- home
- Advanced Search
- Energy Research
- 11. Sustainability
- 1. No poverty
- English
- Energy Research
- Energy Research
- 11. Sustainability
- 1. No poverty
- English
- Energy Research
Research data keyboard_double_arrow_right Dataset 2019Publisher:Zenodo Authors: Ueckerdt, Falko;This climate change impact data (future scenarios on temperature-induced GDP losses) and climate change mitigation cost data (REMIND model scenarios) is published under doi: 10.5281/zenodo.3541809 and used in this paper: Ueckerdt F, Frieler K, Lange S, Wenz L, Luderer G, Levermann A (2018) The economically optimal warming limit of the planet. Earth System Dynamics. https://doi.org/10.5194/esd-10-741-2019 Below the individual file contents are explained. For further questions feel free to write to Falko Ueckerdt (ueckerdt@pik-potsdam.de). Climate change impact data File 1: Data_rel-GDPpercapita-changes_withCC_per-country_all-RCP_all-SSP_4GCM.csv Content: Data of relative change in absolute GDP/CAP levels (compared to the baseline path of the respective SSP in the SSP database) for each country, RCP (and a zero-emissions scenario), SSP and 4 GCMs (spanning a broad range of climate sensitivity). Negative (positive) values indicate losses (gains) due to climate change. For figure 1a of the paper, this data was aggregated for all countries. File 2: Data_rel-GDPpercapita-changes_withCC_per-country_all-SSP_4GCM_interpolated-for-REMIND-scenarios.csv Content: Data of relative change in absolute GDP/CAP levels (compared to the baseline path of the respective SSP in the SSP database) for each country, SSP and 4 GCMs (spanning a broad range of climate sensitivity). The RCP (and a zero-emissions scenario) are interpolated to the temperature pathways of the ten REMIND model scenarios used for climate change mitigation costs. Hereby the set of scenarios for climate impacts and climate change mitigation are consistent and can be combined to total costs of climate change (for a broad range of mitigation action). File 3: Data_rel-GDPpercapita-changes_withCC_per-country_SSP2_12GCM_interpolated-for-REMIND-scenarios.csv Content: Same as file 2, but only for the SSP2 (chosen default scenario for the study) and for all 12 GCMs. Data of relative change in absolute GDP/CAP levels (compared to the baseline path of the respective SSP in the SSP database) for each country, SSP-2 and 12 GCMs (spanning a broad range of climate sensitivity). The RCP (and a zero-emissions scenario) are interpolated to the temperature pathways of the ten REMIND model scenarios used for climate change mitigation costs. Hereby the set of scenarios for climate impacts and climate change mitigation are consistent and can be combined to total costs of climate change (for a broad range of mitigation action). In addition, reference GDP and population data (without climate change) for each country until 2100 was downloaded from the SSP database, release Version 1.0 (March 2013, https://tntcat.iiasa.ac.at/SspDb/, last accessed 15Nov 2019). Climate change mitigation cost data The scenario design and runs used in this paper have first been conducted in [1] and later also used in [2]. File 4: REMIND_scenario_results_economic_data.csv File 5: REMIND_scenarios_climate_data.csv Content: A broad range of climate change mitigation scenarios of the REMIND model. File 4 contains the economic data of e.g. GDP and macro-economic consumption for each of the countries and world regions, as well as GHG emissions from various economic sectors. File 5 contains the global climate-related data, e.g. forcing, concentration, temperature. In the scenario description “FFrunxxx” (column 2), the code “xxx” specifies the scenario as follows. See [1] for a detailed discussion of the scenarios. The first dimension specifies the climate policy regime (delayed action, baseline scenarios): 1xx: climate action from 2010 5xx: climate action from 2015 2xx climate action from 2020 (used in this study) 3xx climate action from 2030 4x1 weak policy baseline (before Paris agreement) The second dimension specifies the technology portfolio and assumptions: x1x Full technology portfolio (used in this study) x2x noCCS: unavailability of CCS x3x lowEI: lower energy intensity, with final energy demand per economic output decreasing faster than historically observed x4x NucPO: phase out of investments into nuclear energy x5x Limited SW: penetration of solar and wind power limited x6x Limited Bio: reduced bioenergy potential p.a. (100 EJ compared to 300 EJ in all other cases) x6x noBECCS: unavailability of CCS in combination with bioenergy The third dimension specifies the climate change mitigation ambition level, i.e. the height of a global CO2 tax in 2020 (which increases with 5% p.a.). xx1 0$/tCO2 (baseline) xx2 10$/tCO2 xx3 30$/tCO2 xx4 50$/tCO2 xx5 100$/tCO2 xx6 200$/tCO2 xx7 500$/tCO2 xx8 40$/tCO2 xx9 20$/tCO2 xx0 5$/tCO2 For figure 1b of the paper, this data was aggregated for all countries and regions. Relative changes of GDP are calculated relative to the baseline (4x1 with zero carbon price). [1] Luderer, G., Pietzcker, R. C., Bertram, C., Kriegler, E., Meinshausen, M. and Edenhofer, O.: Economic mitigation challenges: how further delay closes the door for achieving climate targets, Environmental Research Letters, 8(3), 034033, doi:10.1088/1748-9326/8/3/034033, 2013a. [2] Rogelj, J., Luderer, G., Pietzcker, R. C., Kriegler, E., Schaeffer, M., Krey, V. and Riahi, K.: Energy system transformations for limiting end-of-century warming to below 1.5 °C, Nature Climate Change, 5(6), 519–527, doi:10.1038/nclimate2572, 2015.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3541808&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 1Kvisibility views 1,466 download downloads 925 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3541808&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: Shiogama, Hideo; Abe, Manabu; Tatebe, Hiroaki;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.ScenarioMIP.MIROC.MIROC6.ssp119' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The MIROC6 climate model, released in 2017, includes the following components: aerosol: SPRINTARS6.0, atmos: CCSR AGCM (T85; 256 x 128 longitude/latitude; 81 levels; top level 0.004 hPa), land: MATSIRO6.0, ocean: COCO4.9 (tripolar primarily 1deg; 360 x 256 longitude/latitude; 63 levels; top grid cell 0-2 m), seaIce: COCO4.9. The model was run by the JAMSTEC (Japan Agency for Marine-Earth Science and Technology, Kanagawa 236-0001, Japan), AORI (Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba 277-8564, Japan), NIES (National Institute for Environmental Studies, Ibaraki 305-8506, Japan), and R-CCS (RIKEN Center for Computational Science, Hyogo 650-0047, Japan) (MIROC) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, land: 250 km, ocean: 100 km, seaIce: 100 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6spmimis119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6spmimis119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Publisher:DOE Open Energy Data Initiative (OEDI); National Renewable Energy Laboratory (NREL) Authors: Mooney, Meghan; Waechter, Katy;doi: 10.25984/1804725
The National Renewable Energy Laboratory's (NREL) PV Rooftop Database for Puerto Rico (PVRDB-PR) is a lidar-derived, geospatially-resolved dataset of suitable roof surfaces and their PV technical potential for virtually all buildings in Puerto Rico. The dataset can be downloaded at the AWS S3 explorer page. The GitHub documentation page provides a description of the dataset with methods and assumptions. The Puerto Rico Solar-For-All dataset provides Census Tract level estimates of residential low-to-moderate income (LMI) PV rooftop technical potential as well as solar electric bill savings potential for LMI communities at the municipality level.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25984/1804725&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25984/1804725&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2015Publisher:International Institute of Refrigeration (IIR) Authors: FRANCIS, C.; DAVIES, G.; EVANS, J.; Et Al.;Refrigerated road transport (RRT) vehicles are large users of energy, and reportedly have relatively high leakage of hydrofluorocarbon refrigerant gases, both of which contribute to global warming. The experience obtained from widespread research in leak reduction in stationary refrigeration systems can be instructive in combatting leakage in RRT systems, which has received less focus to date. This paper will take an integrated approach to develop and describe a preliminary model for sustainable RRT systems. It will first review lessons learned about refrigerant leakage in stationary systems in an effort to identify problematic/leak prone components common to transport refrigeration systems. This will then be followed by a survey of recent studies conducted in modelling transport refrigeration systems to advance energy efficiency. Initial results from the model illustrate the need to improve the efficiency of the refrigeration system, together with preventative maintenance of the box structure and refrigeration system as a whole.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18462/iir.icr.2015.0324&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18462/iir.icr.2015.0324&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:Eurac Research - Institute for Renewable Energy Authors: Pezzutto, Simon;The HEU MODERATE Building Stock Data provides information regarding the building stock for all EU27 member states at the national level (i.e., NUTS 0) considering 2020 as the reference year. Regarding the Service Sector, the data distinguishes the following subsectors: single-family houses, multifamily houses, and apartment blocks. Regarding the Service Sector, the data distinguishes the following subsectors: offices, trade, education, health, hotels and restaurants, and other non-residential buildings. Moreover, for each subsector, the data distinguishes the following construction periods: before 1945, 1945-1969, 1970-1979, 1980-1989, 1990-1999, 2000-2010, and 2011-2020. For each building stock subsector and construction period, the data provide information regarding total values at the national level for: - Number of buildings - Number of dwellings - Number of dwellings according to ownership (i.e., owner occupied, rented, social housing) - Number of dwellings according to occupation (i.e., occupied, vacant, secondary houses) - Total constructed area - Total heated area - Total cooled area - Total final energy consumption for space heating and domestic hot water - Total final energy consumption for space cooling Moreover, the following average values for single building characteristics are provided: - Number of floors - Volume-to-surface ratio - Vertical area - Ground area - Window surface - U-values for the different building elements (roof, walls, windows, and floors) - Useful energy demand (ued) differentiating between space heating, domestic hot water, and space cooling - Final energy consumption (fed) differentiating between space heating, domestic hot water, and space cooling Finally, the data provide information about the prevalence of: - Building materials and methodology for the different building elements (roof, walls, windows, and floors) - Different systems used for space heating, domestic hot water, and space cooling The data is provided as a `csv` file (long format with all details and data source) and as an excel file (wide format with separate sheets for each country). Data and a complete description of the available fields can be found at https://github.com/MODERATE-Project/building-stock-analysis/tree/main/T3.2-static-analysis The dataset was obtained by combining information from European and national resources and the review of scientific literature. Data gaps were subsequently filled via statistical modeling.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.48784/eb21f179-5e4b-42c2-8b53-2e3b14ee4551&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.48784/eb21f179-5e4b-42c2-8b53-2e3b14ee4551&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:Linnaeus University Authors: Sathre, Roger; Gustavsson, Leif;Heavy trucks contribute significantly to climate change, and in 2020 were responsible for 7% of total Swedish GHG emissions and 5% of total global CO2 emissions. Here we study the full lifecycle of cargo trucks powered by different energy pathways, comparing their biomass feedstock use, primary energy use, net biogenic and fossil CO2 emission, and cumulative radiative forcing. We analyse battery electric trucks with bioelectricity from standalone or combined heat and power (CHP) plants, and pathways where bioelectricity is integrated with wind and solar electricity. We analyse trucks operated on fossil diesel fuel and on dimethyl ether (DME). All energy pathways are analysed with and without carbon capture and storage (CCS). Bioelectricity and DME are produced from forest harvest residues. Forest biomass is a limited resource, so in a scenario analysis we allocate a fixed amount of biomass to power Swedish truck transport. Battery lifespan and chemistry, the technology level of energy supply, and the biomass source and transport distance are all varied to understand how sensitive the results are to these parameters. The scenario spans 100 years into the future. We find that pathways using electricity to power battery electric trucks have much lower climate impacts and primary energy use, compared to diesel and DME based pathways. The pathways using bioelectricity with CCS result in negative emissions leading to global cooling of the earth. The pathways using diesel and DME have significant and very similar climate impact, even with CCS. The robust results show that truck electrification and increased renewable electricity production is a much better strategy to reduce the climate impact of cargo transport and much more primary energy efficient than the adoption of DME trucks. This climate impact analysis includes all fossil and net biogenic CO2 emissions as well as the timing of these emissions. Considering only fossil emissions is incomplete and could be misleading. This dataset contains data on 4 metrics (primary energy use, biomass feedstock use, cumulative CO2 emissions, and cumulative radiative forcing) resulting from scenario modeling of cargo truck use in Sweden powered by different energy pathways. The energy pathways include battery electric trucks powered by bioelectricity, solar photovoltaic electricity and wind electricity, and internal combustion trucks powered by fossil diesel and dimethyl ether. The scenario spans 100 years into the future. The Excel sheet "tables" contains input data for the scenario modeling, with sources listed where applicable. The remaining sheets contains the modeled results and generated figures that are also a published in the associated article Sathre & Gustavsson (2023). Refer to the method description and reference list in the included documentation files for details. Tunga lastbilar bidrar kraftigt till klimatförändringarna och stod 2020 för 7% av de totala svenska växthusgasutsläppen och 5% av de totala globala CO2-utsläppen. Här studerar vi hela livscykeln för lastbilar som drivs av olika energivägar, jämför deras användning av biomassaråvaror, primär energianvändning, biogena och fossila CO2-utsläpp netto och kumulativ strålningstvingning. Vi analyserar batterielektriska lastbilar med bioel från fristående eller kraftvärmeverk och vägar där bioel integreras med vind- och solkraft. Vi analyserar lastbilar som drivs med fossilt dieselbränsle och med dimetyleter (DME). Alla energivägar analyseras med och utan avskiljning och lagring av koldioxid (CCS). Bioelektricitet och DME produceras av skogsavverkningsrester. Skogsbiomassa är en begränsad resurs, så i en scenarioanalys avsätter vi en fast mängd biomassa för att driva svenska lastbilstransporter. Batteriets livslängd och kemi, tekniknivån för energiförsörjning och biomassakällan och transportavståndet varierar alla för att förstå hur känsliga resultaten är för dessa parametrar. Scenariot sträcker sig 100 år in i framtiden. Vi finner att vägar som använder el för att driva batterielektriska lastbilar har mycket lägre klimatpåverkan och primär energianvändning, jämfört med diesel- och DME-baserade vägar. De vägar som använder bioelektricitet med CCS resulterar i negativa utsläpp som leder till global kylning av jorden. Vägarna med diesel och DME har betydande och mycket liknande klimatpåverkan, även med CCS. De robusta resultaten visar att elektrifiering av lastbilar och ökad förnybar elproduktion är en mycket bättre strategi för att minska godstransporternas klimatpåverkan än införandet av DME-lastbilar, och mycket mer primärenergieffektiv. Denna klimatkonsekvensanalys omfattar alla fossila och biogena CO2-utsläpp samt tidpunkten för dessa utsläpp. Att bara ta hänsyn till fossila utsläpp är ofullständigt och kan vara missvisande. Detta dataset innehåller data om 4 mätvärden (primär energianvändning, biomassaråvara, kumulativa CO2-utsläpp och kumulativ strålkraftspåverkan) som härrör från scenariomodellering av lastbilsanvändning i Sverige som drivs av olika energivägar. Energivägarna inkluderar batterielektriska lastbilar som drivs av bioelektricitet, solcellselektricitet och vindkraft samt förbränningsbilar som drivs av fossil diesel och dimetyleter. Scenariot sträcker sig 100 år in i framtiden. På arket "tables" i Excelfilen återfinns den indata som använts i modelleringen med angivna källor där detta är tillämpligt. Övriga ark innehåller resultat samt figurer som också publiceras i den samhörande artikeln Sathre & Gustavsson (2023). Se metodbeskrivning samt referenslista i tillhörande dokumentationsfiler för detaljer.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5878/0h1w-e950&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5878/0h1w-e950&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2014Publisher:DOE Open Energy Data Initiative (OEDI); National Renewable Energy Laboratory Authors: Ong, Sean; Clark, Nathan;doi: 10.25984/1788456
Note: This dataset has been superseded by the dataset found at "End-Use Load Profiles for the U.S. Building Stock" (submission 4520; linked in the submission resources), which is a comprehensive and validated representation of hourly load profiles in the U.S. commercial and residential building stock. The End-Use Load Profiles project website includes links to data viewers for this new dataset. For documentation of dataset validation, model calibration, and uncertainty quantification, see Wilson et al. (2022). These data were first created around 2012 as a byproduct of various analyses of solar photovoltaics and solar water heating (see references below for are two examples). This dataset contains several errors and limitations. It is recommended that users of this dataset transition to the updated version of the dataset posted in the resources. This dataset contains weather data, commercial load profile data, and residential load profile data. Weather The Typical Meteorological Year 3 (TMY3) provides one year of hourly data for around 1,000 locations. The TMY weather represents 30-year normals, which are typical weather conditions over a 30-year period. Commercial The commercial load profiles included are the 16 ASHRAE 90.1-2004 DOE Commercial Prototype Models simulated in all TMY3 locations, with building insulation levels changing based on ASHRAE 90.1-2004 requirements in each climate zone. The folder names within each resource represent the weather station location of the profiles, whereas the file names represent the building type and the representative city for the ASHRAE climate zone that was used to determine code compliance insulation levels. As indicated by the file names, all building models represent construction that complied with the ASHRAE 90.1-2004 building energy code requirements. No older or newer vintages of buildings are represented. Residential The BASE residential load profiles are five EnergyPlus models (one per climate region) representing 2009 IECC construction single-family detached homes simulated in all TMY3 locations. No older or newer vintages of buildings are represented. Each of the five climate regions include only one heating fuel type; electric heating is only found in the Hot-Humid climate. Air conditioning is not found in the Marine climate region. One major issue with the residential profiles is that for each of the five climate zones, certain location-specific algorithms from one city were applied to entire climate zones. For example, in the Hot-Humid files, the heating season calculated for Tampa, FL (December 1 - March 31) was unknowingly applied to all other locations in the Hot-Humid zone, which restricts heating operation outside of those days (for example, heating is disabled in Dallas, TX during cold weather in November). This causes the heating energy to be artificially low in colder parts of that climate zone, and conversely the cooling season restriction leads to artificially low cooling energy use in hotter parts of each climate zone. Additionally, the ground temperatures for the representative city were used across the entire climate zone. This affects water heating energy use (because inlet cold water temperature depends on ground temperature) and heating/cooling energy use (because of ground heat transfer through foundation walls and floors). Representative cities were Tampa, FL (Hot-Humid), El Paso, TX (Mixed-Dry/Hot-Dry), Memphis, TN (Mixed-Humid), Arcata, CA (Marine), and Billings, MT (Cold/Very-Cold). The residential dataset includes a HIGH building load profile that was intended to provide a rough approximation of older home vintages, but it combines poor thermal insulation with larger house size, tighter thermostat setpoints, and less efficient HVAC equipment. Conversely, the LOW building combines excellent thermal insulation with smaller house size, wider thermostat setpoints, and more efficient HVAC equipment. However, it is not known how well these ...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25984/1788456&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25984/1788456&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Ridley, Jeff; Menary, Matthew; Kuhlbrodt, Till; Andrews, Martin; Andrews, Tim;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.CMIP.MOHC.HadGEM3-GC31-MM.historical' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The HadGEM3-GC3.1-N216ORCA025 climate model, released in 2016, includes the following components: aerosol: UKCA-GLOMAP-mode, atmos: MetUM-HadGEM3-GA7.1 (N216; 432 x 324 longitude/latitude; 85 levels; top level 85 km), land: JULES-HadGEM3-GL7.1, ocean: NEMO-HadGEM3-GO6.0 (eORCA025 tripolar primarily 0.25 deg; 1440 x 1205 longitude/latitude; 75 levels; top grid cell 0-1 m), seaIce: CICE-HadGEM3-GSI8 (eORCA025 tripolar primarily 0.25 deg; 1440 x 1205 longitude/latitude). The model was run by the Met Office Hadley Centre, Fitzroy Road, Exeter, Devon, EX1 3PB, UK (MOHC) in native nominal resolutions: aerosol: 100 km, atmos: 100 km, land: 100 km, ocean: 25 km, seaIce: 25 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmmohgmhi&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmmohgmhi&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: Stouffer, Ronald;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.ScenarioMIP.UA.MCM-UA-1-0' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The Manabe Climate Model v1.0 - University of Arizona climate model, released in 1991, includes the following components: aerosol: Modifies surface albedoes (Haywood et al. 1997, doi: 10.1175/1520-0442(1997)010<1562:GCMCOT>2.0.CO;2), atmos: R30L14 (3.75 X 2.5 degree (long-lat) configuration; 96 x 80 longitude/latitude; 14 levels; top level 0.015 sigma, 15 mb), land: Standard Manabe bucket hydrology scheme (Manabe 1969, doi: 10.1175/1520-0493(1969)097<0739:CATOC>2.3.CO;2), landIce: Specified location - invariant in time, has high albedo and latent heat capacity, ocean: MOM1.0 (MOM1, 1.875 X 2.5 deg; 192 x 80 longitude/latitude; 18 levels; top grid cell 0-40 m), seaIce: Thermodynamic ice model (free drift dynamics). The model was run by the Department of Geosciences, University of Arizona, Tucson, AZ 85721, USA (UA) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, land: 250 km, landIce: 250 km, ocean: 250 km, seaIce: 250 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6spuamu&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6spuamu&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Publisher:University of Bath Fosas, Daniel; Nikolaidou, Elli; Roberts, Matt; Allen, Stephen; Walker, Ian; Coley, David;doi: 10.15125/bath-00766
Dataset for the journal paper "Towards Active Buildings: rating grid-servicing buildings", which describes the simulations for the 20 case study buildings. The simulation inputs describe the intended characteristics as part of the early design stage process, and the outputs the performance metrics under the rating system introduced in the journal paper, called the ABCode1. Such outputs rate the relative merits of each case study in terms of embodied carbon, energy requirements, energy generation and energy flexibility. The simulation outputs have been generated using the inputs included in the dataset, which were then simulated in David Coley’s ZEBRA and then evaluated with the rating system proposed in the journal publication as part of ABCode1. The files are in the original Excel xlsx file (Microsoft Office 365), but it may be viewed by any other spread sheet tools such as LibreOffice's Calc.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15125/bath-00766&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15125/bath-00766&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2019Publisher:Zenodo Authors: Ueckerdt, Falko;This climate change impact data (future scenarios on temperature-induced GDP losses) and climate change mitigation cost data (REMIND model scenarios) is published under doi: 10.5281/zenodo.3541809 and used in this paper: Ueckerdt F, Frieler K, Lange S, Wenz L, Luderer G, Levermann A (2018) The economically optimal warming limit of the planet. Earth System Dynamics. https://doi.org/10.5194/esd-10-741-2019 Below the individual file contents are explained. For further questions feel free to write to Falko Ueckerdt (ueckerdt@pik-potsdam.de). Climate change impact data File 1: Data_rel-GDPpercapita-changes_withCC_per-country_all-RCP_all-SSP_4GCM.csv Content: Data of relative change in absolute GDP/CAP levels (compared to the baseline path of the respective SSP in the SSP database) for each country, RCP (and a zero-emissions scenario), SSP and 4 GCMs (spanning a broad range of climate sensitivity). Negative (positive) values indicate losses (gains) due to climate change. For figure 1a of the paper, this data was aggregated for all countries. File 2: Data_rel-GDPpercapita-changes_withCC_per-country_all-SSP_4GCM_interpolated-for-REMIND-scenarios.csv Content: Data of relative change in absolute GDP/CAP levels (compared to the baseline path of the respective SSP in the SSP database) for each country, SSP and 4 GCMs (spanning a broad range of climate sensitivity). The RCP (and a zero-emissions scenario) are interpolated to the temperature pathways of the ten REMIND model scenarios used for climate change mitigation costs. Hereby the set of scenarios for climate impacts and climate change mitigation are consistent and can be combined to total costs of climate change (for a broad range of mitigation action). File 3: Data_rel-GDPpercapita-changes_withCC_per-country_SSP2_12GCM_interpolated-for-REMIND-scenarios.csv Content: Same as file 2, but only for the SSP2 (chosen default scenario for the study) and for all 12 GCMs. Data of relative change in absolute GDP/CAP levels (compared to the baseline path of the respective SSP in the SSP database) for each country, SSP-2 and 12 GCMs (spanning a broad range of climate sensitivity). The RCP (and a zero-emissions scenario) are interpolated to the temperature pathways of the ten REMIND model scenarios used for climate change mitigation costs. Hereby the set of scenarios for climate impacts and climate change mitigation are consistent and can be combined to total costs of climate change (for a broad range of mitigation action). In addition, reference GDP and population data (without climate change) for each country until 2100 was downloaded from the SSP database, release Version 1.0 (March 2013, https://tntcat.iiasa.ac.at/SspDb/, last accessed 15Nov 2019). Climate change mitigation cost data The scenario design and runs used in this paper have first been conducted in [1] and later also used in [2]. File 4: REMIND_scenario_results_economic_data.csv File 5: REMIND_scenarios_climate_data.csv Content: A broad range of climate change mitigation scenarios of the REMIND model. File 4 contains the economic data of e.g. GDP and macro-economic consumption for each of the countries and world regions, as well as GHG emissions from various economic sectors. File 5 contains the global climate-related data, e.g. forcing, concentration, temperature. In the scenario description “FFrunxxx” (column 2), the code “xxx” specifies the scenario as follows. See [1] for a detailed discussion of the scenarios. The first dimension specifies the climate policy regime (delayed action, baseline scenarios): 1xx: climate action from 2010 5xx: climate action from 2015 2xx climate action from 2020 (used in this study) 3xx climate action from 2030 4x1 weak policy baseline (before Paris agreement) The second dimension specifies the technology portfolio and assumptions: x1x Full technology portfolio (used in this study) x2x noCCS: unavailability of CCS x3x lowEI: lower energy intensity, with final energy demand per economic output decreasing faster than historically observed x4x NucPO: phase out of investments into nuclear energy x5x Limited SW: penetration of solar and wind power limited x6x Limited Bio: reduced bioenergy potential p.a. (100 EJ compared to 300 EJ in all other cases) x6x noBECCS: unavailability of CCS in combination with bioenergy The third dimension specifies the climate change mitigation ambition level, i.e. the height of a global CO2 tax in 2020 (which increases with 5% p.a.). xx1 0$/tCO2 (baseline) xx2 10$/tCO2 xx3 30$/tCO2 xx4 50$/tCO2 xx5 100$/tCO2 xx6 200$/tCO2 xx7 500$/tCO2 xx8 40$/tCO2 xx9 20$/tCO2 xx0 5$/tCO2 For figure 1b of the paper, this data was aggregated for all countries and regions. Relative changes of GDP are calculated relative to the baseline (4x1 with zero carbon price). [1] Luderer, G., Pietzcker, R. C., Bertram, C., Kriegler, E., Meinshausen, M. and Edenhofer, O.: Economic mitigation challenges: how further delay closes the door for achieving climate targets, Environmental Research Letters, 8(3), 034033, doi:10.1088/1748-9326/8/3/034033, 2013a. [2] Rogelj, J., Luderer, G., Pietzcker, R. C., Kriegler, E., Schaeffer, M., Krey, V. and Riahi, K.: Energy system transformations for limiting end-of-century warming to below 1.5 °C, Nature Climate Change, 5(6), 519–527, doi:10.1038/nclimate2572, 2015.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3541808&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 1Kvisibility views 1,466 download downloads 925 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3541808&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: Shiogama, Hideo; Abe, Manabu; Tatebe, Hiroaki;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.ScenarioMIP.MIROC.MIROC6.ssp119' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The MIROC6 climate model, released in 2017, includes the following components: aerosol: SPRINTARS6.0, atmos: CCSR AGCM (T85; 256 x 128 longitude/latitude; 81 levels; top level 0.004 hPa), land: MATSIRO6.0, ocean: COCO4.9 (tripolar primarily 1deg; 360 x 256 longitude/latitude; 63 levels; top grid cell 0-2 m), seaIce: COCO4.9. The model was run by the JAMSTEC (Japan Agency for Marine-Earth Science and Technology, Kanagawa 236-0001, Japan), AORI (Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba 277-8564, Japan), NIES (National Institute for Environmental Studies, Ibaraki 305-8506, Japan), and R-CCS (RIKEN Center for Computational Science, Hyogo 650-0047, Japan) (MIROC) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, land: 250 km, ocean: 100 km, seaIce: 100 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6spmimis119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6spmimis119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Publisher:DOE Open Energy Data Initiative (OEDI); National Renewable Energy Laboratory (NREL) Authors: Mooney, Meghan; Waechter, Katy;doi: 10.25984/1804725
The National Renewable Energy Laboratory's (NREL) PV Rooftop Database for Puerto Rico (PVRDB-PR) is a lidar-derived, geospatially-resolved dataset of suitable roof surfaces and their PV technical potential for virtually all buildings in Puerto Rico. The dataset can be downloaded at the AWS S3 explorer page. The GitHub documentation page provides a description of the dataset with methods and assumptions. The Puerto Rico Solar-For-All dataset provides Census Tract level estimates of residential low-to-moderate income (LMI) PV rooftop technical potential as well as solar electric bill savings potential for LMI communities at the municipality level.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25984/1804725&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25984/1804725&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2015Publisher:International Institute of Refrigeration (IIR) Authors: FRANCIS, C.; DAVIES, G.; EVANS, J.; Et Al.;Refrigerated road transport (RRT) vehicles are large users of energy, and reportedly have relatively high leakage of hydrofluorocarbon refrigerant gases, both of which contribute to global warming. The experience obtained from widespread research in leak reduction in stationary refrigeration systems can be instructive in combatting leakage in RRT systems, which has received less focus to date. This paper will take an integrated approach to develop and describe a preliminary model for sustainable RRT systems. It will first review lessons learned about refrigerant leakage in stationary systems in an effort to identify problematic/leak prone components common to transport refrigeration systems. This will then be followed by a survey of recent studies conducted in modelling transport refrigeration systems to advance energy efficiency. Initial results from the model illustrate the need to improve the efficiency of the refrigeration system, together with preventative maintenance of the box structure and refrigeration system as a whole.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18462/iir.icr.2015.0324&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18462/iir.icr.2015.0324&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:Eurac Research - Institute for Renewable Energy Authors: Pezzutto, Simon;The HEU MODERATE Building Stock Data provides information regarding the building stock for all EU27 member states at the national level (i.e., NUTS 0) considering 2020 as the reference year. Regarding the Service Sector, the data distinguishes the following subsectors: single-family houses, multifamily houses, and apartment blocks. Regarding the Service Sector, the data distinguishes the following subsectors: offices, trade, education, health, hotels and restaurants, and other non-residential buildings. Moreover, for each subsector, the data distinguishes the following construction periods: before 1945, 1945-1969, 1970-1979, 1980-1989, 1990-1999, 2000-2010, and 2011-2020. For each building stock subsector and construction period, the data provide information regarding total values at the national level for: - Number of buildings - Number of dwellings - Number of dwellings according to ownership (i.e., owner occupied, rented, social housing) - Number of dwellings according to occupation (i.e., occupied, vacant, secondary houses) - Total constructed area - Total heated area - Total cooled area - Total final energy consumption for space heating and domestic hot water - Total final energy consumption for space cooling Moreover, the following average values for single building characteristics are provided: - Number of floors - Volume-to-surface ratio - Vertical area - Ground area - Window surface - U-values for the different building elements (roof, walls, windows, and floors) - Useful energy demand (ued) differentiating between space heating, domestic hot water, and space cooling - Final energy consumption (fed) differentiating between space heating, domestic hot water, and space cooling Finally, the data provide information about the prevalence of: - Building materials and methodology for the different building elements (roof, walls, windows, and floors) - Different systems used for space heating, domestic hot water, and space cooling The data is provided as a `csv` file (long format with all details and data source) and as an excel file (wide format with separate sheets for each country). Data and a complete description of the available fields can be found at https://github.com/MODERATE-Project/building-stock-analysis/tree/main/T3.2-static-analysis The dataset was obtained by combining information from European and national resources and the review of scientific literature. Data gaps were subsequently filled via statistical modeling.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.48784/eb21f179-5e4b-42c2-8b53-2e3b14ee4551&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.48784/eb21f179-5e4b-42c2-8b53-2e3b14ee4551&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:Linnaeus University Authors: Sathre, Roger; Gustavsson, Leif;Heavy trucks contribute significantly to climate change, and in 2020 were responsible for 7% of total Swedish GHG emissions and 5% of total global CO2 emissions. Here we study the full lifecycle of cargo trucks powered by different energy pathways, comparing their biomass feedstock use, primary energy use, net biogenic and fossil CO2 emission, and cumulative radiative forcing. We analyse battery electric trucks with bioelectricity from standalone or combined heat and power (CHP) plants, and pathways where bioelectricity is integrated with wind and solar electricity. We analyse trucks operated on fossil diesel fuel and on dimethyl ether (DME). All energy pathways are analysed with and without carbon capture and storage (CCS). Bioelectricity and DME are produced from forest harvest residues. Forest biomass is a limited resource, so in a scenario analysis we allocate a fixed amount of biomass to power Swedish truck transport. Battery lifespan and chemistry, the technology level of energy supply, and the biomass source and transport distance are all varied to understand how sensitive the results are to these parameters. The scenario spans 100 years into the future. We find that pathways using electricity to power battery electric trucks have much lower climate impacts and primary energy use, compared to diesel and DME based pathways. The pathways using bioelectricity with CCS result in negative emissions leading to global cooling of the earth. The pathways using diesel and DME have significant and very similar climate impact, even with CCS. The robust results show that truck electrification and increased renewable electricity production is a much better strategy to reduce the climate impact of cargo transport and much more primary energy efficient than the adoption of DME trucks. This climate impact analysis includes all fossil and net biogenic CO2 emissions as well as the timing of these emissions. Considering only fossil emissions is incomplete and could be misleading. This dataset contains data on 4 metrics (primary energy use, biomass feedstock use, cumulative CO2 emissions, and cumulative radiative forcing) resulting from scenario modeling of cargo truck use in Sweden powered by different energy pathways. The energy pathways include battery electric trucks powered by bioelectricity, solar photovoltaic electricity and wind electricity, and internal combustion trucks powered by fossil diesel and dimethyl ether. The scenario spans 100 years into the future. The Excel sheet "tables" contains input data for the scenario modeling, with sources listed where applicable. The remaining sheets contains the modeled results and generated figures that are also a published in the associated article Sathre & Gustavsson (2023). Refer to the method description and reference list in the included documentation files for details. Tunga lastbilar bidrar kraftigt till klimatförändringarna och stod 2020 för 7% av de totala svenska växthusgasutsläppen och 5% av de totala globala CO2-utsläppen. Här studerar vi hela livscykeln för lastbilar som drivs av olika energivägar, jämför deras användning av biomassaråvaror, primär energianvändning, biogena och fossila CO2-utsläpp netto och kumulativ strålningstvingning. Vi analyserar batterielektriska lastbilar med bioel från fristående eller kraftvärmeverk och vägar där bioel integreras med vind- och solkraft. Vi analyserar lastbilar som drivs med fossilt dieselbränsle och med dimetyleter (DME). Alla energivägar analyseras med och utan avskiljning och lagring av koldioxid (CCS). Bioelektricitet och DME produceras av skogsavverkningsrester. Skogsbiomassa är en begränsad resurs, så i en scenarioanalys avsätter vi en fast mängd biomassa för att driva svenska lastbilstransporter. Batteriets livslängd och kemi, tekniknivån för energiförsörjning och biomassakällan och transportavståndet varierar alla för att förstå hur känsliga resultaten är för dessa parametrar. Scenariot sträcker sig 100 år in i framtiden. Vi finner att vägar som använder el för att driva batterielektriska lastbilar har mycket lägre klimatpåverkan och primär energianvändning, jämfört med diesel- och DME-baserade vägar. De vägar som använder bioelektricitet med CCS resulterar i negativa utsläpp som leder till global kylning av jorden. Vägarna med diesel och DME har betydande och mycket liknande klimatpåverkan, även med CCS. De robusta resultaten visar att elektrifiering av lastbilar och ökad förnybar elproduktion är en mycket bättre strategi för att minska godstransporternas klimatpåverkan än införandet av DME-lastbilar, och mycket mer primärenergieffektiv. Denna klimatkonsekvensanalys omfattar alla fossila och biogena CO2-utsläpp samt tidpunkten för dessa utsläpp. Att bara ta hänsyn till fossila utsläpp är ofullständigt och kan vara missvisande. Detta dataset innehåller data om 4 mätvärden (primär energianvändning, biomassaråvara, kumulativa CO2-utsläpp och kumulativ strålkraftspåverkan) som härrör från scenariomodellering av lastbilsanvändning i Sverige som drivs av olika energivägar. Energivägarna inkluderar batterielektriska lastbilar som drivs av bioelektricitet, solcellselektricitet och vindkraft samt förbränningsbilar som drivs av fossil diesel och dimetyleter. Scenariot sträcker sig 100 år in i framtiden. På arket "tables" i Excelfilen återfinns den indata som använts i modelleringen med angivna källor där detta är tillämpligt. Övriga ark innehåller resultat samt figurer som också publiceras i den samhörande artikeln Sathre & Gustavsson (2023). Se metodbeskrivning samt referenslista i tillhörande dokumentationsfiler för detaljer.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5878/0h1w-e950&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5878/0h1w-e950&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2014Publisher:DOE Open Energy Data Initiative (OEDI); National Renewable Energy Laboratory Authors: Ong, Sean; Clark, Nathan;doi: 10.25984/1788456
Note: This dataset has been superseded by the dataset found at "End-Use Load Profiles for the U.S. Building Stock" (submission 4520; linked in the submission resources), which is a comprehensive and validated representation of hourly load profiles in the U.S. commercial and residential building stock. The End-Use Load Profiles project website includes links to data viewers for this new dataset. For documentation of dataset validation, model calibration, and uncertainty quantification, see Wilson et al. (2022). These data were first created around 2012 as a byproduct of various analyses of solar photovoltaics and solar water heating (see references below for are two examples). This dataset contains several errors and limitations. It is recommended that users of this dataset transition to the updated version of the dataset posted in the resources. This dataset contains weather data, commercial load profile data, and residential load profile data. Weather The Typical Meteorological Year 3 (TMY3) provides one year of hourly data for around 1,000 locations. The TMY weather represents 30-year normals, which are typical weather conditions over a 30-year period. Commercial The commercial load profiles included are the 16 ASHRAE 90.1-2004 DOE Commercial Prototype Models simulated in all TMY3 locations, with building insulation levels changing based on ASHRAE 90.1-2004 requirements in each climate zone. The folder names within each resource represent the weather station location of the profiles, whereas the file names represent the building type and the representative city for the ASHRAE climate zone that was used to determine code compliance insulation levels. As indicated by the file names, all building models represent construction that complied with the ASHRAE 90.1-2004 building energy code requirements. No older or newer vintages of buildings are represented. Residential The BASE residential load profiles are five EnergyPlus models (one per climate region) representing 2009 IECC construction single-family detached homes simulated in all TMY3 locations. No older or newer vintages of buildings are represented. Each of the five climate regions include only one heating fuel type; electric heating is only found in the Hot-Humid climate. Air conditioning is not found in the Marine climate region. One major issue with the residential profiles is that for each of the five climate zones, certain location-specific algorithms from one city were applied to entire climate zones. For example, in the Hot-Humid files, the heating season calculated for Tampa, FL (December 1 - March 31) was unknowingly applied to all other locations in the Hot-Humid zone, which restricts heating operation outside of those days (for example, heating is disabled in Dallas, TX during cold weather in November). This causes the heating energy to be artificially low in colder parts of that climate zone, and conversely the cooling season restriction leads to artificially low cooling energy use in hotter parts of each climate zone. Additionally, the ground temperatures for the representative city were used across the entire climate zone. This affects water heating energy use (because inlet cold water temperature depends on ground temperature) and heating/cooling energy use (because of ground heat transfer through foundation walls and floors). Representative cities were Tampa, FL (Hot-Humid), El Paso, TX (Mixed-Dry/Hot-Dry), Memphis, TN (Mixed-Humid), Arcata, CA (Marine), and Billings, MT (Cold/Very-Cold). The residential dataset includes a HIGH building load profile that was intended to provide a rough approximation of older home vintages, but it combines poor thermal insulation with larger house size, tighter thermostat setpoints, and less efficient HVAC equipment. Conversely, the LOW building combines excellent thermal insulation with smaller house size, wider thermostat setpoints, and more efficient HVAC equipment. However, it is not known how well these ...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25984/1788456&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25984/1788456&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Ridley, Jeff; Menary, Matthew; Kuhlbrodt, Till; Andrews, Martin; Andrews, Tim;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.CMIP.MOHC.HadGEM3-GC31-MM.historical' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The HadGEM3-GC3.1-N216ORCA025 climate model, released in 2016, includes the following components: aerosol: UKCA-GLOMAP-mode, atmos: MetUM-HadGEM3-GA7.1 (N216; 432 x 324 longitude/latitude; 85 levels; top level 85 km), land: JULES-HadGEM3-GL7.1, ocean: NEMO-HadGEM3-GO6.0 (eORCA025 tripolar primarily 0.25 deg; 1440 x 1205 longitude/latitude; 75 levels; top grid cell 0-1 m), seaIce: CICE-HadGEM3-GSI8 (eORCA025 tripolar primarily 0.25 deg; 1440 x 1205 longitude/latitude). The model was run by the Met Office Hadley Centre, Fitzroy Road, Exeter, Devon, EX1 3PB, UK (MOHC) in native nominal resolutions: aerosol: 100 km, atmos: 100 km, land: 100 km, ocean: 25 km, seaIce: 25 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmmohgmhi&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmmohgmhi&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: Stouffer, Ronald;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.ScenarioMIP.UA.MCM-UA-1-0' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The Manabe Climate Model v1.0 - University of Arizona climate model, released in 1991, includes the following components: aerosol: Modifies surface albedoes (Haywood et al. 1997, doi: 10.1175/1520-0442(1997)010<1562:GCMCOT>2.0.CO;2), atmos: R30L14 (3.75 X 2.5 degree (long-lat) configuration; 96 x 80 longitude/latitude; 14 levels; top level 0.015 sigma, 15 mb), land: Standard Manabe bucket hydrology scheme (Manabe 1969, doi: 10.1175/1520-0493(1969)097<0739:CATOC>2.3.CO;2), landIce: Specified location - invariant in time, has high albedo and latent heat capacity, ocean: MOM1.0 (MOM1, 1.875 X 2.5 deg; 192 x 80 longitude/latitude; 18 levels; top grid cell 0-40 m), seaIce: Thermodynamic ice model (free drift dynamics). The model was run by the Department of Geosciences, University of Arizona, Tucson, AZ 85721, USA (UA) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, land: 250 km, landIce: 250 km, ocean: 250 km, seaIce: 250 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6spuamu&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6spuamu&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Publisher:University of Bath Fosas, Daniel; Nikolaidou, Elli; Roberts, Matt; Allen, Stephen; Walker, Ian; Coley, David;doi: 10.15125/bath-00766
Dataset for the journal paper "Towards Active Buildings: rating grid-servicing buildings", which describes the simulations for the 20 case study buildings. The simulation inputs describe the intended characteristics as part of the early design stage process, and the outputs the performance metrics under the rating system introduced in the journal paper, called the ABCode1. Such outputs rate the relative merits of each case study in terms of embodied carbon, energy requirements, energy generation and energy flexibility. The simulation outputs have been generated using the inputs included in the dataset, which were then simulated in David Coley’s ZEBRA and then evaluated with the rating system proposed in the journal publication as part of ABCode1. The files are in the original Excel xlsx file (Microsoft Office 365), but it may be viewed by any other spread sheet tools such as LibreOffice's Calc.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15125/bath-00766&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15125/bath-00766&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu