- home
- Advanced Search
- Energy Research
- Energy Research
- Energy Research
- Energy Research
Research data keyboard_double_arrow_right Dataset 2021Publisher:PANGAEA Frey, Claudia; Sun, Xin; Szemberski, Laura; Casciotti, Karen L; Garcia-Robledo, Emilio; Jayakumar, Amal; Kelly, Colette; Lehmann, Moritz F; Ward, Bess B;In March/April 2018 during a cruise on R/V Sally Ride, SR1805, 15N-NH4+ incubations in 60mL glass serum bottles were performed to measure ammonium oxidation rates to nitrite and nitrous oxide in different depth at 3 different stations in the oxygen deficient zone (ODZ) of the Eastern Tropical North Pacific off the coast of Mexico. Water samples were collected from 30L Niskin bottles deployed with a conductivity-temperature-depth profiler (CTD, Seabird Electronics). The goal was to get a better understanding on the controls of nitrous oxide (N2O) production. The N2O production rate experiments were performed according to Bourbonnais et al. 2021 (https://doi.org/10.3389/fmars.2021.611937). Furthermore, ammonium (NH4+), nitrite (NO2-) and nitrate (NO3-) as well as N2O concentrations were determined using standard fluorometric (Holmes et al. 1999, https://doi.org/10.1139/f99-128), photometric (Strickland and Parsons 1972, hdl:10013/epic.46454.d001), chemiluminescent (Braman and Hendrix 1989, doi:10.1021/ac00199a007) and mass spectrometric techniques (McIlvin and Casciotti 2010, https://doi.org/10.4319/lom.2010.8.54), respectively. The N2O yield per nitrite produced was calculated. The archaeal ammonia monooxygenase gene subunit A (amoA) copy numbers/mL were determined using qPCR as described previously (Peng et al. 2015, https://doi.org/10.1002/2015GB005278). The data table contains the depth profiles of salinity, temperature (°C), oxygen concentration (µmol/L), ammonium (µmol/L), nitrate (µmol/L), nitrite (µmol/L) and nitrous oxide concentration (nmol/L) for three stations in the oxygen deficient zones (ODZ) in the Eastern Tropical North Pacific. It also contains the rate measurements of N2O production rate (nmol N2O/L*d) with standard error, ammonium oxidation rate (nmol N2O/L*d) to nitrite with standard error as well as N2O yield (%) with standard deviation. The % hybrid N2O production refers to the production of 45N2O, which requires incorporation of a 14N substrate other than NH4+. It is expressed in percent with respect to the total N2O produced from 15NH4+. Furthermore, the archaeal amoA copy numbers / mL and the standard deviation are given for the different depths.
PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2021License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.939724&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2021License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.939724&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United States, SwitzerlandPublisher:Frontiers Media SA Funded by:NSF | Nitrous oxide cycling in ...NSF| Nitrous oxide cycling in the Western Arctic Ocean from stable isotopic and concentration dataAmal Jayakumar; Xin Sun; Xin Sun; Bess B. Ward; Laura A. Bristow; Claudia Frey; Nathaniel E. Ostrom; Annie Bourbonnais; Karen L. Casciotti;Nitrous oxide (N2O) is a potent greenhouse gas and an ozone destroying substance. Yet, clear step-by-step protocols to measure N2O transformation rates in freshwater and marine environments are still lacking, challenging inter-comparability efforts. Here we present detailed protocols currently used by leading experts in the field to measure water-column N2O production and consumption rates in both marine and other aquatic environments. We present example 15N-tracer incubation experiments in marine environments as well as templates to calculate both N2O production and consumption rates. We discuss important considerations and recommendations regarding (1) precautions to prevent oxygen (O2) contamination during low-oxygen and anoxic incubations, (2) preferred bottles and stoppers, (3) procedures for 15N-tracer addition, and (4) the choice of a fixative. We finally discuss data reporting and archiving. We expect these protocols will make 15N-labeled N2O transformation rate measurements more accessible to the wider community and facilitate future inter-comparison between different laboratories.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2021.611937&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2021.611937&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 SwitzerlandPublisher:Wiley Nicola Wannicke; Nicola Wannicke; Maren Voss; Claudia Frey; Claudia Frey; Cliff S. Law; Cliff S. Law;doi: 10.1111/gcb.14424
pmid: 30120863
AbstractOcean acidification (OA), arising from the influx of anthropogenically generated carbon, poses a massive threat to the ocean ecosystems. Our knowledge of the effects of elevated anthropogenic CO2 in marine waters and its effect on the performance of single species, trophic interactions, and ecosystems is increasing rapidly. However, our understanding of the biogeochemical cycling of nutrients such as nitrogen is less advanced and lacks a comprehensive overview of how these processes may change under OA. We conducted a systematic review and meta‐analysis of eight major nitrogen transformation processes incorporating 49 publications to synthesize current scientific understanding of the effect of OA on nitrogen cycling in the future ocean by 2100. The following points were identified by our meta‐analysis: (a) Diazotrophic nitrogen fixation is likely enhanced by 29% ± 4% under OA; (b) species‐ and strain‐specific responses of nitrogen fixers to OA were detectable, which may result in alterations in microbial community composition in the future ocean; (c) nitrification processes were reduced by a factor of 29% ± 10%; (d) declines in nitrification rates were not reflected by nitrifier abundance; and (e) contrasting results in unispecific culture experiments versus natural communities were apparent for nitrogen fixation and denitrification. The net effect of the nitrogen cycle process responses also suggests there may be a shift in the relative nitrogen pools, with excess ammonium originating from CO2‐fertilized diazotrophs. This regenerated inorganic nitrogen may recycle in the upper water column increasing the relative importance of the ammonium‐fueled regenerated production. However, several feedback mechanisms with other chemical cycles, such as oxygen, and interaction with other climate change stressors may counteract these findings. Finally, our review highlights the shortcomings and gaps in current understanding of the potential changes in nitrogen cycling under future climate and emphasizes the need for further ecosystem studies.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14424&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 48 citations 48 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14424&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Morocco, Switzerland, SpainPublisher:Wiley Claudia Frey; Xin Sun; Laura Szemberski; Karen L. Casciotti; Emilio Garcia‐Robledo; Amal Jayakumar; Colette L. Kelly; Moritz F. Lehmann; Bess B. Ward;doi: 10.1002/lno.12283
AbstractMarine oxygen‐deficient zones represent a natural source of nitrous oxide (N2O), a potent greenhouse gas and ozone‐depleting agent. To investigate controls on N2O production, the responses of ammonia oxidation (AO) to nitrite () and N2O with respect to oxygen (O2), ammonium () and concentrations were evaluated using tracer incubations in the Eastern Tropical North Pacific. Within the oxycline, additions of and O2stimulated N2O production according to Michaelis–Menten kinetics, indicating that both substrates were limiting, and that N2O production, even if the exact mechanisms remain uncertain, is mediated by predictable kinetics. Low half‐saturation constants for (12–28 nM) and O2(460 ± 130 nM) during N2O production indicate that AO communities are well adapted to low concentrations of both substrates. Hybrid N2O formation (i.e., from one and one unlabeled nitrogen (N) source, e.g., , NO) accounted for ~ 90% of the N2O production from and was robust across the different O2, , and conditions. Lack of response to variable substrate concentrations implies that the unlabeled N source was not limiting for N2O production. Although both O2and were key modulators of N2O production rates, N2O yield (N2O produced per produced) seemed to be controlled solely by O2. The N2O yield increased when O2concentrations dropped below the half‐saturation concentration for AO to (< 1.4 μM), the range where production decreased faster than N2O production. Our study shows that O2control on N2O yield from AO is robust across stations and depths.
Limnology and Oceano... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio de Objetos de Docencia e Investigación de la Universidad de CádizArticle . 2022License: CC BYadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/lno.12283&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Limnology and Oceano... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio de Objetos de Docencia e Investigación de la Universidad de CádizArticle . 2022License: CC BYadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/lno.12283&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2021Publisher:PANGAEA Frey, Claudia; Sun, Xin; Szemberski, Laura; Casciotti, Karen L; Garcia-Robledo, Emilio; Jayakumar, Amal; Kelly, Colette; Lehmann, Moritz F; Ward, Bess B;In March/April 2018 during a cruise on R/V Sally Ride, SR1805, 15N-NH4+ incubations in 60mL glass serum bottles were performed to measure ammonium oxidation rates to nitrite and nitrous oxide in different depth at 3 different stations in the oxygen deficient zone (ODZ) of the Eastern Tropical North Pacific off the coast of Mexico. Water samples were collected from 30L Niskin bottles deployed with a conductivity-temperature-depth profiler (CTD, Seabird Electronics). The goal was to get a better understanding on the controls of nitrous oxide (N2O) production. The N2O production rate experiments were performed according to Bourbonnais et al. 2021 (https://doi.org/10.3389/fmars.2021.611937). Furthermore, ammonium (NH4+), nitrite (NO2-) and nitrate (NO3-) as well as N2O concentrations were determined using standard fluorometric (Holmes et al. 1999, https://doi.org/10.1139/f99-128), photometric (Strickland and Parsons 1972, hdl:10013/epic.46454.d001), chemiluminescent (Braman and Hendrix 1989, doi:10.1021/ac00199a007) and mass spectrometric techniques (McIlvin and Casciotti 2010, https://doi.org/10.4319/lom.2010.8.54), respectively. The N2O yield per nitrite produced was calculated. The archaeal ammonia monooxygenase gene subunit A (amoA) copy numbers/mL were determined using qPCR as described previously (Peng et al. 2015, https://doi.org/10.1002/2015GB005278). The data table contains the depth profiles of salinity, temperature (°C), oxygen concentration (µmol/L), ammonium (µmol/L), nitrate (µmol/L), nitrite (µmol/L) and nitrous oxide concentration (nmol/L) for three stations in the oxygen deficient zones (ODZ) in the Eastern Tropical North Pacific. It also contains the rate measurements of N2O production rate (nmol N2O/L*d) with standard error, ammonium oxidation rate (nmol N2O/L*d) to nitrite with standard error as well as N2O yield (%) with standard deviation. The % hybrid N2O production refers to the production of 45N2O, which requires incorporation of a 14N substrate other than NH4+. It is expressed in percent with respect to the total N2O produced from 15NH4+. Furthermore, the archaeal amoA copy numbers / mL and the standard deviation are given for the different depths.
PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2021License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.939724&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2021License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.939724&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United States, SwitzerlandPublisher:Frontiers Media SA Funded by:NSF | Nitrous oxide cycling in ...NSF| Nitrous oxide cycling in the Western Arctic Ocean from stable isotopic and concentration dataAmal Jayakumar; Xin Sun; Xin Sun; Bess B. Ward; Laura A. Bristow; Claudia Frey; Nathaniel E. Ostrom; Annie Bourbonnais; Karen L. Casciotti;Nitrous oxide (N2O) is a potent greenhouse gas and an ozone destroying substance. Yet, clear step-by-step protocols to measure N2O transformation rates in freshwater and marine environments are still lacking, challenging inter-comparability efforts. Here we present detailed protocols currently used by leading experts in the field to measure water-column N2O production and consumption rates in both marine and other aquatic environments. We present example 15N-tracer incubation experiments in marine environments as well as templates to calculate both N2O production and consumption rates. We discuss important considerations and recommendations regarding (1) precautions to prevent oxygen (O2) contamination during low-oxygen and anoxic incubations, (2) preferred bottles and stoppers, (3) procedures for 15N-tracer addition, and (4) the choice of a fixative. We finally discuss data reporting and archiving. We expect these protocols will make 15N-labeled N2O transformation rate measurements more accessible to the wider community and facilitate future inter-comparison between different laboratories.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2021.611937&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2021.611937&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 SwitzerlandPublisher:Wiley Nicola Wannicke; Nicola Wannicke; Maren Voss; Claudia Frey; Claudia Frey; Cliff S. Law; Cliff S. Law;doi: 10.1111/gcb.14424
pmid: 30120863
AbstractOcean acidification (OA), arising from the influx of anthropogenically generated carbon, poses a massive threat to the ocean ecosystems. Our knowledge of the effects of elevated anthropogenic CO2 in marine waters and its effect on the performance of single species, trophic interactions, and ecosystems is increasing rapidly. However, our understanding of the biogeochemical cycling of nutrients such as nitrogen is less advanced and lacks a comprehensive overview of how these processes may change under OA. We conducted a systematic review and meta‐analysis of eight major nitrogen transformation processes incorporating 49 publications to synthesize current scientific understanding of the effect of OA on nitrogen cycling in the future ocean by 2100. The following points were identified by our meta‐analysis: (a) Diazotrophic nitrogen fixation is likely enhanced by 29% ± 4% under OA; (b) species‐ and strain‐specific responses of nitrogen fixers to OA were detectable, which may result in alterations in microbial community composition in the future ocean; (c) nitrification processes were reduced by a factor of 29% ± 10%; (d) declines in nitrification rates were not reflected by nitrifier abundance; and (e) contrasting results in unispecific culture experiments versus natural communities were apparent for nitrogen fixation and denitrification. The net effect of the nitrogen cycle process responses also suggests there may be a shift in the relative nitrogen pools, with excess ammonium originating from CO2‐fertilized diazotrophs. This regenerated inorganic nitrogen may recycle in the upper water column increasing the relative importance of the ammonium‐fueled regenerated production. However, several feedback mechanisms with other chemical cycles, such as oxygen, and interaction with other climate change stressors may counteract these findings. Finally, our review highlights the shortcomings and gaps in current understanding of the potential changes in nitrogen cycling under future climate and emphasizes the need for further ecosystem studies.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14424&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 48 citations 48 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14424&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Morocco, Switzerland, SpainPublisher:Wiley Claudia Frey; Xin Sun; Laura Szemberski; Karen L. Casciotti; Emilio Garcia‐Robledo; Amal Jayakumar; Colette L. Kelly; Moritz F. Lehmann; Bess B. Ward;doi: 10.1002/lno.12283
AbstractMarine oxygen‐deficient zones represent a natural source of nitrous oxide (N2O), a potent greenhouse gas and ozone‐depleting agent. To investigate controls on N2O production, the responses of ammonia oxidation (AO) to nitrite () and N2O with respect to oxygen (O2), ammonium () and concentrations were evaluated using tracer incubations in the Eastern Tropical North Pacific. Within the oxycline, additions of and O2stimulated N2O production according to Michaelis–Menten kinetics, indicating that both substrates were limiting, and that N2O production, even if the exact mechanisms remain uncertain, is mediated by predictable kinetics. Low half‐saturation constants for (12–28 nM) and O2(460 ± 130 nM) during N2O production indicate that AO communities are well adapted to low concentrations of both substrates. Hybrid N2O formation (i.e., from one and one unlabeled nitrogen (N) source, e.g., , NO) accounted for ~ 90% of the N2O production from and was robust across the different O2, , and conditions. Lack of response to variable substrate concentrations implies that the unlabeled N source was not limiting for N2O production. Although both O2and were key modulators of N2O production rates, N2O yield (N2O produced per produced) seemed to be controlled solely by O2. The N2O yield increased when O2concentrations dropped below the half‐saturation concentration for AO to (< 1.4 μM), the range where production decreased faster than N2O production. Our study shows that O2control on N2O yield from AO is robust across stations and depths.
Limnology and Oceano... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio de Objetos de Docencia e Investigación de la Universidad de CádizArticle . 2022License: CC BYadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/lno.12283&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Limnology and Oceano... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio de Objetos de Docencia e Investigación de la Universidad de CádizArticle . 2022License: CC BYadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/lno.12283&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu