consequences is provided in brief. Understanding the role of technologies in supporting humanity gives new perspectives to effectively manage the pandemic. Such role of technologies is expressed from the viewpoint of seamless connectivity, rapid communication, mobility, technological influence in healthcare, digitalization influence, surveillance and security, Artificial Intelligence (AI), and Internet of Things (IoT). Furthermore, some insightful scenarios are framed where the full-fledged implementation of technologies is assumed, and the reflected pandemic impacts in such scenarios are analyzed. The framed scenarios revolve around the digitalized energy sector, an enhanced supply chain system with effective customer-retailer relationships to support the city during the pandemic scenario, and an advanced tracking system for containing virus spread. The study is further extended to frame revitalization strategies to highlight the expertise where significant attention needs to be provided in the post-pandemic period as well as to nurture sustainable development. Finally, the current pandemic scenario is analyzed in terms of occurred changes and is mapped into SWOT factors. Using Fuzzy Technique for Order of Preference by Similarity to Ideal Solution based Multi-Criteria Decision Analysis, these SWOT factors are analyzed to determine where prioritized efforts are needed to focus so as to traverse towards sustainable cities. The results indicate that the enhanced crisis management ability and situational need to restructure the economic model emerges to be the most-significant SWOT factor that can ultimately support humanity for making the cities sustainable.
Sustainable Cities a... arrow_drop_down Sustainable Cities and SocietyArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scs.2021.102789&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 78 citations 78 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Sustainable Cities a... arrow_drop_down Sustainable Cities and SocietyArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scs.2021.102789&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 MexicoPublisher:MDPI AG Authors: Nesrein M. Hashem; Eman M. Hassanein; Jean-François Hocquette; Antonio Gonzalez-Bulnes; +3 AuthorsNesrein M. Hashem; Eman M. Hassanein; Jean-François Hocquette; Antonio Gonzalez-Bulnes; Fayrouz A. Ahmed; Youssef A. Attia; Khalid A. Asiry;doi: 10.3390/su13126521
handle: 10637/13561
In the near future, the year 2050, agricultural production should expand to fulfill the needs of approximately 9.7 billion inhabitants. Such an objective should be harmonized with social, economic, and environmental sustainability aspects to maintain safe food production and food security worldwide. For more than a year, the COVID-19 pandemic has raised and is still strongly disrupting the agro-livestock production sector, similar to several other economic sectors. In this sector, the relationships between suppliers, producers, and consumers should always continue to maintain the activity of the production chain, which are impaired by social distancing decisions taken following the emergence of the COVID-19 pandemic. In this study, a global cross-sectional survey (translated into four languages: Arabic, English, French, and Spanish) was shared with people belonging to the agricultural sector to identify: (1) the role of the agricultural information and communication technologies (ICTs) in agro-livestock farming systems sustainability during the period of COVID-19 pandemic, (2) the need for such technologies in the agricultural sector, and (3) the factors that affect the use of such technologies. The results showed that the most frequently used agricultural ICTs were social media (Facebook and/or WhatsApp; 27.3%) and online platforms and Internet services (26.3%), whereas robotic vehicles and/or drones (6.6%) were less frequently used. During the emergence of the pandemic, the major reasons impacting agro-livestock farming systems’ sustainability were social distancing (30.0%), shortage of labor (17.7%), maintaining precision farm management (14.8%), product marketing (14.2%), access production inputs (7.2%), and others (16.1%). Applying agricultural ICTs solved many obstacles related to the production process, such as maintaining precision farm management (25.6%), product marketing (23.6%), and access production inputs (16.1%). The subgroup analyses of the results considering the degree of country advancement, size of agribusinesses, and role/position of respondents in the farm highlighted the importance of supporting the use, availability, and awareness of agricultural ICTs at least for some groups of people such as those belong to developing countries, laborers, and small-scale agri-business holders. This cross-sectional study highlights the urgent need to turn to and to expand the use of new agricultural ICTs to meet the growing demand for food production in the world and to ensure the resilience and sustainability of farming systems, specifically under unexpected and extreme conditions.
CEU Institutional Re... arrow_drop_down CEU Institutional RepositoryArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10637/13561Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13126521&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 33 citations 33 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CEU Institutional Re... arrow_drop_down CEU Institutional RepositoryArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10637/13561Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13126521&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Sehneela Sara Aurpa; Sahadat Hossain; Md Azijul Islam;doi: 10.3390/su142315974
The COVID-19 pandemic has altered all aspects of human life since its breakout in March 2020 in the USA and around the world. There has been a tremendous increase in the use of plastic products as most of the PPE (masks, gloves, and other medical equipment) are made from plastic. Therefore, the generation of plastic waste was expected to increase significantly, which was also reported by many news agencies and organizations. This study determines the increase in plastic waste in municipal solid waste (MSW) and investigates its effect on landfill volume consumption during the COVID-19 pandemic. MSW samples were collected from the working face of Irving Hunter Ferrell landfill from May 2020 to December 2020. During every attempted sample collection, eight bags of MSW samples, each weighing 20–25 lbs., were collected. The MSW samples collected from the landfill were characterized and later the volume was estimated to evaluate the potential effects on landfill airspace. Based on the experimental investigations, it was found that plastic waste generation increased significantly during the pandemic (increasing from an 18.5% pre-pandemic level to 30% during the pandemic). Volumetric estimation suggests that the increased amount of plastic waste occupies 20% more volume in landfills. Quantification and estimation of the volume of the increased amount of plastic waste can be useful in predicting the impact of the pandemic on the lifetime of landfills.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su142315974&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su142315974&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Journal 2021Publisher:Elsevier BV Authors: Xiang Zhao; Fengqi You;Abstract The ongoing COVID-19 pandemic increases the consumption of respirators. In this work, we propose a novel and effective waste respirator processing system that aims to protect public health and mitigate climate change. Respirator sterilization and pre-processing technologies are incorporated simultaneously to resist viral infection and facilitate unit processes for manufacturing and separating products, so the greenhouse gas (GHG) emission can be reduced via carbon reallocation from CO2 to downstream products. High-fidelity process simulations are performed to extract detailed life cycle inventories used for evaluating environmental performance. Results reveal the economic viability in terms of the payback time (seven years) and the internal rate of return (21.5%). The proposed waste respirator processing system reduces GHG emissions by 59.08% compared to incineration, which reflects the potential of climate change mitigation.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1016/b978-0...Part of book or chapter of book . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/b978-0-323-88506-5.50007-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1016/b978-0...Part of book or chapter of book . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/b978-0-323-88506-5.50007-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Maria Cristina Bularca; Florin Nechita; Lilia Sargu; Gabriela Motoi; Adrian Otovescu; Claudiu Coman;doi: 10.3390/su14031554
Organizations in general, and higher education institutions in particular, had to face many challenges during the pandemic in order to carry out their usual activities. Since communications and interactions between universities and students were required to take place online, the messages sent by universities on their social media platforms held greater importance. In this regard, the purpose of the paper was to identify the promotion strategies used by European universities on Facebook and Instagram in the context of the COVID-19 pandemic. Thus, we were interested in identifying differences and similarities in the types of messages European universities sent on the two social networks, regarding the way they communicated about sustainability. The method used in order to conduct the research was content analysis, while having as an instrument a content analysis grid. We analyzed the activity of 20 European universities included in the World University Rankings 2021. The results of the research revealed that universities communicated more on Facebook than on Instagram, that the most frequent messages regarding sustainability were the ones about the actions carried out by universities in order to protect the environment, and that they registered a higher engagement rate on Instagram than on Facebook.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14031554&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14031554&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Frontiers Media SA Larisa Ivascu; Gadah Albasher; Muhammad Mohsin; Muddassar Sarfraz; Sobia Naseem;The COVID-19 pandemic has compelled countries worldwide to enforce stringent measures to maintain social distancing, by locking down populations and restricting all kinds of transport. Besides their impact on the virus, these dramatic changes may also have positively contributed to a sustainable environment. The study aims to measure the effect of COVID-19 on environmental sustainability by employing the autoregressive distributed lag (ARDL) model. The study is based on the daily data of COVID-19 confirmed cases; confirmed deaths; manually generated lockdown data by the indexing method; and NO2, NH3, SO2, and CO levels from March 3, 2020, to July 27, 2021. This research study investigates the long- and short-term relationship between COVID-19 and the aforementioned greenhouse gases. The findings suggest conclusively that NO2, SO2, and CO declined during the COVID-19 period in India because these gases are anthropologically emitted by transport, industries, and fossil fuel burning. On the other hand, the evolving NH3 is not related to COVID-19 confirmed cases and deaths but is impacted by lockdown because ammonia emission is directly related to agricultural activities. Therefore, a decline in pollutants such as greenhouse gases during the COVID-19 period until July 2021 was observed. This means the prioritized control of human activities can be helpful to enhance the quality of the environment.
Frontiers in Environ... arrow_drop_down Frontiers in Environmental ScienceArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenvs.2021.764294&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Frontiers in Environ... arrow_drop_down Frontiers in Environmental ScienceArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenvs.2021.764294&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu