- home
- Advanced Search
- Energy Research
- EMBRC
- Energy Research
- EMBRC
description Publicationkeyboard_double_arrow_right Article , Journal 2018 Australia, Australia, United KingdomPublisher:Wiley Funded by:ARC | Linkage Projects - Grant ...ARC| Linkage Projects - Grant ID: LP100200122Stuart J. Campbell; Graham J. Edgar; Rick D. Stuart‐Smith; German Soler; Amanda E. Bates;doi: 10.1111/cobi.12996
pmid: 28776761
AbstractConsiderable empirical evidence supports recovery of reef fish populations with fishery closures. In countries where full exclusion of people from fishing may be perceived as inequitable, fishing‐gear restrictions on nonselective and destructive gears may offer socially relevant management alternatives to build recovery of fish biomass. Even so, few researchers have statistically compared the responses of tropical reef fisheries to alternative management strategies. We tested for the effects of fishery closures and fishing gear restrictions on tropical reef fish biomass at the community and family level. We conducted 1,396 underwater surveys at 617 unique sites across a spatial hierarchy within 22 global marine ecoregions that represented 5 realms. We compared total biomass across local fish assemblages and among 20 families of reef fishes inside marine protected areas (MPAs) with different fishing restrictions: no‐take, hook‐and‐line fishing only, several fishing gears allowed, and sites open to all fishing gears. We included a further category representing remote sites, where fishing pressure is low. As expected, full fishery closures, (i.e., no‐take zones) most benefited community‐ and family‐level fish biomass in comparison with restrictions on fishing gears and openly fished sites. Although biomass responses to fishery closures were highly variable across families, some fishery targets (e.g., Carcharhinidae and Lutjanidae) responded positively to multiple restrictions on fishing gears (i.e., where gears other than hook and line were not permitted). Remoteness also positively affected the response of community‐level fish biomass and many fish families. Our findings provide strong support for the role of fishing restrictions in building recovery of fish biomass and indicate important interactions among fishing‐gear types that affect biomass of a diverse set of reef fish families.
Conservation Biology arrow_drop_down Conservation BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/cobi.12996&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Conservation Biology arrow_drop_down Conservation BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/cobi.12996&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2014 Australia, United Kingdom, Spain, AustraliaPublisher:Springer Science and Business Media LLC Stuart Kininmonth; Stuart Kininmonth; Rodrigo L. Moura; Graham J. Edgar; David Edgardo Galvan; David J. Kushner; German Soler; Neville S. Barrett; Anthony T. F. Bernard; Mikel A. Becerro; Just Berkhout; Stuart Banks; Rick D. Stuart-Smith; Günter Försterra; Antonia T. Cooper; Marlene Davey; Stuart Campbell; Colin D. Buxton; Susan C. Baker; Russell Thomson; Alejo Joaquin Irigoyen; P. Ed Parnell; Nick T. Shears; Elisabeth M. A. Strain; Trevor J. Willis; Sophie C. Edgar;handle: 10261/180360
Les aires marines protégées (AMP) sont une composante importante et croissante de la stratégie de conservation marine, mais leur efficacité est variable et débattue ; maintenant, une étude a rassemblé des données à partir d'un échantillon mondial d'AMP et démontre que l'efficacité dépend de cinq propriétés clés : si une pêche est autorisée, les niveaux d'application, l'âge, la taille et le degré d'isolement. Les aires marines protégées sont une composante importante et croissante de la stratégie de conservation marine, mais leur efficacité est variable et beaucoup débattue. Ces auteurs rassemblent des données provenant d'un échantillon mondial de régions pêchées et de 87 aires marines protégées et démontrent que l'efficacité d'une aire protégée dépend de cinq propriétés clés : la quantité de pêche autorisée, les niveaux d'application, la durée de la protection, la zone et le degré d'isolement. La conservation n'est assurée que lorsque ces cinq cases ont été cochées. Conformément aux objectifs mondiaux convenus dans le cadre de la Convention sur la diversité biologique, le nombre d'aires marines protégées (AMP) augmente rapidement, mais les avantages socio-économiques générés par les AMP restent difficiles à prévoir et font l'objet de débats1,2. Les AMP ne parviennent souvent pas à atteindre leur plein potentiel en raison de facteurs tels que l'exploitation illégale, les réglementations qui autorisent légalement l'exploitation préjudiciable ou l'émigration des animaux en dehors des limites en raison de l'habitat continu ou de la taille inadéquate de la réserve3,4,5. Ici, nous montrons que les avantages de conservation de 87 AMP étudiées dans le monde augmentent de manière exponentielle avec l'accumulation de cinq caractéristiques clés : pas de prise, bien appliquées, vieilles (>10 ans), grandes (>100 km2) et isolées par l'eau profonde ou le sable. En utilisant des AMP efficaces avec quatre ou cinq caractéristiques clés comme norme non exploitée, les comparaisons des données d'enquête sous-marine des AMP efficaces avec les prévisions basées sur les données d'enquête des côtes pêchées indiquent que la biomasse totale de poissons a diminué d'environ deux tiers par rapport aux références historiques en raison de la pêche. Les AMP efficaces comptaient également deux fois plus d'espèces de poissons de grande taille (>250 mm de longueur totale) par transect, cinq fois plus de biomasse de poissons de grande taille et quatorze fois plus de biomasse de requins que les zones de pêche. La plupart (59 %) des AMP étudiées n'avaient qu'une ou deux caractéristiques clés et n'étaient pas écologiquement distinguables des sites de pêche. Nos résultats montrent que les objectifs mondiaux de conservation basés sur la seule superficie n'optimiseront pas la protection de la biodiversité marine. Il faut mettre davantage l'accent sur une meilleure conception des AMP, une gestion durable et la conformité pour s'assurer que les AMP atteignent la valeur de conservation souhaitée. Las áreas marinas protegidas (AMP) son un componente importante y creciente de la estrategia de protección marina, pero su efectividad es variable y debatida; ahora, un estudio ha reunido datos de una muestra global de AMP y demuestra que la efectividad depende de cinco propiedades clave: si se permite la pesca, los niveles de aplicación, la edad, el tamaño y el grado de aislamiento. Las áreas marinas protegidas son un componente importante y creciente de la estrategia de protección marina, pero su efectividad es variable y muy debatida. Estos autores reúnen datos de una muestra global de regiones pesqueras y 87 áreas marinas protegidas y demuestran que la efectividad de un área protegida depende de cinco propiedades clave: cuánta pesca está permitida, niveles de aplicación, cuánto tiempo ha estado vigente la protección, área y grado de aislamiento. La protección está asegurada solo cuando se han marcado las cinco casillas. En línea con los objetivos mundiales acordados en el marco del Convenio sobre la Diversidad Biológica, el número de áreas marinas protegidas (AMP) está aumentando rápidamente, pero los beneficios socioeconómicos generados por las AMP siguen siendo difíciles de predecir y están siendo objeto de debate1,2. Las AMP a menudo no alcanzan su máximo potencial como consecuencia de factores como la recolección ilegal, las regulaciones que permiten legalmente la recolección perjudicial o la emigración de animales fuera de los límites debido a un hábitat continuo o un tamaño inadecuado de la reserva3,4,5. Aquí mostramos que los beneficios conservadores de 87 AMP investigadas en todo el mundo aumentan exponencialmente con la acumulación de cinco características clave: sin captura, bien aplicadas, antiguas (>10 años), grandes (>100 km2) y aisladas por aguas profundas o arena. Utilizando AMP efectivas con cuatro o cinco características clave como estándar no explotado, las comparaciones de los datos de las encuestas subacuáticas de las AMP efectivas con las predicciones basadas en los datos de las encuestas de las costas pescadas indican que la biomasa total de peces ha disminuido aproximadamente dos tercios de las líneas de base históricas como resultado de la pesca. Las AMP efectivas también tenían el doble de especies de peces grandes (>250 mm de longitud total) por transecto, cinco veces más biomasa de peces grandes y catorce veces más biomasa de tiburones que las áreas de pesca. La mayoría (59%) de las AMP estudiadas tenían solo una o dos características clave y no eran ecológicamente distinguibles de los sitios de pesca. Nuestros resultados muestran que los objetivos de protección global basados en el área por sí solos no optimizarán la protección de la biodiversidad marina. Se necesita más énfasis en un mejor diseño de las AMP, una gestión duradera y el cumplimiento para garantizar que las AMP alcancen el valor de conservación deseado. Marine protected areas (MPAs) are an important and increasing component of marine conservation strategy, but their effectiveness is variable and debated; now a study has assembled data from a global sample of MPAs and demonstrates that effectiveness depends on five key properties: whether any fishing is allowed, enforcement levels, age, size and degree of isolation. Marine protected areas are an important and increasing component of marine conservation strategy, but their effectiveness is variable and much debated. These authors assemble data from a global sample of fished regions and 87 marine protected areas and demonstrate that the effectiveness of a protected area depends on five key properties: how much fishing is allowed, enforcement levels, how long protection has been in place, area and degree of isolation. Conservation is assured only when all five of these boxes have been ticked. In line with global targets agreed under the Convention on Biological Diversity, the number of marine protected areas (MPAs) is increasing rapidly, yet socio-economic benefits generated by MPAs remain difficult to predict and under debate1,2. MPAs often fail to reach their full potential as a consequence of factors such as illegal harvesting, regulations that legally allow detrimental harvesting, or emigration of animals outside boundaries because of continuous habitat or inadequate size of reserve3,4,5. Here we show that the conservation benefits of 87 MPAs investigated worldwide increase exponentially with the accumulation of five key features: no take, well enforced, old (>10 years), large (>100 km2), and isolated by deep water or sand. Using effective MPAs with four or five key features as an unfished standard, comparisons of underwater survey data from effective MPAs with predictions based on survey data from fished coasts indicate that total fish biomass has declined about two-thirds from historical baselines as a result of fishing. Effective MPAs also had twice as many large (>250 mm total length) fish species per transect, five times more large fish biomass, and fourteen times more shark biomass than fished areas. Most (59%) of the MPAs studied had only one or two key features and were not ecologically distinguishable from fished sites. Our results show that global conservation targets based on area alone will not optimize protection of marine biodiversity. More emphasis is needed on better MPA design, durable management and compliance to ensure that MPAs achieve their desired conservation value. تعد المناطق البحرية المحمية (MPAs) مكونًا مهمًا ومتزايدًا في استراتيجية الحفظ البحري، لكن فعاليتها متغيرة ومتناقضة ؛ الآن جمعت دراسة بيانات من عينة عالمية من المناطق البحرية المحمية وتوضح أن الفعالية تعتمد على خمس خصائص رئيسية: ما إذا كان يُسمح بالصيد، ومستويات الإنفاذ، والعمر، والحجم، ودرجة العزلة. تعد المناطق البحرية المحمية مكونًا مهمًا ومتزايدًا في استراتيجية الحفاظ على البيئة البحرية، ولكن فعاليتها متغيرة ومثيرة للجدل. يقوم هؤلاء المؤلفون بتجميع البيانات من عينة عالمية من المناطق المصيدة و 87 منطقة محمية بحرية ويثبتون أن فعالية المنطقة المحمية تعتمد على خمس خصائص رئيسية: مقدار الصيد المسموح به، ومستويات الإنفاذ، وطول مدة الحماية، والمنطقة، ودرجة العزلة. لا يتم ضمان الحفظ إلا عند وضع علامة على جميع هذه الصناديق الخمسة. تماشياً مع الأهداف العالمية المتفق عليها بموجب اتفاقية التنوع البيولوجي، يتزايد عدد المناطق البحرية المحمية (MPAs) بسرعة، ومع ذلك لا تزال الفوائد الاجتماعية والاقتصادية الناتجة عن المناطق البحرية المحمية يصعب التنبؤ بها وتخضع للمناقشة1,2. غالبًا ما تفشل المناطق البحرية المحمية في الوصول إلى إمكاناتها الكاملة نتيجة لعوامل مثل الحصاد غير القانوني، أو اللوائح التي تسمح قانونًا بالحصاد الضار، أو هجرة الحيوانات خارج الحدود بسبب الموائل المستمرة أو عدم كفاية حجم المحمية3، 4، 5. نوضح هنا أن فوائد الحفظ لـ 87 منطقة محمية بحرية تم التحقيق فيها في جميع أنحاء العالم تزداد بشكل كبير مع تراكم خمس ميزات رئيسية: لا تأخذ، تطبق بشكل جيد، قديمة (>10 سنوات)، كبيرة (>100 كيلومتر مربع)، ومعزولة بالمياه العميقة أو الرمال. باستخدام المناطق البحرية المحمية الفعالة مع أربع أو خمس سمات رئيسية كمعيار غير مكتمل، تشير مقارنات بيانات المسح تحت الماء من المناطق البحرية المحمية الفعالة مع التنبؤات المستندة إلى بيانات المسح من السواحل المصيدة إلى أن إجمالي الكتلة الحيوية للأسماك قد انخفض بنحو الثلثين عن خطوط الأساس التاريخية نتيجة لصيد الأسماك. تحتوي المناطق البحرية المحمية الفعالة أيضًا على ضعف عدد أنواع الأسماك الكبيرة (>250 مم إجمالي الطول) لكل مقطع، وخمسة أضعاف الكتلة الحيوية للأسماك الكبيرة، وأربعة عشر ضعف الكتلة الحيوية لأسماك القرش مقارنة بالمناطق التي يتم صيدها. كان لمعظم المناطق البحرية المحمية التي تمت دراستها (59 ٪) سمة رئيسية واحدة أو اثنتين فقط ولم يكن من الممكن تمييزها بيئيًا عن المواقع التي يتم صيد الأسماك فيها. تظهر نتائجنا أن أهداف الحفظ العالمية القائمة على المساحة وحدها لن تحسن حماية التنوع البيولوجي البحري. هناك حاجة إلى مزيد من التركيز على تصميم أفضل للمناطق المحمية البحرية والإدارة الدائمة والامتثال لضمان تحقيق المناطق المحمية البحرية لقيمة الحفظ المطلوبة.
Nature arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2014 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of Portsmouth: Portsmouth Research PortalArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2005Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature13022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 1K citations 1,407 popularity Top 0.01% influence Top 0.1% impulse Top 0.01% Powered by BIP!
visibility 19visibility views 19 download downloads 26 Powered bymore_vert Nature arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2014 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of Portsmouth: Portsmouth Research PortalArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2005Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature13022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 United Kingdom, FijiPublisher:Public Library of Science (PLoS) Soler, German A.; Edgar, Graham J.; Thomson, Russell J.; Kininmonth, Stuart; Campbell, Stuart J.; Dawson, Terence P.; Barrett, Neville S.; Bernard, Anthony T.F.; Galván, David E.; Willis, Trevor J.; Alexander, Timothy J.; Stuart-Smith, Rick D.;pmid: 26461104
pmc: PMC4603671
Marine Protected Areas (MPAs) offer a unique opportunity to test the assumption that fishing pressure affects some trophic groups more than others. Removal of larger predators through fishing is often suggested to have positive flow-on effects for some lower trophic groups, in which case protection from fishing should result in suppression of lower trophic groups as predator populations recover. We tested this by assessing differences in the trophic structure of reef fish communities associated with 79 MPAs and open-access sites worldwide, using a standardised quantitative dataset on reef fish community structure. The biomass of all major trophic groups (higher carnivores, benthic carnivores, planktivores and herbivores) was significantly greater (by 40% - 200%) in effective no-take MPAs relative to fished open-access areas. This effect was most pronounced for individuals in large size classes, but with no size class of any trophic group showing signs of depressed biomass in MPAs, as predicted from higher predator abundance. Thus, greater biomass in effective MPAs implies that exploitation on shallow rocky and coral reefs negatively affects biomass of all fish trophic groups and size classes. These direct effects of fishing on trophic structure appear stronger than any top down effects on lower trophic levels that would be imposed by intact predator populations. We propose that exploitation affects fish assemblages at all trophic levels, and that local ecosystem function is generally modified by fishing.
PLoS ONE arrow_drop_down University of Portsmouth: Portsmouth Research PortalArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)King's College, London: Research PortalArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)The University of South Pacific: USP Electronic Research RepositoryArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0140270&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 50 citations 50 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 1visibility views 1 download downloads 5 Powered bymore_vert PLoS ONE arrow_drop_down University of Portsmouth: Portsmouth Research PortalArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)King's College, London: Research PortalArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)The University of South Pacific: USP Electronic Research RepositoryArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0140270&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2018 Australia, Australia, United KingdomPublisher:Wiley Funded by:ARC | Linkage Projects - Grant ...ARC| Linkage Projects - Grant ID: LP100200122Stuart J. Campbell; Graham J. Edgar; Rick D. Stuart‐Smith; German Soler; Amanda E. Bates;doi: 10.1111/cobi.12996
pmid: 28776761
AbstractConsiderable empirical evidence supports recovery of reef fish populations with fishery closures. In countries where full exclusion of people from fishing may be perceived as inequitable, fishing‐gear restrictions on nonselective and destructive gears may offer socially relevant management alternatives to build recovery of fish biomass. Even so, few researchers have statistically compared the responses of tropical reef fisheries to alternative management strategies. We tested for the effects of fishery closures and fishing gear restrictions on tropical reef fish biomass at the community and family level. We conducted 1,396 underwater surveys at 617 unique sites across a spatial hierarchy within 22 global marine ecoregions that represented 5 realms. We compared total biomass across local fish assemblages and among 20 families of reef fishes inside marine protected areas (MPAs) with different fishing restrictions: no‐take, hook‐and‐line fishing only, several fishing gears allowed, and sites open to all fishing gears. We included a further category representing remote sites, where fishing pressure is low. As expected, full fishery closures, (i.e., no‐take zones) most benefited community‐ and family‐level fish biomass in comparison with restrictions on fishing gears and openly fished sites. Although biomass responses to fishery closures were highly variable across families, some fishery targets (e.g., Carcharhinidae and Lutjanidae) responded positively to multiple restrictions on fishing gears (i.e., where gears other than hook and line were not permitted). Remoteness also positively affected the response of community‐level fish biomass and many fish families. Our findings provide strong support for the role of fishing restrictions in building recovery of fish biomass and indicate important interactions among fishing‐gear types that affect biomass of a diverse set of reef fish families.
Conservation Biology arrow_drop_down Conservation BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/cobi.12996&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Conservation Biology arrow_drop_down Conservation BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/cobi.12996&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2014 Australia, United Kingdom, Spain, AustraliaPublisher:Springer Science and Business Media LLC Stuart Kininmonth; Stuart Kininmonth; Rodrigo L. Moura; Graham J. Edgar; David Edgardo Galvan; David J. Kushner; German Soler; Neville S. Barrett; Anthony T. F. Bernard; Mikel A. Becerro; Just Berkhout; Stuart Banks; Rick D. Stuart-Smith; Günter Försterra; Antonia T. Cooper; Marlene Davey; Stuart Campbell; Colin D. Buxton; Susan C. Baker; Russell Thomson; Alejo Joaquin Irigoyen; P. Ed Parnell; Nick T. Shears; Elisabeth M. A. Strain; Trevor J. Willis; Sophie C. Edgar;handle: 10261/180360
Les aires marines protégées (AMP) sont une composante importante et croissante de la stratégie de conservation marine, mais leur efficacité est variable et débattue ; maintenant, une étude a rassemblé des données à partir d'un échantillon mondial d'AMP et démontre que l'efficacité dépend de cinq propriétés clés : si une pêche est autorisée, les niveaux d'application, l'âge, la taille et le degré d'isolement. Les aires marines protégées sont une composante importante et croissante de la stratégie de conservation marine, mais leur efficacité est variable et beaucoup débattue. Ces auteurs rassemblent des données provenant d'un échantillon mondial de régions pêchées et de 87 aires marines protégées et démontrent que l'efficacité d'une aire protégée dépend de cinq propriétés clés : la quantité de pêche autorisée, les niveaux d'application, la durée de la protection, la zone et le degré d'isolement. La conservation n'est assurée que lorsque ces cinq cases ont été cochées. Conformément aux objectifs mondiaux convenus dans le cadre de la Convention sur la diversité biologique, le nombre d'aires marines protégées (AMP) augmente rapidement, mais les avantages socio-économiques générés par les AMP restent difficiles à prévoir et font l'objet de débats1,2. Les AMP ne parviennent souvent pas à atteindre leur plein potentiel en raison de facteurs tels que l'exploitation illégale, les réglementations qui autorisent légalement l'exploitation préjudiciable ou l'émigration des animaux en dehors des limites en raison de l'habitat continu ou de la taille inadéquate de la réserve3,4,5. Ici, nous montrons que les avantages de conservation de 87 AMP étudiées dans le monde augmentent de manière exponentielle avec l'accumulation de cinq caractéristiques clés : pas de prise, bien appliquées, vieilles (>10 ans), grandes (>100 km2) et isolées par l'eau profonde ou le sable. En utilisant des AMP efficaces avec quatre ou cinq caractéristiques clés comme norme non exploitée, les comparaisons des données d'enquête sous-marine des AMP efficaces avec les prévisions basées sur les données d'enquête des côtes pêchées indiquent que la biomasse totale de poissons a diminué d'environ deux tiers par rapport aux références historiques en raison de la pêche. Les AMP efficaces comptaient également deux fois plus d'espèces de poissons de grande taille (>250 mm de longueur totale) par transect, cinq fois plus de biomasse de poissons de grande taille et quatorze fois plus de biomasse de requins que les zones de pêche. La plupart (59 %) des AMP étudiées n'avaient qu'une ou deux caractéristiques clés et n'étaient pas écologiquement distinguables des sites de pêche. Nos résultats montrent que les objectifs mondiaux de conservation basés sur la seule superficie n'optimiseront pas la protection de la biodiversité marine. Il faut mettre davantage l'accent sur une meilleure conception des AMP, une gestion durable et la conformité pour s'assurer que les AMP atteignent la valeur de conservation souhaitée. Las áreas marinas protegidas (AMP) son un componente importante y creciente de la estrategia de protección marina, pero su efectividad es variable y debatida; ahora, un estudio ha reunido datos de una muestra global de AMP y demuestra que la efectividad depende de cinco propiedades clave: si se permite la pesca, los niveles de aplicación, la edad, el tamaño y el grado de aislamiento. Las áreas marinas protegidas son un componente importante y creciente de la estrategia de protección marina, pero su efectividad es variable y muy debatida. Estos autores reúnen datos de una muestra global de regiones pesqueras y 87 áreas marinas protegidas y demuestran que la efectividad de un área protegida depende de cinco propiedades clave: cuánta pesca está permitida, niveles de aplicación, cuánto tiempo ha estado vigente la protección, área y grado de aislamiento. La protección está asegurada solo cuando se han marcado las cinco casillas. En línea con los objetivos mundiales acordados en el marco del Convenio sobre la Diversidad Biológica, el número de áreas marinas protegidas (AMP) está aumentando rápidamente, pero los beneficios socioeconómicos generados por las AMP siguen siendo difíciles de predecir y están siendo objeto de debate1,2. Las AMP a menudo no alcanzan su máximo potencial como consecuencia de factores como la recolección ilegal, las regulaciones que permiten legalmente la recolección perjudicial o la emigración de animales fuera de los límites debido a un hábitat continuo o un tamaño inadecuado de la reserva3,4,5. Aquí mostramos que los beneficios conservadores de 87 AMP investigadas en todo el mundo aumentan exponencialmente con la acumulación de cinco características clave: sin captura, bien aplicadas, antiguas (>10 años), grandes (>100 km2) y aisladas por aguas profundas o arena. Utilizando AMP efectivas con cuatro o cinco características clave como estándar no explotado, las comparaciones de los datos de las encuestas subacuáticas de las AMP efectivas con las predicciones basadas en los datos de las encuestas de las costas pescadas indican que la biomasa total de peces ha disminuido aproximadamente dos tercios de las líneas de base históricas como resultado de la pesca. Las AMP efectivas también tenían el doble de especies de peces grandes (>250 mm de longitud total) por transecto, cinco veces más biomasa de peces grandes y catorce veces más biomasa de tiburones que las áreas de pesca. La mayoría (59%) de las AMP estudiadas tenían solo una o dos características clave y no eran ecológicamente distinguibles de los sitios de pesca. Nuestros resultados muestran que los objetivos de protección global basados en el área por sí solos no optimizarán la protección de la biodiversidad marina. Se necesita más énfasis en un mejor diseño de las AMP, una gestión duradera y el cumplimiento para garantizar que las AMP alcancen el valor de conservación deseado. Marine protected areas (MPAs) are an important and increasing component of marine conservation strategy, but their effectiveness is variable and debated; now a study has assembled data from a global sample of MPAs and demonstrates that effectiveness depends on five key properties: whether any fishing is allowed, enforcement levels, age, size and degree of isolation. Marine protected areas are an important and increasing component of marine conservation strategy, but their effectiveness is variable and much debated. These authors assemble data from a global sample of fished regions and 87 marine protected areas and demonstrate that the effectiveness of a protected area depends on five key properties: how much fishing is allowed, enforcement levels, how long protection has been in place, area and degree of isolation. Conservation is assured only when all five of these boxes have been ticked. In line with global targets agreed under the Convention on Biological Diversity, the number of marine protected areas (MPAs) is increasing rapidly, yet socio-economic benefits generated by MPAs remain difficult to predict and under debate1,2. MPAs often fail to reach their full potential as a consequence of factors such as illegal harvesting, regulations that legally allow detrimental harvesting, or emigration of animals outside boundaries because of continuous habitat or inadequate size of reserve3,4,5. Here we show that the conservation benefits of 87 MPAs investigated worldwide increase exponentially with the accumulation of five key features: no take, well enforced, old (>10 years), large (>100 km2), and isolated by deep water or sand. Using effective MPAs with four or five key features as an unfished standard, comparisons of underwater survey data from effective MPAs with predictions based on survey data from fished coasts indicate that total fish biomass has declined about two-thirds from historical baselines as a result of fishing. Effective MPAs also had twice as many large (>250 mm total length) fish species per transect, five times more large fish biomass, and fourteen times more shark biomass than fished areas. Most (59%) of the MPAs studied had only one or two key features and were not ecologically distinguishable from fished sites. Our results show that global conservation targets based on area alone will not optimize protection of marine biodiversity. More emphasis is needed on better MPA design, durable management and compliance to ensure that MPAs achieve their desired conservation value. تعد المناطق البحرية المحمية (MPAs) مكونًا مهمًا ومتزايدًا في استراتيجية الحفظ البحري، لكن فعاليتها متغيرة ومتناقضة ؛ الآن جمعت دراسة بيانات من عينة عالمية من المناطق البحرية المحمية وتوضح أن الفعالية تعتمد على خمس خصائص رئيسية: ما إذا كان يُسمح بالصيد، ومستويات الإنفاذ، والعمر، والحجم، ودرجة العزلة. تعد المناطق البحرية المحمية مكونًا مهمًا ومتزايدًا في استراتيجية الحفاظ على البيئة البحرية، ولكن فعاليتها متغيرة ومثيرة للجدل. يقوم هؤلاء المؤلفون بتجميع البيانات من عينة عالمية من المناطق المصيدة و 87 منطقة محمية بحرية ويثبتون أن فعالية المنطقة المحمية تعتمد على خمس خصائص رئيسية: مقدار الصيد المسموح به، ومستويات الإنفاذ، وطول مدة الحماية، والمنطقة، ودرجة العزلة. لا يتم ضمان الحفظ إلا عند وضع علامة على جميع هذه الصناديق الخمسة. تماشياً مع الأهداف العالمية المتفق عليها بموجب اتفاقية التنوع البيولوجي، يتزايد عدد المناطق البحرية المحمية (MPAs) بسرعة، ومع ذلك لا تزال الفوائد الاجتماعية والاقتصادية الناتجة عن المناطق البحرية المحمية يصعب التنبؤ بها وتخضع للمناقشة1,2. غالبًا ما تفشل المناطق البحرية المحمية في الوصول إلى إمكاناتها الكاملة نتيجة لعوامل مثل الحصاد غير القانوني، أو اللوائح التي تسمح قانونًا بالحصاد الضار، أو هجرة الحيوانات خارج الحدود بسبب الموائل المستمرة أو عدم كفاية حجم المحمية3، 4، 5. نوضح هنا أن فوائد الحفظ لـ 87 منطقة محمية بحرية تم التحقيق فيها في جميع أنحاء العالم تزداد بشكل كبير مع تراكم خمس ميزات رئيسية: لا تأخذ، تطبق بشكل جيد، قديمة (>10 سنوات)، كبيرة (>100 كيلومتر مربع)، ومعزولة بالمياه العميقة أو الرمال. باستخدام المناطق البحرية المحمية الفعالة مع أربع أو خمس سمات رئيسية كمعيار غير مكتمل، تشير مقارنات بيانات المسح تحت الماء من المناطق البحرية المحمية الفعالة مع التنبؤات المستندة إلى بيانات المسح من السواحل المصيدة إلى أن إجمالي الكتلة الحيوية للأسماك قد انخفض بنحو الثلثين عن خطوط الأساس التاريخية نتيجة لصيد الأسماك. تحتوي المناطق البحرية المحمية الفعالة أيضًا على ضعف عدد أنواع الأسماك الكبيرة (>250 مم إجمالي الطول) لكل مقطع، وخمسة أضعاف الكتلة الحيوية للأسماك الكبيرة، وأربعة عشر ضعف الكتلة الحيوية لأسماك القرش مقارنة بالمناطق التي يتم صيدها. كان لمعظم المناطق البحرية المحمية التي تمت دراستها (59 ٪) سمة رئيسية واحدة أو اثنتين فقط ولم يكن من الممكن تمييزها بيئيًا عن المواقع التي يتم صيد الأسماك فيها. تظهر نتائجنا أن أهداف الحفظ العالمية القائمة على المساحة وحدها لن تحسن حماية التنوع البيولوجي البحري. هناك حاجة إلى مزيد من التركيز على تصميم أفضل للمناطق المحمية البحرية والإدارة الدائمة والامتثال لضمان تحقيق المناطق المحمية البحرية لقيمة الحفظ المطلوبة.
Nature arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2014 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of Portsmouth: Portsmouth Research PortalArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2005Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature13022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 1K citations 1,407 popularity Top 0.01% influence Top 0.1% impulse Top 0.01% Powered by BIP!
visibility 19visibility views 19 download downloads 26 Powered bymore_vert Nature arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2014 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of Portsmouth: Portsmouth Research PortalArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2005Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature13022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 United Kingdom, FijiPublisher:Public Library of Science (PLoS) Soler, German A.; Edgar, Graham J.; Thomson, Russell J.; Kininmonth, Stuart; Campbell, Stuart J.; Dawson, Terence P.; Barrett, Neville S.; Bernard, Anthony T.F.; Galván, David E.; Willis, Trevor J.; Alexander, Timothy J.; Stuart-Smith, Rick D.;pmid: 26461104
pmc: PMC4603671
Marine Protected Areas (MPAs) offer a unique opportunity to test the assumption that fishing pressure affects some trophic groups more than others. Removal of larger predators through fishing is often suggested to have positive flow-on effects for some lower trophic groups, in which case protection from fishing should result in suppression of lower trophic groups as predator populations recover. We tested this by assessing differences in the trophic structure of reef fish communities associated with 79 MPAs and open-access sites worldwide, using a standardised quantitative dataset on reef fish community structure. The biomass of all major trophic groups (higher carnivores, benthic carnivores, planktivores and herbivores) was significantly greater (by 40% - 200%) in effective no-take MPAs relative to fished open-access areas. This effect was most pronounced for individuals in large size classes, but with no size class of any trophic group showing signs of depressed biomass in MPAs, as predicted from higher predator abundance. Thus, greater biomass in effective MPAs implies that exploitation on shallow rocky and coral reefs negatively affects biomass of all fish trophic groups and size classes. These direct effects of fishing on trophic structure appear stronger than any top down effects on lower trophic levels that would be imposed by intact predator populations. We propose that exploitation affects fish assemblages at all trophic levels, and that local ecosystem function is generally modified by fishing.
PLoS ONE arrow_drop_down University of Portsmouth: Portsmouth Research PortalArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)King's College, London: Research PortalArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)The University of South Pacific: USP Electronic Research RepositoryArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0140270&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 50 citations 50 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 1visibility views 1 download downloads 5 Powered bymore_vert PLoS ONE arrow_drop_down University of Portsmouth: Portsmouth Research PortalArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)King's College, London: Research PortalArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)The University of South Pacific: USP Electronic Research RepositoryArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0140270&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu