- home
- Advanced Search
- Energy Research
- Energy Research
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Wiley Authors:David M. Bell;
David M. Bell
David M. Bell in OpenAIREJohn B. Bradford;
William K. Lauenroth;John B. Bradford
John B. Bradford in OpenAIREdoi: 10.1111/gcb.12504
pmid: 24353188
AbstractClimate change is anticipated to alter plant species distributions. Regional context, notably the spatial complexity of climatic gradients, may influence species migration potential. While high‐elevation species may benefit from steep climate gradients in mountain regions, their persistence may be threatened by limited suitable habitat as land area decreases with elevation. To untangle these apparently contradictory predictions for mountainous regions, we evaluated the climatic suitability of four coniferous forest tree species of the western United States based on species distribution modeling (SDM) and examined changes in climatically suitable areas under predicted climate change. We used forest structural information relating to tree species dominance, productivity, and demography from an extensive forest inventory system to assess the strength of inferences made with a SDM approach. We found that tree species dominance, productivity, and recruitment were highest where climatic suitability (i.e., probability of species occurrence under certain climate conditions) was high, supporting the use of predicted climatic suitability in examining species risk to climate change. By predicting changes in climatic suitability over the next century, we found that climatic suitability will likely decline, both in areas currently occupied by each tree species and in nearby unoccupied areas to which species might migrate in the future. These trends were most dramatic for high elevation species. Climatic changes predicted over the next century will dramatically reduce climatically suitable areas for high‐elevation tree species while a lower elevation species, Pinus ponderosa, will be well positioned to shift upslope across the region. Reductions in suitable area for high‐elevation species imply that even unlimited migration would be insufficient to offset predicted habitat loss, underscoring the vulnerability of these high‐elevation species to climatic changes.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12504&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu74 citations 74 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12504&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Wiley Authors:Robert K. Shriver;
Robert K. Shriver
Robert K. Shriver in OpenAIRECaitlin M. Andrews;
Caitlin M. Andrews
Caitlin M. Andrews in OpenAIREDavid S. Pilliod;
Robert S. Arkle; +5 AuthorsDavid S. Pilliod
David S. Pilliod in OpenAIRERobert K. Shriver;
Robert K. Shriver
Robert K. Shriver in OpenAIRECaitlin M. Andrews;
Caitlin M. Andrews
Caitlin M. Andrews in OpenAIREDavid S. Pilliod;
Robert S. Arkle;David S. Pilliod
David S. Pilliod in OpenAIREJustin L. Welty;
Justin L. Welty
Justin L. Welty in OpenAIREMatthew J. Germino;
Matthew J. Germino
Matthew J. Germino in OpenAIREMichael C. Duniway;
Michael C. Duniway
Michael C. Duniway in OpenAIREDavid A. Pyke;
David A. Pyke
David A. Pyke in OpenAIREJohn B. Bradford;
John B. Bradford
John B. Bradford in OpenAIREdoi: 10.1111/gcb.14374
pmid: 29964360
AbstractRestoration and rehabilitation of native vegetation in dryland ecosystems, which encompass over 40% of terrestrial ecosystems, is a common challenge that continues to grow as wildfire and biological invasions transform dryland plant communities. The difficulty in part stems from low and variable precipitation, combined with limited understanding about how weather conditions influence restoration outcomes, and increasing recognition that one‐time seeding approaches can fail if they do not occur during appropriate plant establishment conditions. The sagebrush biome, which once covered over 620,000 km2 of western North America, is a prime example of a pressing dryland restoration challenge for which restoration success has been variable. We analyzed field data on Artemisia tridentata (big sagebrush) restoration collected at 771 plots in 177 wildfire sites across its western range, and used process‐based ecohydrological modeling to identify factors leading to its establishment. Our results indicate big sagebrush occurrence is most strongly associated with relatively cool temperatures and wet soils in the first spring after seeding. In particular, the amount of winter snowpack, but not total precipitation, helped explain the availability of spring soil moisture and restoration success. We also find considerable interannual variability in the probability of sagebrush establishment. Adaptive management strategies that target seeding during cool, wet years or mitigate effects of variability through repeated seeding may improve the likelihood of successful restoration in dryland ecosystems. Given consistent projections of increasing temperatures, declining snowpack, and increasing weather variability throughout midlatitude drylands, weather‐centric adaptive management approaches to restoration will be increasingly important for dryland restoration success.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14374&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 91 citations 91 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14374&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 United StatesPublisher:Wiley Authors: Gremer, Jennifer R;Bradford, John B;
Munson, Seth M;Bradford, John B
Bradford, John B in OpenAIREDuniway, Michael C;
Duniway, Michael C
Duniway, Michael C in OpenAIREdoi: 10.1111/gcb.13043
pmid: 26183431
AbstractClimate change predictions include warming and drying trends, which are expected to be particularly pronounced in the southwestern United States. In this region, grassland dynamics are tightly linked to available moisture, yet it has proven difficult to resolve what aspects of climate drive vegetation change. In part, this is because it is unclear how heterogeneity in soils affects plant responses to climate. Here, we combine climate and soil properties with a mechanistic soil water model to explain temporal fluctuations in perennial grass cover, quantify where and the degree to which incorporating soil water dynamics enhances our ability to understand temporal patterns, and explore the potential consequences of climate change by assessing future trajectories of important climate and soil water variables. Our analyses focused on long‐term (20–56 years) perennial grass dynamics across the Colorado Plateau, Sonoran, and Chihuahuan Desert regions. Our results suggest that climate variability has negative effects on grass cover, and that precipitation subsidies that extend growing seasons are beneficial. Soil water metrics, including the number of dry days and availability of water from deeper (>30 cm) soil layers, explained additional grass cover variability. While individual climate variables were ranked as more important in explaining grass cover, collectively soil water accounted for 40–60% of the total explained variance. Soil water conditions were more useful for understanding the responses of C3 than C4 grass species. Projections of water balance variables under climate change indicate that conditions that currently support perennial grasses will be less common in the future, and these altered conditions will be more pronounced in the Chihuahuan Desert and Colorado Plateau. We conclude that incorporating multiple aspects of climate and accounting for soil variability can improve our ability to understand patterns, identify areas of vulnerability, and predict the future of desert grasslands.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2015Full-Text: https://escholarship.org/uc/item/8n66p641Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of CaliforniaGlobal Change BiologyArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 95 citations 95 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2015Full-Text: https://escholarship.org/uc/item/8n66p641Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of CaliforniaGlobal Change BiologyArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Wiley Authors:Michael C. Duniway;
Christopher Benson;Michael C. Duniway
Michael C. Duniway in OpenAIRETravis W. Nauman;
Travis W. Nauman
Travis W. Nauman in OpenAIREAnna Knight;
+8 AuthorsAnna Knight
Anna Knight in OpenAIREMichael C. Duniway;
Christopher Benson;Michael C. Duniway
Michael C. Duniway in OpenAIRETravis W. Nauman;
Travis W. Nauman
Travis W. Nauman in OpenAIREAnna Knight;
Anna Knight
Anna Knight in OpenAIREJohn B. Bradford;
John B. Bradford
John B. Bradford in OpenAIRESeth M. Munson;
Seth M. Munson
Seth M. Munson in OpenAIREDana Witwicki;
Dana Witwicki
Dana Witwicki in OpenAIRECarolyn Livensperger;
Carolyn Livensperger
Carolyn Livensperger in OpenAIREMatthew Van Scoyoc;
Terry T. Fisk; David Thoma;Matthew Van Scoyoc
Matthew Van Scoyoc in OpenAIREMark E. Miller;
Mark E. Miller
Mark E. Miller in OpenAIREdoi: 10.1002/ecs2.4273
AbstractDrylands represent more than 41% of the global land surface and are at degradation risk due to land use and climate change. Developing strategies to mitigate degradation and restore drylands in the face of these threats requires an understanding of how drylands are shaped by not only soils and climate, but also geology and geomorphology. However, few studies have completed such a comprehensive analysis that relates spatial variation in plant communities to all aspects of the geologic–geomorphic–edaphic–plant–climate system. The focus of this study is the Colorado Plateau, a high‐elevation dryland in the southwestern United States, which is particularly sensitive to future change due to climate vulnerability and increasing land‐use pressure. Here, we examined 135 long‐term vegetation‐monitoring sites in three national parks and characterized connections between geology, geomorphology, soils, climate, and dryland plant communities. To first understand the geologic and geomorphic influences on soil formation and characteristics, we explore associations between soil pedons, bedrock geology, and geomorphology. Then, we characterize principal axes of variation in plant communities and ascertain controls and linkages between components of the edaphic–geomorphic system and plant community ordinations. Geologic and geomorphic substrate exerted controls on important properties of the soil profile, particularly depth, water‐holding capacity, rockiness, salinity, and fine sands. Ordination identified five distinct plant communities and three primary axes of variation, representing gradients of woody‐ to herbaceous‐dominated communities (Axis 1), saline scrublands to C3grasslands (Axis 2), and annual to perennial communities (Axis 3). Geology, geomorphology, and soil explained a large proportion of variation in Axis 1 (74%), while climate variables largely explained Axis 2 (68%), and Axis 3 was not well explained by the random forest models. The variables identified as most influential to each axis were, respectively: (1) soil depth; (2) aridity, lithology, and soil salinity; and (3) temperature and precipitation. We posit that Axis 3 represents a land degradation gradient due to historic grazing, likely exacerbated by dry conditions. Results provide a novel framework that links the geologic and geomorphic evolution of landscapes, with the distribution of soils and plant communities that can guide ecosystem management, exemplifying an approach applicable to drylands globally.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecs2.4273&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecs2.4273&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Wiley Authors:Adam R. Noel;
Adam R. Noel
Adam R. Noel in OpenAIRERobert K. Shriver;
Robert K. Shriver
Robert K. Shriver in OpenAIREShelley D. Crausbay;
Shelley D. Crausbay
Shelley D. Crausbay in OpenAIREJohn B. Bradford;
John B. Bradford
John B. Bradford in OpenAIREdoi: 10.1111/gcb.16756
pmid: 37246831
AbstractPinyon–juniper (PJ) woodlands are an important component of dryland ecosystems across the US West and are potentially susceptible to ecological transformation. However, predicting woodland futures is complicated by species‐specific strategies for persisting and reproducing under drought conditions, uncertainty in future climate, and limitations to inferring demographic rates from forest inventory data. Here, we leverage new demographic models to quantify how climate change is expected to alter population demographics in five PJ tree species in the US West and place our results in the context of a climate adaptation framework to resist, accept, or direct ecological transformation. Two of five study species, Pinus edulis and Juniperus monosperma, are projected to experience population declines, driven by both rising mortality and decreasing recruitment rates. These declines are reasonably consistent across various climate futures, and the magnitude of uncertainty in population growth due to future climate is less than uncertainty due to how demographic rates will respond to changing climate. We assess the effectiveness of management to reduce tree density and mitigate competition, and use the results to classify southwest woodlands into areas where transformation is (a) unlikely and can be passively resisted, (b) likely but may be resisted by active management, and (c) likely unavoidable, requiring managers to accept or direct the trajectory. Population declines are projected to promote ecological transformation in the warmer and drier PJ communities of the southwest, encompassing 37.1%–81.1% of our sites, depending on future climate scenarios. Less than 20% of sites expected to transform away from PJ have potential to retain existing tree composition by density reduction. Our results inform where this adaptation strategy could successfully resist ecological transformation in coming decades and allow for a portfolio design approach across the geographic range of PJ woodlands.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16756&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16756&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Wiley Authors:William K. Lauenroth;
William K. Lauenroth;William K. Lauenroth
William K. Lauenroth in OpenAIREDaniel R. Schlaepfer;
Daniel R. Schlaepfer; +3 AuthorsDaniel R. Schlaepfer
Daniel R. Schlaepfer in OpenAIREWilliam K. Lauenroth;
William K. Lauenroth;William K. Lauenroth
William K. Lauenroth in OpenAIREDaniel R. Schlaepfer;
Daniel R. Schlaepfer; Daniel R. Schlaepfer;Daniel R. Schlaepfer
Daniel R. Schlaepfer in OpenAIRERobert K. Shriver;
Robert K. Shriver
Robert K. Shriver in OpenAIREJohn B. Bradford;
John B. Bradford
John B. Bradford in OpenAIREdoi: 10.1002/ecs2.3695
AbstractRegeneration is an essential demographic step that affects plant population persistence, recovery after disturbances, and potential migration to track suitable climate conditions. Challenges of restoring big sagebrush (Artemisia tridentata) after disturbances including fire‐invasive annual grass interactions exemplify the need to understand the complex regeneration processes of this long‐lived, woody species that is widespread across the semiarid western U.S. Projected 21st century climate change is expected to increase drought risks and intensify restoration challenges. A detailed understanding of regeneration will be crucial for developing management frameworks for the big sagebrush region in the 21st century. Here, we used two complementary models to explore spatial and temporal relationships in the potential of big sagebrush regeneration representing (1) range‐wide big sagebrush regeneration responses in natural vegetation (process‐based model) and (2) big sagebrush restoration seeding outcomes following fire in the Great Basin and the Snake River Plains (regression‐based model). The process‐based model suggested substantial geographic variation in long‐term regeneration trajectories with central and northern areas of the big sagebrush region remaining climatically suitable, whereas marginal and southern areas are becoming less suitable. The regression‐based model suggested, however, that restoration seeding may become increasingly more difficult, illustrating the particularly difficult challenge of promoting sagebrush establishment after wildfire in invaded landscapes. These results suggest that sustaining big sagebrush on the landscape throughout the 21st century may climatically be feasible for many areas and that uncertainty about the long‐term sustainability of big sagebrush may be driven more by dynamics of biological invasions and wildfire than by uncertainty in climate change projections. Divergent projections of the two models under 21st century climate conditions encourage further study to evaluate potential benefits of re‐creating conditions of uninvaded, unburned natural big sagebrush vegetation for post‐fire restoration seeding, such as seeding in multiple years and, for at least much of the northern Great Basin and Snake River Plains, the control of the fire‐invasive annual grass cycle.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecs2.3695&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecs2.3695&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 AustraliaPublisher:Wiley Authors:Daniel R. Schlaepfer;
Daniel R. Schlaepfer
Daniel R. Schlaepfer in OpenAIREWilliam K. Lauenroth;
William K. Lauenroth;William K. Lauenroth
William K. Lauenroth in OpenAIREKyle A. Palmquist;
+2 AuthorsKyle A. Palmquist
Kyle A. Palmquist in OpenAIREDaniel R. Schlaepfer;
Daniel R. Schlaepfer
Daniel R. Schlaepfer in OpenAIREWilliam K. Lauenroth;
William K. Lauenroth;William K. Lauenroth
William K. Lauenroth in OpenAIREKyle A. Palmquist;
Kyle A. Palmquist
Kyle A. Palmquist in OpenAIRETrace E. Martyn;
Trace E. Martyn
Trace E. Martyn in OpenAIREJohn B. Bradford;
John B. Bradford
John B. Bradford in OpenAIREdoi: 10.1002/ecs2.2394
AbstractThe combination of climate change and altered disturbance regimes is directly and indirectly affecting plant communities by mediating competitive interactions, resulting in shifts in species composition and abundance. Dryland plant communities, defined by low soil water availability and highly variable climatic regimes, are particularly vulnerable to climatic changes that exceed their historical range of variability. Individual‐based simulation models can be important tools to quantify the impacts of climate change, altered disturbance regimes, and their interaction on demographic and community‐level responses because they represent competitive interactions between individuals and individual responses to fluctuating environmental conditions. Here, we introduce STEPWAT2, an individual plant‐based simulation model for exploring the joint influence of climate change and disturbance regimes on dryland ecohydrology and plant community composition. STEPWAT2 utilizes a process‐based soil water model (SOILWAT2) to simulate available soil water in multiple soil layers, which plant individuals compete for based on the temporal matching of water and active root distributions with depth. This representation of resource utilization makes STEPWAT2 particularly useful for understanding how changes in soil moisture and altered disturbance regimes will concurrently impact demographic and community‐level responses in drylands. Our goals are threefold: (1) to describe the core modules and functions within STEPWAT2 (model description), (2) to validate STEPWAT2 model output using field data from big sagebrush plant communities (model validation), and (3) to highlight the usefulness of STEPWAT2 as a modeling framework for examining the impacts of climate change and disturbance regimes on dryland plant communities under future conditions (model application). To address goals 2 and 3, we focus on 15 sites that span the spatial extent of big sagebrush plant communities in the western United States. For goal 3, we quantify how climate change, fire, and grazing can interact to influence plant functional type biomass and composition. We use big sagebrush‐dominated plant communities to demonstrate the functionality of STEPWAT2, as these communities are among the most widespread dryland ecosystems in North America.
Ecosphere arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecs2.2394&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Ecosphere arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecs2.2394&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Wiley Authors:Jane R. Foster;
Jane R. Foster
Jane R. Foster in OpenAIREAndrew O. Finley;
Andrew O. Finley
Andrew O. Finley in OpenAIREMalcolm S. Itter;
Anthony W. D'Amato; +1 AuthorsMalcolm S. Itter
Malcolm S. Itter in OpenAIREJane R. Foster;
Jane R. Foster
Jane R. Foster in OpenAIREAndrew O. Finley;
Andrew O. Finley
Andrew O. Finley in OpenAIREMalcolm S. Itter;
Anthony W. D'Amato;Malcolm S. Itter
Malcolm S. Itter in OpenAIREJohn B. Bradford;
John B. Bradford
John B. Bradford in OpenAIREdoi: 10.1002/eap.1518
pmid: 28182303
AbstractChanges in the frequency, duration, and severity of climate extremes are forecast to occur under global climate change. The impacts of climate extremes on forest productivity and health remain difficult to predict due to potential interactions with disturbance events and forest dynamics—changes in forest stand composition, density, size and age structure over time. Such interactions may lead to non‐linear forest growth responses to climate involving thresholds and lag effects. Understanding how forest dynamics influence growth responses to climate is particularly important given stand structure and composition can be modified through management to increase forest resistance and resilience to climate change. To inform such adaptive management, we develop a hierarchical Bayesian state space model in which climate effects on tree growth are allowed to vary over time and in relation to past climate extremes, disturbance events, and forest dynamics. The model is an important step toward integrating disturbance and forest dynamics into predictions of forest growth responses to climate extremes. We apply the model to a dendrochronology data set from forest stands of varying composition, structure, and development stage in northeastern Minnesota that have experienced extreme climate years and forest tent caterpillar defoliation events. Mean forest growth was most sensitive to water balance variables representing climatic water deficit. Forest growth responses to water deficit were partitioned into responses driven by climatic threshold exceedances and interactions with insect defoliation. Forest growth was both resistant and resilient to climate extremes with the majority of forest growth responses occurring after multiple climatic threshold exceedances across seasons and years. Interactions between climate and disturbance were observed in a subset of years with insect defoliation increasing forest growth sensitivity to water availability. Forest growth was particularly sensitive to climate extremes during periods of high stem density following major regeneration events when average inter‐tree competition was high. Results suggest the resistance and resilience of forest growth to climate extremes can be increased through management steps such as thinning to reduce competition during early stages of stand development and small‐group selection harvests to maintain forest structures characteristic of older, mature stands.
Ecological Applicati... arrow_drop_down Ecological ApplicationsArticleLicense: publisher-specific, author manuscriptData sources: UnpayWallEcological ApplicationsArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/eap.1518&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Ecological Applicati... arrow_drop_down Ecological ApplicationsArticleLicense: publisher-specific, author manuscriptData sources: UnpayWallEcological ApplicationsArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/eap.1518&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Proceedings of the National Academy of Sciences Authors:Peter B. Reich;
Peter B. Reich;Peter B. Reich
Peter B. Reich in OpenAIREHendrik Poorter;
Hendrik Poorter
Hendrik Poorter in OpenAIREJacek Oleksyn;
+3 AuthorsJacek Oleksyn
Jacek Oleksyn in OpenAIREPeter B. Reich;
Peter B. Reich;Peter B. Reich
Peter B. Reich in OpenAIREHendrik Poorter;
Hendrik Poorter
Hendrik Poorter in OpenAIREJacek Oleksyn;
Jacek Oleksyn
Jacek Oleksyn in OpenAIREJohn B. Bradford;
John B. Bradford
John B. Bradford in OpenAIRECharles H. Perry;
Charles H. Perry
Charles H. Perry in OpenAIREYunjian Luo;
Yunjian Luo
Yunjian Luo in OpenAIRESignificance Do forests in cold or dry climate zones distribute more resources in roots to enhance uptake of water and nutrients, which are scarce in such climates? Despite its importance to forest ecology and global carbon cycle modeling, this question is unanswered at present. To answer this question, we compiled and analyzed a large dataset (>6,200 forests, 61 countries) and determined that the proportion of total forest biomass in roots is greater and in foliage is smaller in increasingly cold climates. Surprisingly, allocation to roots or foliage was unrelated to aridity. These findings allow, for the first time to our knowledge, biogeographically explicit mapping of global root carbon pools, which will be useful for assessing climate change impacts on forest carbon dynamics and sequestration.
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2014 . Peer-reviewedData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1216053111&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 286 citations 286 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2014 . Peer-reviewedData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1216053111&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Embargo end date: 01 Jan 2024 United StatesPublisher:U.S. Geological Survey doi: 10.5066/p13bzmat
These data were compiled to provide gridded estimates of environmental suitability for pinyon-juniper species in western North America. These gridded suitability projections provide estimates of suitability under current climate conditions and future climate conditions and allow for visualization of suitability change across each species’ entire range. These data consist of gridded projected suitability values for three pinyon and six juniper tree species across western North America. Objective(s) of our study were to estimate suitability for these tree species under current and future climate conditions to compare potential for distribution shifts under climate change. These data represent a relationship between tree occurrences on the landscape and the climatic and soil conditions in which they occur. These data were created from species distribution models that used occurrence data publicly available online. These underlying occurrence data used to fit our models was gathered from USFS Forest Inventory and Analysis program, BLM's Assessment, Inventory and Monitoring program, the Global Biodiversity Information Facility and SEINet, a shared collection of western herbarium data records. Occurrence data were combined with environmental predictor data to fit species distribution models that then estimate landscape suitability under current and future climate conditions. These data can be used to assess how tree species' suitability may change under future climate conditions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5066/p13bzmat&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5066/p13bzmat&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu