- home
- Advanced Search
- Energy Research
- Energy Research
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Springer Science and Business Media LLC Funded by:EC | SEMANCOEC| SEMANCOAuthors: Nashwan Dawood; Huda Dawood; Sergio Rodriguez-Trejo; Michael Crilly;AbstractThis paper explores the potential for using remotely sensed data from a combination of commercial and open-sources, to improve the functionality, accuracy of energy-use calculations and visualisation of carbon emissions. We present a study demonstrating the use of LiDAR (Light Detection And Ranging) data and aerial imagery for a mixed-use inner urban area within the North East of England and how this can improve the quality of input data for modelling standardised energy uses and carbon emissions. We explore the scope of possible input data for both (1) building geometry and (2) building physics models from these sources.We explain the significance of improved data accuracy for the assessment of heat-loss parameters, orientation, and shading and renewable energy micro-generation. We also highlight the limitations around the sole use of remotely sensed data and how these concerns can be partially addressed through combinations with (1) open-source property data, such as age, occupancy, tenure and (2) existing stakeholder data sets, including building services and measured performance. We set out some of the technical challenges; addressed through data approximation (considering data quality and metadata protocols) and a combination of automated or manual processing; in the use, adaptation, and transferability of this data. We elucidate how the output can be visualised and be supported by many of industry-standard CAD, GIS, and BIM software applications hence, broadening the scope for real-world applications. We demonstrate the support of commercial interest and potential drawing evidence from primary market research regarding the principal applications, functionality, and output.In summary, we conclude on the benefits in the use of remotely sensed data for improved accuracy in energy use and carbon emission calculations, the need for semantic integration of mixed data sources and the importance of output visualisation.
CORE arrow_drop_down COREArticle . 2017License: CC BYFull-Text: https://nrl.northumbria.ac.uk/id/eprint/33978/1/Dawood_et_al-2017-Visualization_in_Engineering.pdfData sources: COREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s40327-017-0060-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down COREArticle . 2017License: CC BYFull-Text: https://nrl.northumbria.ac.uk/id/eprint/33978/1/Dawood_et_al-2017-Visualization_in_Engineering.pdfData sources: COREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s40327-017-0060-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 United KingdomPublisher:SAGE Publications Crilly, Michael; Lemon, Mark; Wright, A. J.; Cook, Matthew; Shaw, D.;Ambitiously, the UK aims to cut greenhouse gas emissions by 80 per cent by 2050. Since the use of housing accounts for about 27 per cent of UK CO2, and most new-build adds to the number of homes rather than substituting for them, housing's biggest contribution to better energy use and lower carbon emissions in the UK will come from retrofitting the country's existing stock. Moreover retrofitting particularly matters to registered providers of social housing, who seek guidance about the energy efficiency of their properties. This paper argues that an exclusive focus on just one of the technical, economic or social aspects of retrofit is inadequate. Using both theory and case-based experience, it discusses a number of ways, both technical and qualitative, of best measuring what retrofitting can do. It concludes that an integrated, comprehensive understanding of the retrofit process is essential to the making of informed decisions on the energy efficiency of homes, particularly at the scales required.
Energy & Environment arrow_drop_down De Montfort University Open Research ArchiveArticle . 2012Data sources: De Montfort University Open Research ArchiveDe Montfort University Open Research ArchiveArticle . 2012Data sources: De Montfort University Open Research ArchiveDe Montfort University Open Research ArchiveArticle . 2012Data sources: De Montfort University Open Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1260/0958-305x.23.6-7.1027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 14 citations 14 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energy & Environment arrow_drop_down De Montfort University Open Research ArchiveArticle . 2012Data sources: De Montfort University Open Research ArchiveDe Montfort University Open Research ArchiveArticle . 2012Data sources: De Montfort University Open Research ArchiveDe Montfort University Open Research ArchiveArticle . 2012Data sources: De Montfort University Open Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1260/0958-305x.23.6-7.1027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 United KingdomPublisher:MDPI AG Michael Crilly; Chandra Mouli Vemury; Richard Humphrey; Sergio Rodriguez; Tracey Crosbie; Karen Johnson; Alexander Wilson; Oliver Heidrich;doi: 10.3390/en13225860
One of the repeating themes around the provision of the knowledge and skills needed for delivering sustainable communities is the idea of a “common language” for all built environment professionals. This suggestion has been repeated regularly with each new political and professional review within and between different sectors responsible for the delivery of sustainable communities. There have been multiple efforts to address academic limitations, industry fragmentation and promote more interdisciplinary working and sector collaboration. This research explored the role of skills for sustainable communities, particularly within the higher education (HE) sector, and the responses to support the development of a “common language of sustainability” that can be shared between different sectors, professional disciplines and stakeholders. As an interdisciplinary group of academics and practitioners working with the HE sector in the North East of England, we evaluate the progression of sector collaboration to develop a quintuple helix model for HE. We use this as a suitable framework for systematically “mapping” out the mixed sector (academic, public, business, community and environmental organisations) inputs and influences into a representative sample of HE degree modules that are delivered from foundation and undergraduate to postgraduate levels, including examples of part-time and distance-learning modules. We developed a cascade of models which demonstrate increasing levels of collaboration and their potential positive impact on the effectiveness of education on sustainable communities. The methodological assessments of modules were followed by semi-structured group reflective analysis undertaken through a series of online workshops (recorded during the Covid19 lockdown) to set out a collective understanding of the generic skills needed for the delivery of sustainable communities. These generic skills for sustainable communities are presented as a pedagogical progression model of teaching activities and learning outcomes applied to the levels within HE. We propose sustainability education principles and progressions with the hope that they can have an impact on the design or review of current degree modules and programmes. The paper informs future sustainability research to be grounded in holism and systems thinking; better understanding of values, ethics, influencing and political impact; and procedural authenticity.
CORE arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/22/5860/pdfData sources: Multidisciplinary Digital Publishing InstituteDurham Research OnlineArticle . 2020 . Peer-reviewedFull-Text: http://dro.dur.ac.uk/32163/1/32163.pdfData sources: Durham Research OnlineNewcastle University Library ePrints ServiceArticleLicense: CC BYFull-Text: https://eprints.ncl.ac.uk/270874Data sources: Bielefeld Academic Search Engine (BASE)Durham University: Durham Research OnlineArticle . 2020License: CC BYFull-Text: http://dro.dur.ac.uk/32163/Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13225860&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert CORE arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/22/5860/pdfData sources: Multidisciplinary Digital Publishing InstituteDurham Research OnlineArticle . 2020 . Peer-reviewedFull-Text: http://dro.dur.ac.uk/32163/1/32163.pdfData sources: Durham Research OnlineNewcastle University Library ePrints ServiceArticleLicense: CC BYFull-Text: https://eprints.ncl.ac.uk/270874Data sources: Bielefeld Academic Search Engine (BASE)Durham University: Durham Research OnlineArticle . 2020License: CC BYFull-Text: http://dro.dur.ac.uk/32163/Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13225860&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Springer Science and Business Media LLC Funded by:EC | SEMANCOEC| SEMANCOAuthors: Nashwan Dawood; Huda Dawood; Sergio Rodriguez-Trejo; Michael Crilly;AbstractThis paper explores the potential for using remotely sensed data from a combination of commercial and open-sources, to improve the functionality, accuracy of energy-use calculations and visualisation of carbon emissions. We present a study demonstrating the use of LiDAR (Light Detection And Ranging) data and aerial imagery for a mixed-use inner urban area within the North East of England and how this can improve the quality of input data for modelling standardised energy uses and carbon emissions. We explore the scope of possible input data for both (1) building geometry and (2) building physics models from these sources.We explain the significance of improved data accuracy for the assessment of heat-loss parameters, orientation, and shading and renewable energy micro-generation. We also highlight the limitations around the sole use of remotely sensed data and how these concerns can be partially addressed through combinations with (1) open-source property data, such as age, occupancy, tenure and (2) existing stakeholder data sets, including building services and measured performance. We set out some of the technical challenges; addressed through data approximation (considering data quality and metadata protocols) and a combination of automated or manual processing; in the use, adaptation, and transferability of this data. We elucidate how the output can be visualised and be supported by many of industry-standard CAD, GIS, and BIM software applications hence, broadening the scope for real-world applications. We demonstrate the support of commercial interest and potential drawing evidence from primary market research regarding the principal applications, functionality, and output.In summary, we conclude on the benefits in the use of remotely sensed data for improved accuracy in energy use and carbon emission calculations, the need for semantic integration of mixed data sources and the importance of output visualisation.
CORE arrow_drop_down COREArticle . 2017License: CC BYFull-Text: https://nrl.northumbria.ac.uk/id/eprint/33978/1/Dawood_et_al-2017-Visualization_in_Engineering.pdfData sources: COREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s40327-017-0060-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down COREArticle . 2017License: CC BYFull-Text: https://nrl.northumbria.ac.uk/id/eprint/33978/1/Dawood_et_al-2017-Visualization_in_Engineering.pdfData sources: COREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s40327-017-0060-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 United KingdomPublisher:SAGE Publications Crilly, Michael; Lemon, Mark; Wright, A. J.; Cook, Matthew; Shaw, D.;Ambitiously, the UK aims to cut greenhouse gas emissions by 80 per cent by 2050. Since the use of housing accounts for about 27 per cent of UK CO2, and most new-build adds to the number of homes rather than substituting for them, housing's biggest contribution to better energy use and lower carbon emissions in the UK will come from retrofitting the country's existing stock. Moreover retrofitting particularly matters to registered providers of social housing, who seek guidance about the energy efficiency of their properties. This paper argues that an exclusive focus on just one of the technical, economic or social aspects of retrofit is inadequate. Using both theory and case-based experience, it discusses a number of ways, both technical and qualitative, of best measuring what retrofitting can do. It concludes that an integrated, comprehensive understanding of the retrofit process is essential to the making of informed decisions on the energy efficiency of homes, particularly at the scales required.
Energy & Environment arrow_drop_down De Montfort University Open Research ArchiveArticle . 2012Data sources: De Montfort University Open Research ArchiveDe Montfort University Open Research ArchiveArticle . 2012Data sources: De Montfort University Open Research ArchiveDe Montfort University Open Research ArchiveArticle . 2012Data sources: De Montfort University Open Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1260/0958-305x.23.6-7.1027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 14 citations 14 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energy & Environment arrow_drop_down De Montfort University Open Research ArchiveArticle . 2012Data sources: De Montfort University Open Research ArchiveDe Montfort University Open Research ArchiveArticle . 2012Data sources: De Montfort University Open Research ArchiveDe Montfort University Open Research ArchiveArticle . 2012Data sources: De Montfort University Open Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1260/0958-305x.23.6-7.1027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 United KingdomPublisher:MDPI AG Michael Crilly; Chandra Mouli Vemury; Richard Humphrey; Sergio Rodriguez; Tracey Crosbie; Karen Johnson; Alexander Wilson; Oliver Heidrich;doi: 10.3390/en13225860
One of the repeating themes around the provision of the knowledge and skills needed for delivering sustainable communities is the idea of a “common language” for all built environment professionals. This suggestion has been repeated regularly with each new political and professional review within and between different sectors responsible for the delivery of sustainable communities. There have been multiple efforts to address academic limitations, industry fragmentation and promote more interdisciplinary working and sector collaboration. This research explored the role of skills for sustainable communities, particularly within the higher education (HE) sector, and the responses to support the development of a “common language of sustainability” that can be shared between different sectors, professional disciplines and stakeholders. As an interdisciplinary group of academics and practitioners working with the HE sector in the North East of England, we evaluate the progression of sector collaboration to develop a quintuple helix model for HE. We use this as a suitable framework for systematically “mapping” out the mixed sector (academic, public, business, community and environmental organisations) inputs and influences into a representative sample of HE degree modules that are delivered from foundation and undergraduate to postgraduate levels, including examples of part-time and distance-learning modules. We developed a cascade of models which demonstrate increasing levels of collaboration and their potential positive impact on the effectiveness of education on sustainable communities. The methodological assessments of modules were followed by semi-structured group reflective analysis undertaken through a series of online workshops (recorded during the Covid19 lockdown) to set out a collective understanding of the generic skills needed for the delivery of sustainable communities. These generic skills for sustainable communities are presented as a pedagogical progression model of teaching activities and learning outcomes applied to the levels within HE. We propose sustainability education principles and progressions with the hope that they can have an impact on the design or review of current degree modules and programmes. The paper informs future sustainability research to be grounded in holism and systems thinking; better understanding of values, ethics, influencing and political impact; and procedural authenticity.
CORE arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/22/5860/pdfData sources: Multidisciplinary Digital Publishing InstituteDurham Research OnlineArticle . 2020 . Peer-reviewedFull-Text: http://dro.dur.ac.uk/32163/1/32163.pdfData sources: Durham Research OnlineNewcastle University Library ePrints ServiceArticleLicense: CC BYFull-Text: https://eprints.ncl.ac.uk/270874Data sources: Bielefeld Academic Search Engine (BASE)Durham University: Durham Research OnlineArticle . 2020License: CC BYFull-Text: http://dro.dur.ac.uk/32163/Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13225860&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert CORE arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/22/5860/pdfData sources: Multidisciplinary Digital Publishing InstituteDurham Research OnlineArticle . 2020 . Peer-reviewedFull-Text: http://dro.dur.ac.uk/32163/1/32163.pdfData sources: Durham Research OnlineNewcastle University Library ePrints ServiceArticleLicense: CC BYFull-Text: https://eprints.ncl.ac.uk/270874Data sources: Bielefeld Academic Search Engine (BASE)Durham University: Durham Research OnlineArticle . 2020License: CC BYFull-Text: http://dro.dur.ac.uk/32163/Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13225860&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu