- home
- Advanced Search
Filters
Clear All- Energy Research
- 13. Climate action
- 15. Life on land
- CH
- FR
- European Marine Science
- Energy Research
- 13. Climate action
- 15. Life on land
- CH
- FR
- European Marine Science
description Publicationkeyboard_double_arrow_right Article 2015Publisher:Norwegian Polar Institute Authors: Kedra, Monika; Pavlov, Alexey K.; Wegner, Carolyn; Forest, Alexandre;The Arctic is warming and losing sea ice. Happening at a much faster rate than previously expected, these changes are causing multiple ecosystem feedbacks in the Arctic Ocean. The Arctic in Rapid Transition (ART) initiative was developed by early-career scientists as an integrative, international, multidisciplinary, long-term pan-Arctic network to study changes and feedbacks among the physical and biogeochemical components of the Arctic Ocean and their ultimate impacts on biological productivity on different timescales. In 2012, ART jointly organized with the Association of Polar Early Career Scientists their second science workshop—Overcoming Challenges of Observation to Model Integration in Marine Ecosystem Response to Sea Ice Transitions—at the Institute of Oceanology, Polish Academy of Sciences, in Sopot. This workshop aimed to identify linkages and feedbacks between atmosphere–ice–ocean forcing and biogeochemical processes, which are critical for ecosystem function, land–ocean interactions and productive capacity of the Arctic Ocean. This special thematic cluster of Polar Research brings together seven papers that grew out of workgroup discussions. Papers examine the climate change impacts on various ecosystem elements, providing important insights on the marine ecological and biogeochemical processes on various timescales. They also highlight priority areas for future research.Keywords: Climate change; biogeochemical processes; forcing; ecosystem; sea ice; Arctic Ocean.(Published: 23 December 2015)Citation: Polar Research 2015, 34, 30684, http://dx.doi.org/10.3402/polar.v34.30684
Polar Research arrow_drop_down OceanRepArticle . 2015 . Peer-reviewedFull-Text: http://oceanrep.geomar.de/30848/1/Kedra.pdfData sources: OceanRepadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 1 selected citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Polar Research arrow_drop_down OceanRepArticle . 2015 . Peer-reviewedFull-Text: http://oceanrep.geomar.de/30848/1/Kedra.pdfData sources: OceanRepadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2022Publisher:American Association for the Advancement of Science (AAAS) Luisa Fontoura; Stephanie D’Agata; Majambo Gamoyo; Diego R. Barneche; Osmar J. Luiz; Elizabeth M. P. Madin; Linda Eggertsen; Joseph M. Maina;pmid: 35050678
The global decline of coral reefs has led to calls for strategies that reconcile biodiversity conservation and fisheries benefits. Still, considerable gaps in our understanding of the spatial ecology of ecosystem services remain. We combined spatial information on larval dispersal networks and estimates of human pressure to test the importance of connectivity for ecosystem service provision. We found that reefs receiving larvae from highly connected dispersal corridors were associated with high fish species richness. Generally, larval “sinks” contained twice as much fish biomass as “sources” and exhibited greater resilience to human pressure when protected. Despite their potential to support biodiversity persistence and sustainable fisheries, up to 70% of important dispersal corridors, sinks, and source reefs remain unprotected, emphasizing the need for increased protection of networks of well-connected reefs.
HAL-IRD arrow_drop_down Université de Bretagne Occidentale: HALArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.69 selected citations 69 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert HAL-IRD arrow_drop_down Université de Bretagne Occidentale: HALArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2016Publisher:Wiley Funded by:EC | DEVOTES, EC | BIOWEB, EC | COCONET +1 projectsEC| DEVOTES ,EC| BIOWEB ,EC| COCONET ,FCT| EVOLUTION OF MARINE BIODIVERSITY: LINKING NATURAL GENETIC VARIATION WITH PHENOTYPIC DIVERSITY IN THE SEASylvaine Giakoumi; François Guilhaumon; Salit Kark; Antonio Terlizzi; Joachim Claudet; Serena Felline; Carlo Cerrano; Marta Coll; Roberto Danovaro; Simonetta Fraschetti; Drosos Koutsoubas; Jean‐Batiste Ledoux; Tessa Mazor; Bastien Mérigot; Fiorenza Micheli; Stelios Katsanevakis;doi: 10.1111/ddi.12491
handle: 10261/143578 , 11588/740387 , 11368/2900528 , 11587/405566
AbstractAimBiological invasions are major contributors to global change and native biodiversity decline. However, they are overlooked in marine conservation plans. Here, we examine for the first time the extent to which marine conservation planning research has addressed (or ignored) biological invasions. Furthermore, we explore the change of spatial priorities in conservation plans when different approaches are used to incorporate the presence and impacts of invasive species.LocationGlobal analysis with a focus on the Mediterranean Sea region.MethodsWe conducted a systematic literature review consisting of three steps: (1) article selection using a search engine, (2) abstract screening and (3) review of pertinent articles, which were identified in the second step. The information extracted included the scale and geographical location of each case study as well as the approach followed regarding invasive species. We also applied the softwareMarxanto produce and compare conservation plans for the Mediterranean Sea that either protect, or avoid areas impacted by invasives, or ignore the issue. One case study focused on the protection of critical habitats, and the other on endemic fish species.ResultsWe found that of 119 papers on marine spatial plans in specific biogeographic regions, only three (2.5%) explicitly took into account invasive species. When comparing the different conservation plans for each case study, we found that the majority of selected sites for protection (ca. 80%) changed in the critical habitat case study, while this proportion was lower but substantial (27%) in the endemic fish species case study.Main conclusionsBiological invasions are being widely disregarded when planning for conservation in the marine environment across local to global scales. More explicit consideration of biological invasions can significantly alter spatial conservation priorities. Future conservation plans should explicitly account for biological invasions to optimize the selection of marine protected areas.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2017 . Peer-reviewedFull-Text: https://dx.doi.org/10.1111/ddi.12491Data sources: Recolector de Ciencia Abierta, RECOLECTADIGITAL.CSICArticle . 2017 . Peer-reviewedFull-Text: https://dx.doi.org/10.1111/ddi.12491Data sources: DIGITAL.CSICDiversity and DistributionsArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2016 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAArchiMer - Institutional Archive of IfremerOther literature type . 2016Data sources: ArchiMer - Institutional Archive of IfremerFEDOA - IRIS Università degli Studi Napoli Federico IIArticle . 2016Data sources: FEDOA - IRIS Università degli Studi Napoli Federico IIThe University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 59 selected citations 59 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 32visibility views 32 download downloads 50 Powered by
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2017 . Peer-reviewedFull-Text: https://dx.doi.org/10.1111/ddi.12491Data sources: Recolector de Ciencia Abierta, RECOLECTADIGITAL.CSICArticle . 2017 . Peer-reviewedFull-Text: https://dx.doi.org/10.1111/ddi.12491Data sources: DIGITAL.CSICDiversity and DistributionsArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2016 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAArchiMer - Institutional Archive of IfremerOther literature type . 2016Data sources: ArchiMer - Institutional Archive of IfremerFEDOA - IRIS Università degli Studi Napoli Federico IIArticle . 2016Data sources: FEDOA - IRIS Università degli Studi Napoli Federico IIThe University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Conference object , Review 2018Publisher:Wiley Gordon, T. A. C.; Harding, H. R.; Clever, F. K.; Davidson, I. K.; Davison, W.; Montgomery, D. W.; Weatherhead, R. C.; Windsor, F. M.; Armstrong, J. D.; Bardonnet, Agnes; Bergman, E.; Britton, J. R.; Côté, I. M.; d'Agostino, D.; Greenberg, L. A.; Harborne, A. R.; Kahilainen, K. K.; Metcalfe, N. B.; Mills, S. C.; Milner, N. J.; Mittermayer, F. H.; Montorio, Lucie; Nedelec, S. L.; Prokkola, J. M.; Rutterford, L. A.; Salvanes, A. G. V.; Simpson, S. D.; Vainikka, A.; Pinnegar, J. K.; Santos, E. M.;doi: 10.1111/jfb.13546
pmid: 29537086
Populations of fishes provide valuable services for billions of people, but face diverse and interacting threats that jeopardize their sustainability. Human population growth and intensifying resource use for food, water, energy and goods are compromising fish populations through a variety of mechanisms, including overfishing, habitat degradation and declines in water quality. The important challenges raised by these issues have been recognized and have led to considerable advances over past decades in managing and mitigating threats to fishes worldwide. In this review, we identify the major threats faced by fish populations alongside recent advances that are helping to address these issues. There are very significant efforts worldwide directed towards ensuring a sustainable future for the world's fishes and fisheries and those who rely on them. Although considerable challenges remain, by drawing attention to successful mitigation of threats to fish and fisheries we hope to provide the encouragement and direction that will allow these challenges to be overcome in the future.
CORE (RIOXX-UK Aggre... arrow_drop_down University of East Anglia digital repositoryArticle . 2018 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Newcastle University Library ePrints ServiceArticleLicense: CC BYFull-Text: https://eprints.ncl.ac.uk/261766Data sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2018License: CC BYFull-Text: https://www.ncbi.nlm.nih.gov/pubmed/29537086Data sources: Bielefeld Academic Search Engine (BASE)UEF eRepository (University of Eastern Finland)Article . 2018License: CC BYFull-Text: http://dx.doi.org/10.1111/jfb.13546Data sources: Bielefeld Academic Search Engine (BASE)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2018License: CC BYFull-Text: https://hdl.handle.net/11250/2993180Data sources: Bielefeld Academic Search Engine (BASE)Publikationer från Karlstads UniversitetArticle . 2018 . Peer-reviewedData sources: Publikationer från Karlstads UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2018 . Peer-reviewedBergen Open Research Archive - UiBArticle . 2018 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBUniversity of Bristol: Bristol ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen hybrid 56 selected citations 56 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE (RIOXX-UK Aggre... arrow_drop_down University of East Anglia digital repositoryArticle . 2018 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Newcastle University Library ePrints ServiceArticleLicense: CC BYFull-Text: https://eprints.ncl.ac.uk/261766Data sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2018License: CC BYFull-Text: https://www.ncbi.nlm.nih.gov/pubmed/29537086Data sources: Bielefeld Academic Search Engine (BASE)UEF eRepository (University of Eastern Finland)Article . 2018License: CC BYFull-Text: http://dx.doi.org/10.1111/jfb.13546Data sources: Bielefeld Academic Search Engine (BASE)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2018License: CC BYFull-Text: https://hdl.handle.net/11250/2993180Data sources: Bielefeld Academic Search Engine (BASE)Publikationer från Karlstads UniversitetArticle . 2018 . Peer-reviewedData sources: Publikationer från Karlstads UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2018 . Peer-reviewedBergen Open Research Archive - UiBArticle . 2018 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBUniversity of Bristol: Bristol ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2022Publisher:American Meteorological Society Lavergne, Thomas; Kern, Stefan; Aaboe, Signe; Derby, Lauren; Dybkjaer, Gorm; Garric, Gilles; Heil, Petra; Hendricks, Stefan; Holfort, Jürgen; Howell, Stephen; Key, Jeffrey; Lieser, Jan; Maksym, Ted; Maslowski, Wieslaw; Meier, Walt; Muñoz-Sabater, Joaquín; Nicolas, Julien; Ozsoy, Burcu; Rabe, Benjamin; Rack, Wolfgang; Raphael, Marilyn; de Rosnay, Patricia; Smolyanitsky, Vasily; Tietsche, Steffen; Ukita, Jinro; Vichi, Marcello; Wagner, Penelope M.; Willmes, Sascha; Zhao, Xi;handle: 1912/29138
Abstract Climate observations inform about the past and present state of the climate system. They underpin climate science, feed into policies for adaptation and mitigation, and increase awareness of the impacts of climate change. The Global Climate Observing System (GCOS), a body of the World Meteorological Organization (WMO), assesses the maturity of the required observing system and gives guidance for its development. The Essential Climate Variables (ECVs) are central to GCOS, and the global community must monitor them with the highest standards in the form of Climate Data Records (CDR). Today, a single ECV—the sea ice ECV—encapsulates all aspects of the sea ice environment. In the early 1990s it was a single variable (sea ice concentration) but is today an umbrella for four variables (adding thickness, edge/extent, and drift). In this contribution, we argue that GCOS should from now on consider a set of seven ECVs (sea ice concentration, thickness, snow depth, surface temperature, surface albedo, age, and drift). These seven ECVs are critical and cost effective to monitor with existing satellite Earth observation capability. We advise against placing these new variables under the umbrella of the single sea ice ECV. To start a set of distinct ECVs is indeed critical to avoid adding to the suboptimal situation we experience today and to reconcile the sea ice variables with the practice in other ECV domains.
Bulletin of the Amer... arrow_drop_down Bulletin of the American Meteorological SocietyArticle . 2022 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.13 selected citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Bulletin of the Amer... arrow_drop_down Bulletin of the American Meteorological SocietyArticle . 2022 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2024Publisher:Wiley Publicly fundedFunded by:AKA | Genomic tools for the ass...AKA| Genomic tools for the assessment of trait changes in managed fish populationsK. K. S. Layton; M. S. O. Brieuc; R. Castilho; N. Diaz‐Arce; D. Estévez‐Barcia; V. G. Fonseca; A. P. Fuentes‐Pardo; N. W. Jeffery; B. Jiménez‐Mena; C. Junge; J. Kaufmann; T. Leinonen; S. M. Maes; P. McGinnity; T. E. Reed; C. M. O. Reisser; G. Silva; A. Vasemägi; I. R. Bradbury;AbstractClimate change is restructuring biodiversity on multiple scales and there is a pressing need to understand the downstream ecological and genomic consequences of this change. Recent advancements in the field of eco‐evolutionary genomics have sought to include evolutionary processes in forecasting species' responses to climate change (e.g., genomic offset), but to date, much of this work has focused on terrestrial species. Coastal and offshore species, and the fisheries they support, may be even more vulnerable to climate change than their terrestrial counterparts, warranting a critical appraisal of these approaches in marine systems. First, we synthesize knowledge about the genomic basis of adaptation in marine species, and then we discuss the few examples where genomic forecasting has been applied in marine systems. Next, we identify the key challenges in validating genomic offset estimates in marine species, and we advocate for the inclusion of historical sampling data and hindcasting in the validation phase. Lastly, we describe a workflow to guide marine managers in incorporating these predictions into the decision‐making process.
Sapientia Repositóri... arrow_drop_down Global Change BiologyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen 4 selected citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sapientia Repositóri... arrow_drop_down Global Change BiologyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2016Publisher:Elsevier BV Sourisseau, Marc; Jegou, Klet; Lunven, Michel; Quere, Julien; Gohin, Francis; Bryere, P.;pmid: 28073445
The frequency and distribution of high biomass blooms produced by two dinoflagellate species were analysed along the French continental shelf from 1998 to 2012. Two species were specifically studied: Karenia mikimotoi and Lepidodinium chlorophorum. Based on remote-sensing reflectances at six channels (410, 430, 480, 530, 550 and 670nm), satellite indices were created to discriminate the species forming the blooms. A comparison with observations showed that the identification was good for both species in spite of a lower specificity for L. chlorophorum. The overall analysis of the satellite indices, in association with some monitoring data and cruise observations, highlights the regularity of these events and their extent on the continental shelf. L. chlorophorum blooms may occur all along the South Coast of Brittany. All the coastal areas under the influence of river plumes and the stratified northern shelf area of the Western English Channel appear to be areas of bloom events for both species. These two species are likely to be in competitive exclusion as they share the same spatial distribution and the timing of their bloom is very close. Finally, due to the scarcity of off-shore observations, these satellite indices provide useful information regarding HABs management and the development of a warning system along the French coast.
Harmful Algae arrow_drop_down SPIRE - Sciences Po Institutional REpositoryArticle . 2016Data sources: SPIRE - Sciences Po Institutional REpositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.26 selected citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Harmful Algae arrow_drop_down SPIRE - Sciences Po Institutional REpositoryArticle . 2016Data sources: SPIRE - Sciences Po Institutional REpositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2018Publisher:Wiley Walcker, Romain; Gandois, Laure; Proisy, Christophe; Corenblit, Dov; Mougin, Éric; Laplanche, Christophe; Ray, Raghab; Fromard, François;doi: 10.1111/gcb.14100
pmid: 29474752
AbstractThe role of mangroves in the blue carbon stock is critical and requires special focus. Mangroves are carbon‐rich forests that are not in steady‐state equilibrium at the decadal time scale. Over the last decades, the structure and zonation of mangroves have been largely disturbed by coastal changes and land use conversions. The amount of time since the last disturbance is a key parameter determining forest structure, but it has so far been overlooked in mangrove carbon stock projections. In particular, the carbon sequestration rates among mangrove successional ages after (re)establishment are poorly quantified and not used in large‐scale estimations of the blue carbon stock. Here, it is hypothesized that ecosystem age structure significantly modulates mangrove carbon stocks. We analysed a 66‐year chronosequence of the aboveground and belowground biomass and soil carbon stock of mangroves in French Guiana, and we found that in the year after forest establishment on newly formed mud banks, the aboveground, belowground and soil carbon stocks averaged 23.56 ± 7.71, 13.04 ± 3.37 and 84.26 ± 64.14 (to a depth of 1 m) Mg C/ha, respectively. The mean annual increment (MAI) in the aboveground and belowground reservoirs was 23.56 × Age−0.52 and 13.20 × Age−0.64 Mg C ha−1 year−1, respectively, and the MAI in the soil carbon reservoir was 3.00 ± 1.80 Mg C ha−1 year−1. Our results show that the plant carbon sink capacity declines with ecosystem age, while the soil carbon sequestration rate remains constant over many years. We suggest that global projections of the above‐ and belowground reservoirs of the carbon stock need to account for mangrove age structures, which result from historical changes in coastal morphology. Our work anticipates joint international efforts to globally quantify the multidecadal mangrove carbon balance based on the combined use of age‐based parametric equations and time series of mangrove age maps at regional scales.
Horizon / Pleins tex... arrow_drop_down Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversité de Bretagne Occidentale: HALArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen 72 selected citations 72 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Horizon / Pleins tex... arrow_drop_down Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversité de Bretagne Occidentale: HALArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2012Publisher:Public Library of Science (PLoS) Valdivia, Nelson; Golléty, Claire; Migné, Aline; Davoult, Dominique; Molis, Markus;The temporal stability of aggregate community properties depends on the dynamics of the component species. Since species growth can compensate for the decline of other species, synchronous species dynamics can maintain stability (i.e. invariability) in aggregate properties such as community abundance and metabolism. In field experiments we tested the separate and interactive effects of two stressors associated with storminess--loss of a canopy-forming species and mechanical disturbances--on species synchrony and community respiration of intertidal hard-bottom communities on Helgoland Island, NE Atlantic. Treatments consisted of regular removal of the canopy-forming seaweed Fucus serratus and a mechanical disturbance applied once at the onset of the experiment in March 2006. The level of synchrony in species abundances was assessed from estimates of species percentage cover every three months until September 2007. Experiments at two sites consistently showed that canopy loss significantly reduced species synchrony. Mechanical disturbance had neither separate nor interactive effects on species synchrony. Accordingly, in situ measurements of CO(2)-fluxes showed that canopy loss, but not mechanical disturbances, significantly reduced net primary productivity and temporal variation in community respiration during emersion periods. Our results support the idea that compensatory dynamics may stabilise aggregate properties. They further suggest that the ecological consequences of the loss of a single structurally important species may be stronger than those derived from smaller-scale mechanical disturbances in natural ecosystems.
LAReferencia - Red F... arrow_drop_down University of St Andrews: Digital Research RepositoryArticle . 2013License: CC BYFull-Text: https://hdl.handle.net/10023/3501Data sources: Bielefeld Academic Search Engine (BASE)St Andrews Research RepositoryArticle . 2012 . Peer-reviewedData sources: St Andrews Research Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 25 selected citations 25 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert LAReferencia - Red F... arrow_drop_down University of St Andrews: Digital Research RepositoryArticle . 2013License: CC BYFull-Text: https://hdl.handle.net/10023/3501Data sources: Bielefeld Academic Search Engine (BASE)St Andrews Research RepositoryArticle . 2012 . Peer-reviewedData sources: St Andrews Research Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2013Publisher:Wiley Funded by:EC | TEEMBIO, NSERC, EC | FISHECOEC| TEEMBIO ,NSERC ,EC| FISHECOThuiller; W.; Münkemüller; T; Lavergne; S.; Mouillot; D.; Mouquet; N.; Schiffers; K. & Gravel; D;AbstractThe demand for projections of the future distribution of biodiversity has triggered an upsurge in modelling at the crossroads between ecology and evolution. Despite the enthusiasm around these so‐called biodiversity models, most approaches are still criticised for not integrating key processes known to shape species ranges and community structure. Developing an integrative modelling framework for biodiversity distribution promises to improve the reliability of predictions and to give a better understanding of the eco‐evolutionary dynamics of species and communities under changing environments. In this article, we briefly review some eco‐evolutionary processes and interplays among them, which are essential to provide reliable projections of species distributions and community structure. We identify gaps in theory, quantitative knowledge and data availability hampering the development of an integrated modelling framework. We argue that model development relying on a strong theoretical foundation is essential to inspire new models, manage complexity and maintain tractability. We support our argument with an example of a novel integrated model for species distribution modelling, derived from metapopulation theory, which accounts for abiotic constraints, dispersal, biotic interactions and evolution under changing environmental conditions. We hope such a perspective will motivate exciting and novel research, and challenge others to improve on our proposed approach.
Ecology Letters arrow_drop_down Ecology LettersArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefhttp://dx.doi.org/10.1111/ele....Article . Peer-reviewedData sources: European Union Open Data PortalJames Cook University, Australia: ResearchOnline@JCUArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesbronze 214 selected citations 214 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Ecology Letters arrow_drop_down Ecology LettersArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefhttp://dx.doi.org/10.1111/ele....Article . Peer-reviewedData sources: European Union Open Data PortalJames Cook University, Australia: ResearchOnline@JCUArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
description Publicationkeyboard_double_arrow_right Article 2015Publisher:Norwegian Polar Institute Authors: Kedra, Monika; Pavlov, Alexey K.; Wegner, Carolyn; Forest, Alexandre;The Arctic is warming and losing sea ice. Happening at a much faster rate than previously expected, these changes are causing multiple ecosystem feedbacks in the Arctic Ocean. The Arctic in Rapid Transition (ART) initiative was developed by early-career scientists as an integrative, international, multidisciplinary, long-term pan-Arctic network to study changes and feedbacks among the physical and biogeochemical components of the Arctic Ocean and their ultimate impacts on biological productivity on different timescales. In 2012, ART jointly organized with the Association of Polar Early Career Scientists their second science workshop—Overcoming Challenges of Observation to Model Integration in Marine Ecosystem Response to Sea Ice Transitions—at the Institute of Oceanology, Polish Academy of Sciences, in Sopot. This workshop aimed to identify linkages and feedbacks between atmosphere–ice–ocean forcing and biogeochemical processes, which are critical for ecosystem function, land–ocean interactions and productive capacity of the Arctic Ocean. This special thematic cluster of Polar Research brings together seven papers that grew out of workgroup discussions. Papers examine the climate change impacts on various ecosystem elements, providing important insights on the marine ecological and biogeochemical processes on various timescales. They also highlight priority areas for future research.Keywords: Climate change; biogeochemical processes; forcing; ecosystem; sea ice; Arctic Ocean.(Published: 23 December 2015)Citation: Polar Research 2015, 34, 30684, http://dx.doi.org/10.3402/polar.v34.30684
Polar Research arrow_drop_down OceanRepArticle . 2015 . Peer-reviewedFull-Text: http://oceanrep.geomar.de/30848/1/Kedra.pdfData sources: OceanRepadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 1 selected citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Polar Research arrow_drop_down OceanRepArticle . 2015 . Peer-reviewedFull-Text: http://oceanrep.geomar.de/30848/1/Kedra.pdfData sources: OceanRepadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2022Publisher:American Association for the Advancement of Science (AAAS) Luisa Fontoura; Stephanie D’Agata; Majambo Gamoyo; Diego R. Barneche; Osmar J. Luiz; Elizabeth M. P. Madin; Linda Eggertsen; Joseph M. Maina;pmid: 35050678
The global decline of coral reefs has led to calls for strategies that reconcile biodiversity conservation and fisheries benefits. Still, considerable gaps in our understanding of the spatial ecology of ecosystem services remain. We combined spatial information on larval dispersal networks and estimates of human pressure to test the importance of connectivity for ecosystem service provision. We found that reefs receiving larvae from highly connected dispersal corridors were associated with high fish species richness. Generally, larval “sinks” contained twice as much fish biomass as “sources” and exhibited greater resilience to human pressure when protected. Despite their potential to support biodiversity persistence and sustainable fisheries, up to 70% of important dispersal corridors, sinks, and source reefs remain unprotected, emphasizing the need for increased protection of networks of well-connected reefs.
HAL-IRD arrow_drop_down Université de Bretagne Occidentale: HALArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.69 selected citations 69 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert HAL-IRD arrow_drop_down Université de Bretagne Occidentale: HALArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2016Publisher:Wiley Funded by:EC | DEVOTES, EC | BIOWEB, EC | COCONET +1 projectsEC| DEVOTES ,EC| BIOWEB ,EC| COCONET ,FCT| EVOLUTION OF MARINE BIODIVERSITY: LINKING NATURAL GENETIC VARIATION WITH PHENOTYPIC DIVERSITY IN THE SEASylvaine Giakoumi; François Guilhaumon; Salit Kark; Antonio Terlizzi; Joachim Claudet; Serena Felline; Carlo Cerrano; Marta Coll; Roberto Danovaro; Simonetta Fraschetti; Drosos Koutsoubas; Jean‐Batiste Ledoux; Tessa Mazor; Bastien Mérigot; Fiorenza Micheli; Stelios Katsanevakis;doi: 10.1111/ddi.12491
handle: 10261/143578 , 11588/740387 , 11368/2900528 , 11587/405566
AbstractAimBiological invasions are major contributors to global change and native biodiversity decline. However, they are overlooked in marine conservation plans. Here, we examine for the first time the extent to which marine conservation planning research has addressed (or ignored) biological invasions. Furthermore, we explore the change of spatial priorities in conservation plans when different approaches are used to incorporate the presence and impacts of invasive species.LocationGlobal analysis with a focus on the Mediterranean Sea region.MethodsWe conducted a systematic literature review consisting of three steps: (1) article selection using a search engine, (2) abstract screening and (3) review of pertinent articles, which were identified in the second step. The information extracted included the scale and geographical location of each case study as well as the approach followed regarding invasive species. We also applied the softwareMarxanto produce and compare conservation plans for the Mediterranean Sea that either protect, or avoid areas impacted by invasives, or ignore the issue. One case study focused on the protection of critical habitats, and the other on endemic fish species.ResultsWe found that of 119 papers on marine spatial plans in specific biogeographic regions, only three (2.5%) explicitly took into account invasive species. When comparing the different conservation plans for each case study, we found that the majority of selected sites for protection (ca. 80%) changed in the critical habitat case study, while this proportion was lower but substantial (27%) in the endemic fish species case study.Main conclusionsBiological invasions are being widely disregarded when planning for conservation in the marine environment across local to global scales. More explicit consideration of biological invasions can significantly alter spatial conservation priorities. Future conservation plans should explicitly account for biological invasions to optimize the selection of marine protected areas.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2017 . Peer-reviewedFull-Text: https://dx.doi.org/10.1111/ddi.12491Data sources: Recolector de Ciencia Abierta, RECOLECTADIGITAL.CSICArticle . 2017 . Peer-reviewedFull-Text: https://dx.doi.org/10.1111/ddi.12491Data sources: DIGITAL.CSICDiversity and DistributionsArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2016 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAArchiMer - Institutional Archive of IfremerOther literature type . 2016Data sources: ArchiMer - Institutional Archive of IfremerFEDOA - IRIS Università degli Studi Napoli Federico IIArticle . 2016Data sources: FEDOA - IRIS Università degli Studi Napoli Federico IIThe University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 59 selected citations 59 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 32visibility views 32 download downloads 50 Powered by
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2017 . Peer-reviewedFull-Text: https://dx.doi.org/10.1111/ddi.12491Data sources: Recolector de Ciencia Abierta, RECOLECTADIGITAL.CSICArticle . 2017 . Peer-reviewedFull-Text: https://dx.doi.org/10.1111/ddi.12491Data sources: DIGITAL.CSICDiversity and DistributionsArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2016 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAArchiMer - Institutional Archive of IfremerOther literature type . 2016Data sources: ArchiMer - Institutional Archive of IfremerFEDOA - IRIS Università degli Studi Napoli Federico IIArticle . 2016Data sources: FEDOA - IRIS Università degli Studi Napoli Federico IIThe University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Conference object , Review 2018Publisher:Wiley Gordon, T. A. C.; Harding, H. R.; Clever, F. K.; Davidson, I. K.; Davison, W.; Montgomery, D. W.; Weatherhead, R. C.; Windsor, F. M.; Armstrong, J. D.; Bardonnet, Agnes; Bergman, E.; Britton, J. R.; Côté, I. M.; d'Agostino, D.; Greenberg, L. A.; Harborne, A. R.; Kahilainen, K. K.; Metcalfe, N. B.; Mills, S. C.; Milner, N. J.; Mittermayer, F. H.; Montorio, Lucie; Nedelec, S. L.; Prokkola, J. M.; Rutterford, L. A.; Salvanes, A. G. V.; Simpson, S. D.; Vainikka, A.; Pinnegar, J. K.; Santos, E. M.;doi: 10.1111/jfb.13546
pmid: 29537086
Populations of fishes provide valuable services for billions of people, but face diverse and interacting threats that jeopardize their sustainability. Human population growth and intensifying resource use for food, water, energy and goods are compromising fish populations through a variety of mechanisms, including overfishing, habitat degradation and declines in water quality. The important challenges raised by these issues have been recognized and have led to considerable advances over past decades in managing and mitigating threats to fishes worldwide. In this review, we identify the major threats faced by fish populations alongside recent advances that are helping to address these issues. There are very significant efforts worldwide directed towards ensuring a sustainable future for the world's fishes and fisheries and those who rely on them. Although considerable challenges remain, by drawing attention to successful mitigation of threats to fish and fisheries we hope to provide the encouragement and direction that will allow these challenges to be overcome in the future.
CORE (RIOXX-UK Aggre... arrow_drop_down University of East Anglia digital repositoryArticle . 2018 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Newcastle University Library ePrints ServiceArticleLicense: CC BYFull-Text: https://eprints.ncl.ac.uk/261766Data sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2018License: CC BYFull-Text: https://www.ncbi.nlm.nih.gov/pubmed/29537086Data sources: Bielefeld Academic Search Engine (BASE)UEF eRepository (University of Eastern Finland)Article . 2018License: CC BYFull-Text: http://dx.doi.org/10.1111/jfb.13546Data sources: Bielefeld Academic Search Engine (BASE)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2018License: CC BYFull-Text: https://hdl.handle.net/11250/2993180Data sources: Bielefeld Academic Search Engine (BASE)Publikationer från Karlstads UniversitetArticle . 2018 . Peer-reviewedData sources: Publikationer från Karlstads UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2018 . Peer-reviewedBergen Open Research Archive - UiBArticle . 2018 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBUniversity of Bristol: Bristol ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen hybrid 56 selected citations 56 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE (RIOXX-UK Aggre... arrow_drop_down University of East Anglia digital repositoryArticle . 2018 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Newcastle University Library ePrints ServiceArticleLicense: CC BYFull-Text: https://eprints.ncl.ac.uk/261766Data sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2018License: CC BYFull-Text: https://www.ncbi.nlm.nih.gov/pubmed/29537086Data sources: Bielefeld Academic Search Engine (BASE)UEF eRepository (University of Eastern Finland)Article . 2018License: CC BYFull-Text: http://dx.doi.org/10.1111/jfb.13546Data sources: Bielefeld Academic Search Engine (BASE)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2018License: CC BYFull-Text: https://hdl.handle.net/11250/2993180Data sources: Bielefeld Academic Search Engine (BASE)Publikationer från Karlstads UniversitetArticle . 2018 . Peer-reviewedData sources: Publikationer från Karlstads UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2018 . Peer-reviewedBergen Open Research Archive - UiBArticle . 2018 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBUniversity of Bristol: Bristol ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2022Publisher:American Meteorological Society Lavergne, Thomas; Kern, Stefan; Aaboe, Signe; Derby, Lauren; Dybkjaer, Gorm; Garric, Gilles; Heil, Petra; Hendricks, Stefan; Holfort, Jürgen; Howell, Stephen; Key, Jeffrey; Lieser, Jan; Maksym, Ted; Maslowski, Wieslaw; Meier, Walt; Muñoz-Sabater, Joaquín; Nicolas, Julien; Ozsoy, Burcu; Rabe, Benjamin; Rack, Wolfgang; Raphael, Marilyn; de Rosnay, Patricia; Smolyanitsky, Vasily; Tietsche, Steffen; Ukita, Jinro; Vichi, Marcello; Wagner, Penelope M.; Willmes, Sascha; Zhao, Xi;handle: 1912/29138
Abstract Climate observations inform about the past and present state of the climate system. They underpin climate science, feed into policies for adaptation and mitigation, and increase awareness of the impacts of climate change. The Global Climate Observing System (GCOS), a body of the World Meteorological Organization (WMO), assesses the maturity of the required observing system and gives guidance for its development. The Essential Climate Variables (ECVs) are central to GCOS, and the global community must monitor them with the highest standards in the form of Climate Data Records (CDR). Today, a single ECV—the sea ice ECV—encapsulates all aspects of the sea ice environment. In the early 1990s it was a single variable (sea ice concentration) but is today an umbrella for four variables (adding thickness, edge/extent, and drift). In this contribution, we argue that GCOS should from now on consider a set of seven ECVs (sea ice concentration, thickness, snow depth, surface temperature, surface albedo, age, and drift). These seven ECVs are critical and cost effective to monitor with existing satellite Earth observation capability. We advise against placing these new variables under the umbrella of the single sea ice ECV. To start a set of distinct ECVs is indeed critical to avoid adding to the suboptimal situation we experience today and to reconcile the sea ice variables with the practice in other ECV domains.
Bulletin of the Amer... arrow_drop_down Bulletin of the American Meteorological SocietyArticle . 2022 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.13 selected citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Bulletin of the Amer... arrow_drop_down Bulletin of the American Meteorological SocietyArticle . 2022 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2024Publisher:Wiley Publicly fundedFunded by:AKA | Genomic tools for the ass...AKA| Genomic tools for the assessment of trait changes in managed fish populationsK. K. S. Layton; M. S. O. Brieuc; R. Castilho; N. Diaz‐Arce; D. Estévez‐Barcia; V. G. Fonseca; A. P. Fuentes‐Pardo; N. W. Jeffery; B. Jiménez‐Mena; C. Junge; J. Kaufmann; T. Leinonen; S. M. Maes; P. McGinnity; T. E. Reed; C. M. O. Reisser; G. Silva; A. Vasemägi; I. R. Bradbury;AbstractClimate change is restructuring biodiversity on multiple scales and there is a pressing need to understand the downstream ecological and genomic consequences of this change. Recent advancements in the field of eco‐evolutionary genomics have sought to include evolutionary processes in forecasting species' responses to climate change (e.g., genomic offset), but to date, much of this work has focused on terrestrial species. Coastal and offshore species, and the fisheries they support, may be even more vulnerable to climate change than their terrestrial counterparts, warranting a critical appraisal of these approaches in marine systems. First, we synthesize knowledge about the genomic basis of adaptation in marine species, and then we discuss the few examples where genomic forecasting has been applied in marine systems. Next, we identify the key challenges in validating genomic offset estimates in marine species, and we advocate for the inclusion of historical sampling data and hindcasting in the validation phase. Lastly, we describe a workflow to guide marine managers in incorporating these predictions into the decision‐making process.
Sapientia Repositóri... arrow_drop_down Global Change BiologyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen 4 selected citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sapientia Repositóri... arrow_drop_down Global Change BiologyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2016Publisher:Elsevier BV Sourisseau, Marc; Jegou, Klet; Lunven, Michel; Quere, Julien; Gohin, Francis; Bryere, P.;pmid: 28073445
The frequency and distribution of high biomass blooms produced by two dinoflagellate species were analysed along the French continental shelf from 1998 to 2012. Two species were specifically studied: Karenia mikimotoi and Lepidodinium chlorophorum. Based on remote-sensing reflectances at six channels (410, 430, 480, 530, 550 and 670nm), satellite indices were created to discriminate the species forming the blooms. A comparison with observations showed that the identification was good for both species in spite of a lower specificity for L. chlorophorum. The overall analysis of the satellite indices, in association with some monitoring data and cruise observations, highlights the regularity of these events and their extent on the continental shelf. L. chlorophorum blooms may occur all along the South Coast of Brittany. All the coastal areas under the influence of river plumes and the stratified northern shelf area of the Western English Channel appear to be areas of bloom events for both species. These two species are likely to be in competitive exclusion as they share the same spatial distribution and the timing of their bloom is very close. Finally, due to the scarcity of off-shore observations, these satellite indices provide useful information regarding HABs management and the development of a warning system along the French coast.
Harmful Algae arrow_drop_down SPIRE - Sciences Po Institutional REpositoryArticle . 2016Data sources: SPIRE - Sciences Po Institutional REpositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.26 selected citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Harmful Algae arrow_drop_down SPIRE - Sciences Po Institutional REpositoryArticle . 2016Data sources: SPIRE - Sciences Po Institutional REpositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2018Publisher:Wiley Walcker, Romain; Gandois, Laure; Proisy, Christophe; Corenblit, Dov; Mougin, Éric; Laplanche, Christophe; Ray, Raghab; Fromard, François;doi: 10.1111/gcb.14100
pmid: 29474752
AbstractThe role of mangroves in the blue carbon stock is critical and requires special focus. Mangroves are carbon‐rich forests that are not in steady‐state equilibrium at the decadal time scale. Over the last decades, the structure and zonation of mangroves have been largely disturbed by coastal changes and land use conversions. The amount of time since the last disturbance is a key parameter determining forest structure, but it has so far been overlooked in mangrove carbon stock projections. In particular, the carbon sequestration rates among mangrove successional ages after (re)establishment are poorly quantified and not used in large‐scale estimations of the blue carbon stock. Here, it is hypothesized that ecosystem age structure significantly modulates mangrove carbon stocks. We analysed a 66‐year chronosequence of the aboveground and belowground biomass and soil carbon stock of mangroves in French Guiana, and we found that in the year after forest establishment on newly formed mud banks, the aboveground, belowground and soil carbon stocks averaged 23.56 ± 7.71, 13.04 ± 3.37 and 84.26 ± 64.14 (to a depth of 1 m) Mg C/ha, respectively. The mean annual increment (MAI) in the aboveground and belowground reservoirs was 23.56 × Age−0.52 and 13.20 × Age−0.64 Mg C ha−1 year−1, respectively, and the MAI in the soil carbon reservoir was 3.00 ± 1.80 Mg C ha−1 year−1. Our results show that the plant carbon sink capacity declines with ecosystem age, while the soil carbon sequestration rate remains constant over many years. We suggest that global projections of the above‐ and belowground reservoirs of the carbon stock need to account for mangrove age structures, which result from historical changes in coastal morphology. Our work anticipates joint international efforts to globally quantify the multidecadal mangrove carbon balance based on the combined use of age‐based parametric equations and time series of mangrove age maps at regional scales.
Horizon / Pleins tex... arrow_drop_down Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversité de Bretagne Occidentale: HALArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen 72 selected citations 72 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Horizon / Pleins tex... arrow_drop_down Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversité de Bretagne Occidentale: HALArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2012Publisher:Public Library of Science (PLoS) Valdivia, Nelson; Golléty, Claire; Migné, Aline; Davoult, Dominique; Molis, Markus;The temporal stability of aggregate community properties depends on the dynamics of the component species. Since species growth can compensate for the decline of other species, synchronous species dynamics can maintain stability (i.e. invariability) in aggregate properties such as community abundance and metabolism. In field experiments we tested the separate and interactive effects of two stressors associated with storminess--loss of a canopy-forming species and mechanical disturbances--on species synchrony and community respiration of intertidal hard-bottom communities on Helgoland Island, NE Atlantic. Treatments consisted of regular removal of the canopy-forming seaweed Fucus serratus and a mechanical disturbance applied once at the onset of the experiment in March 2006. The level of synchrony in species abundances was assessed from estimates of species percentage cover every three months until September 2007. Experiments at two sites consistently showed that canopy loss significantly reduced species synchrony. Mechanical disturbance had neither separate nor interactive effects on species synchrony. Accordingly, in situ measurements of CO(2)-fluxes showed that canopy loss, but not mechanical disturbances, significantly reduced net primary productivity and temporal variation in community respiration during emersion periods. Our results support the idea that compensatory dynamics may stabilise aggregate properties. They further suggest that the ecological consequences of the loss of a single structurally important species may be stronger than those derived from smaller-scale mechanical disturbances in natural ecosystems.
LAReferencia - Red F... arrow_drop_down University of St Andrews: Digital Research RepositoryArticle . 2013License: CC BYFull-Text: https://hdl.handle.net/10023/3501Data sources: Bielefeld Academic Search Engine (BASE)St Andrews Research RepositoryArticle . 2012 . Peer-reviewedData sources: St Andrews Research Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 25 selected citations 25 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert LAReferencia - Red F... arrow_drop_down University of St Andrews: Digital Research RepositoryArticle . 2013License: CC BYFull-Text: https://hdl.handle.net/10023/3501Data sources: Bielefeld Academic Search Engine (BASE)St Andrews Research RepositoryArticle . 2012 . Peer-reviewedData sources: St Andrews Research Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2013Publisher:Wiley Funded by:EC | TEEMBIO, NSERC, EC | FISHECOEC| TEEMBIO ,NSERC ,EC| FISHECOThuiller; W.; Münkemüller; T; Lavergne; S.; Mouillot; D.; Mouquet; N.; Schiffers; K. & Gravel; D;AbstractThe demand for projections of the future distribution of biodiversity has triggered an upsurge in modelling at the crossroads between ecology and evolution. Despite the enthusiasm around these so‐called biodiversity models, most approaches are still criticised for not integrating key processes known to shape species ranges and community structure. Developing an integrative modelling framework for biodiversity distribution promises to improve the reliability of predictions and to give a better understanding of the eco‐evolutionary dynamics of species and communities under changing environments. In this article, we briefly review some eco‐evolutionary processes and interplays among them, which are essential to provide reliable projections of species distributions and community structure. We identify gaps in theory, quantitative knowledge and data availability hampering the development of an integrated modelling framework. We argue that model development relying on a strong theoretical foundation is essential to inspire new models, manage complexity and maintain tractability. We support our argument with an example of a novel integrated model for species distribution modelling, derived from metapopulation theory, which accounts for abiotic constraints, dispersal, biotic interactions and evolution under changing environmental conditions. We hope such a perspective will motivate exciting and novel research, and challenge others to improve on our proposed approach.
Ecology Letters arrow_drop_down Ecology LettersArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefhttp://dx.doi.org/10.1111/ele....Article . Peer-reviewedData sources: European Union Open Data PortalJames Cook University, Australia: ResearchOnline@JCUArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesbronze 214 selected citations 214 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Ecology Letters arrow_drop_down Ecology LettersArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefhttp://dx.doi.org/10.1111/ele....Article . Peer-reviewedData sources: European Union Open Data PortalJames Cook University, Australia: ResearchOnline@JCUArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
