- home
- Advanced Search
- Energy Research
- DE
- EU
- IT
- European Marine Science
- Energy Research
- DE
- EU
- IT
- European Marine Science
Research data keyboard_double_arrow_right Dataset 2020Publisher:Zenodo Funded by:EC | EdgeStressEC| EdgeStressThyrring, Jakob; Wegeberg, Susse; Blicher, Martin E.; Krause-Jensen, Dorte; Høgslund, Signe; Olesen, Birgit; Wiktor Jr, Jozef; Mouritsen, Kim N.; Peck, Lloyd S.; Sejr, Mikael K.;The data contains three supporting datasets: 1. Mid-intertidal data 2. Vertical transect data 3. GPS coordinates for all sites
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3920534&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3920534&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Collection , Dataset 2023Publisher:PANGAEA Ausems, Anne; Kuepper, Nadja; Archuby, Diego; Braun, Christina; Gębczyński, Andrzej; Gladbach, Anja; Hahn, Steffen; Jadwiszczak, Piotr; Krämer, Philipp; Libertelli, Marcela; Lorenz, Stefan; Richter, Benjamin; Ruß, Anja; Schmoll, Tim; Thorn, Simon; Turner, John; Wojczulanis-Jakubas, Katarzyna; Jakubas, Dariusz; Quillfeldt, Petra;This data set describes the population dynamics of Wilson's Storm Petrels (Oceanites oceanicus) at King George Island (Isla 25 de Mayo, Antarctica) over a forty year period (1978 – 2020). It includes all available data on Wilson's Storm Petrels from two colonies: around the Argentinian Base Carlini (62°14′S, 58°40′W; CA, formerly called Base Jubany) and the Henryk Arctowski Polish Antarctic Station (62°09′S, 58°27′W; HA). Data on population productivity (number of nests, eggs, chicks and fledglings) was collected by regular visits to the colonies and searching for nest burrows, or monitoring of the egg or chick if found. Data on adult abundance and estimated age categories (i.e., presence of foot spots; Quillfeldt et al. (2000, doi:10.1007/s003000000167) were collected at CA by using the same size mistnet every study year in the same location within the breeding colony. Chicks were measured regularly (varying intervals depending on the study) at both CA and HA. Chick tarsus was measured using callipers (vernier or digital depending on the study year) to the nearest 0.1 mm, chick wing length was measured using wing rulers to the nearest 1 mm, and chick body mass was measured using mechanical or digital scales depending on the study year to the nearest 0.1 g. Chick growth rates were calculated based on the linear growth period following Ausems et al. (2020, doi:10.1016/j.scitotenv.2020.138768). Chick food loads (g) were recorded at CA and determined based on changes in chick body mass on consecutive days (Gladbach et al. (2009, doi:10.1007/s00300-009-0628-z); Kuepper et al. (2018, doi:10.1016/j.cbpa.2018.06.018). This study was further supported by the Erasmus+ programm and thee German Academic Exchange Service (DAAD)
PANGAEA arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceCollection . 2023License: CC BY SAData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.963114&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert PANGAEA arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceCollection . 2023License: CC BY SAData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.963114&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2014Publisher:PANGAEA Funded by:DFG | Modelling flow over bedfo..., DFG | The Ocean Floor – Earth’s...DFG| Modelling flow over bedform fields in tidal environments ,DFG| The Ocean Floor – Earth’s Uncharted InterfaceZhuang, Guang-Chao; Lin, Yu-Shih; Elvert, Marcus; Heuer, Verena B; Hinrichs, Kai-Uwe;B2FIND arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2014License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.832454&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert B2FIND arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2014License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.832454&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Publisher:PANGAEA Funded by:AKA | Topoclimate, land surface..., EC | PETA-CARBAKA| Topoclimate, land surface conditions and atmospheric feedbacks ,EC| PETA-CARBKarjalainen, Olli; Luoto, Miska; Aalto, Juha; Etzelmüller, Bernd; Grosse, Guido; Jones, Benjamin M; Lilleøren, Karianne Staalesen; Hjort, Jan;This dataset contains spatial predictions of the potential environmental spaces for pingos, ice-wedge polygons and rock glaciers across the Northern Hemisphere permafrost areas. The potential environmental spaces, i.e. conditions where climate, topography and soil properties are suitable for landform presence, were predicted with statistical ensemble modelling employing geospatial data on environmental conditions at 30 arc-second resolution (~1 km). In addition to the baseline period (1950-2000), the predictions are provided for 2041-2060 and 2061-2080 using climate-forcing scenarios (Representative Concentration Pathways 4.5 and 8.5). The resulting dataset consists of five spatial predictions for each landform in GeoTIFF format.The data provide new information on 1) the fine-scale spatial distribution of permafrost landforms in the Northern Hemisphere, 2) the potential future alterations in the environmental suitability for permafrost landforms due to climate change, and 3) the circumpolar distribution of various ground ice types, and can 4) facilitate efforts to inventory permafrost landforms in incompletely mapped areas.
PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2020License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.922771&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2020License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.922771&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021 European UnionPublisher:NUI Galway Misurazioni orarie SMPS per Malin Head per l'anno 2019 Clima Chimica e Climate Change Network (AC3) Stazione: Testa di Malin (MLH) Le coordinate: 55º 22′ N, 7º 20′ O ALTITUDINE: 22 m s.l.m. Altezza di misura: 5 m Tipo di sito: fondo rurale Strumentazione: PALAS U200 SMPS Gamma di dati: 8-1200 nm (l'intestazione determina l'intervallo inferiore) Unità:[1/cm³] Tempo di consegna: TERMINI E CONDIZIONI Informazioni di base: Malin Head è l'attuale stazione meteorologica sinottica Met Eireann. Numero di serie dello strumento: Informazioni di calibrazione: Calibrato ogni 2 anni Погодинний вимірювання SMPS для Малін Голова на 2019 рік Хімія атмосфери та мережа змін клімату (AC3) Станція метро: Малін Голова (MLH) Географічні координати міста: 55° 22′ N, 7° 20′ ВТ ВИСОТА ПІДЙОМУ: 22 м с. Висота вимірювання: 5 м Тип сайту: сільський фон Вимірювальні прилади: ПАЛАС U200 SMPS Діапазон даних: 8-1200 нм (заголовок визначає нижній діапазон) Одиниці:[1/см³] Час роботи: СТВОРЕННЯ UTC Довідкова інформація: Малін Хед - існуюча синоптична метеорологічна станція Met Eireann. Серійний номер приладу: Інформація про калібрування: Калібрується кожні 2 роки Stundas SMPS mērījumi Malin Head 2019. gadam Atmosfēras ķīmijas un klimata pārmaiņu tīkls (AC3) Atrašanās vieta: Malin Head (MLH) Koordinātas: 55° 22′ ZIEMEĻU PLATUMA, 7° 20′ RIETUMU GARUMA, AUGSTUMS VIRS JŪRAS LĪMEŅA: 22 m asl Mērīšanas augstums: 5 m Vietnes tips: lauku vide Instrumenti: PALAS U200 SMPS Datu diapazons: 8–1200 nm (virsma nosaka zemāko diapazonu) Vienības:[1/cm³] Laiks: UTC UTC Vispārīga informācija: Malin Head ir esošā Met Eireann sinoptiskās meteoroloģijas stacija. Instrumenta sērijas numurs: Kalibrēšanas informācija: Kalibrēts ik pēc 2 gadiem Kejl fis-siegħa tal-SMPS għal Malin Head għas-sena 2019 Netwerk dwar il-Kimika u t-Tibdil fil-Klima (AC3) Stazzjon: Ras ta’ Malin (MLH) Koordinati: 55° 22′ N, 7° 20′ W ALTITUDNI: 22 m asl L-għoli tal-kejl: 5 m Tip ta’ sit: sfond rurali Strumentazzjoni: PALAS U200 SMPS Firxa ta’ dejta: 8–1200 nm (l-intestatura tiddetermina l-firxa aktar baxxa) Unitajiet:[1/cm³] Ħin: UTC Informazzjoni ta’ sfond: Malin Head huwa l-istazzjon eżistenti tal-meteoroloġija sinottika Met Eireann. Numru tas-serje tal-istrument: Informazzjoni ta’ kalibrazzjoni: Kalibrat kull sentejn Valandiniai SMPS matavimai Malin Head 2019 metams Atmosferos chemijos ir klimato kaitos tinklas (AC3) Stotelės: Malin Head (MLH) Koordinatės: 55° 22′ ŠIAURĖS PLATUMOS, 7° 20′ VAKARŲ ILGUMOS AUKŠTIS: 22 m asl Matavimo aukštis: 5 m Svetainės tipas: kaimo fonas Instrumentai: PALAS U200 SMPS Duomenų diapazonas: 8–1200 nm (antraštė nustato žemesnį diapazoną) Vienetų skaičius:[1/cm³] Laikas: UTC Pagrindinė informacija: Malin Head yra esama Met Eireann sinoptinės meteorologijos stotis. Priemonės serijos numeris: Kalibravimo informacija: Kalibruojama kas 2 metus Mediciones por hora de SMPS para Malin Head para el año 2019 Red de Química y Cambio Climático de la Atmósfera (AC3) De la estación: Malin Head (MLH) Coordenadas: 55.º 22′ N, 7.º 20′ O ALTURA: 22 m asl Altura de medición: 5 m Tipo de sitio: fondo rural Instrumentación: PALAS U200 SMPS Rango de datos: 8-1200 nm (la cabecera determina el rango inferior) Unidades:[1/cm³] Hora: UTC Información de antecedentes: Malin Head es la estación de meteorología sinóptica Met Eireann existente. Número de serie del instrumento: Información de calibración: Calibrado cada 2 años Medições horárias SMPS para Malin Head para o ano 2019 Rede de Química da Atmosfera e Alterações Climáticas (AC3) Estação: Cabeça de Malin (MLH) Coordenadas: 55.º 22′ N, 7.º 20′ W ALTITUDE: 22 m/sl Altura da medição: 5 m Tipo do site: contexto rural Instrumentação: PALAS U200 SMPS Gama de dados: 8-1200 nm (o cabeçalho determina o intervalo mais baixo) Unidades:[1/cm³] Hora: UTC Informações gerais: Malin Head é a estação de meteorologia sinóptica Met Eireann existente. Número de série do instrumento: Informações de calibração: Calibrado a cada 2 anos SMPS-metingen per uur voor Malin Head voor het jaar 2019 Netwerk van atmosfeerchemie en klimaatverandering (AC3) Locatie: Malin Hoofd (MLH) Coördinaten: 55° 22′ NOORDERBREEDTE, 7° 20′ WL HOOGTE: 22 m asl De hoogte van de meting: 5 m Soort site: landelijke achtergrond Instrumentatie: PALAS U200 SMPS Gegevensbereik: 8-1200 nm (header bepaalt een lager bereik) Eenheden:[1/cm³] Tijd: UTC Achtergrondinformatie: Malin Head is het bestaande synoptische meteorologisch station Met Eireann. Instrument serienummer: Kalibratie info: Om de 2 jaar gekalibreerd Почасови SMPS измервания за Malin Head за 2019 г. Мрежа за химия на атмосферата и изменение на климата (AC3) Станция: Malin Head (MLH) Координати: 55° 22′ С.Ш., 7° 20′ З.Д. ВИСОЧИНА:22 m asl Височина на измерване:5 м Тип на сайта:произход на селските райони Инструментална апаратура:PALAS U200 SMPS Обхват на данните:8—1200 nm (главата определя долен обхват) Единици:[1/cm³] Време:UTC Основна информация: Malin Head е съществуващата метеорологична станция Met Eireann. Сериен номер на инструмента: Информация за калибриране: Калибрирани на всеки 2 години Mesures horaires SMPS pour Malin Head pour l’année 2019 Réseau de chimie de l’atmosphère et du changement climatique (AC3) Station: Tête de Malin (MLH) Coordonnées: 55° 22′ N, 7° 20′ O ALTITUDE:22 m asl Hauteur de mesure:5 m Type de site:milieu rural Instrumentation:PALAS U200 SMPS Plage de données:8-1200 nm (l’en-tête détermine la plage inférieure) Unités:[1/cm³] Temps:UTC Informations générales: Malin Head est la station météorologique synoptique de Met Eireann. Numéro de série de l’instrument: Informations d’étalonnage: Calibré tous les 2 ans
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r3c4b2081b22::34b7896afd80eb796859fcdc532b165b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r3c4b2081b22::34b7896afd80eb796859fcdc532b165b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2019Publisher:Zenodo Funded by:EC | MARINET, EC | MARINET2EC| MARINET ,EC| MARINET2Authors: Domagalski, Piotr; Sætran, Lars Roar;Herewith we present the extended 1Hz dataset of wind measurements from a Skipheia meteorological station on the island of Frøya on the western coast of Norway, Trondelag. The data binned in 10 min averages can be find at: https://doi.org/10.5281/zenodo.2557500 The site represents an exposed coastal wind climate with open sea, land and mixed fetch from various directions. UTM-coordinates of the Met-mast: 8.34251 E and 63.66638 N. See the map for details (NorwegianMapping Authority): https://www.norgeskart.no/#!?project=norgeskart&layers=1003&zoom=3&lat=7035885.49&lon=539601.41&markerLat=7077031.483032227&markerLon=170902.83203125&panel=searchOptionsPanel&sok=Titranveien Presented data were gathered between years 2009-2016. Data&hardware summary: Years 2009-2016: Mast2 equipped with 6 pairs of 2D sonic anemometers at 10, 16, 25, 40, 70, 100 m above the ground, independent temperature measurements at the same heights and near the ground; pressure and relative humidity from local meteostation (Sula, 20 km away). Years 2014-2016: Mast4 equipped with 2 pairs of 2D sonic anemometers at 40 and 100 m above the ground. The distance between the masts is 79 m. Data is binned in years and months and stored in a ‘*.txt’ tab-separated values file. Data column order is described in SkipheiaMast2_header.txt and SkipheiaMast4_header.txt, where WSx is the wind speed (m/s), WDx is the wind direction (360 deg), ATx is the air temperature (deg C) and x designates the instrument number. The instruments are numbered starting from the ground. Example: For Mast2 (6 pairs of anemometers, ground temperature + 6 temperature sensors on the mast) that means that AT0 is the ground temperature. WS1 and WS2 are wind speed records at 10 m level. WS3 and WS4 are wind speed records at 16 m. For Mast4 (2 pairs of anemometers) that means that WS1 and WS2 are wind speed records at 40 m level. WS3 and WS4 are wind speed records at 100 m. Detailed site description with wind climate description can be found in attached analysis: Site analysys.pdf. Additional information and analysis can be found in listed below works, using data from Frøya site: Bardal, L. M., & Sætran, L. R. (2016, September). Spatial correlation of atmospheric wind at scales relevant for large scale wind turbines. In Journal of Physics: Conference Series (Vol. 753, No. 3, p. 032033). IOP Publishing, doi:10.1088/1742-6596/753/3/032033, https://iopscience.iop.org/article/10.1088/1742-6596/753/3/032033/pdf Bardal, L. M., & Sætran, L. R. (2016). Wind gust factors in a coastal wind climate. Energy Procedia, 94, 417-424, https://doi.org/10.1016/j.egypro.2016.09.207 IEA Wind TCP Task 27 Compendium of IEA Wind TCP Task 27 Case Studies, Technical Report, Prepared by Ignacio Cruz Cruz, CIEMAT, Spain Trudy Forsyth, WAT, United States, October 2018; Chapter 1.8. https://community.ieawind.org/HigherLogic/System/DownloadDocumentFile.ashx?DocumentFileKey=8afc06ec-bb68-0be8-8481-6622e9e95ae7&forceDialog=0 Domagalski, P., Bardal, L. M., & Sætran, L. Vertical Wind Profiles in Non-neutral Conditions-Comparison of Models and Measurements from Froya. Journal of Offshore Mechanics and Arctic Engineering, doi: 10.1115/1.4041816, http://offshoremechanics.asmedigitalcollection.asme.org/article.aspx?articleid=2711333&resultClick=3 Møller, M., Domagalski, P., & Sætran, L. R. (2019, October). Characteristics of abnormal vertical wind profiles at a coastal site. In Journal of Physics: Conference Series (Vol. 1356, No. 1, p. 012030). IOP Publishing. https://iopscience.iop.org/article/10.1088/1742-6596/1356/1/012030 Møller, M., Domagalski, P., and Sætran, L. R.: Comparing Abnormalities in Onshore and Offshore Vertical Wind Profiles, Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2019-40 , in review, 2019.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3403362&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3403362&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:PANGAEA Authors: Bussmann, Ingeborg; Anselm, Norbert; Fischer, Philipp; von der Esch, Elisabeth;The main objective of this Sternfahrt-8, from 10th to 16th September 2021, was to assess the temporal variance of oceanographic real time data in the Elbe influence area of the German Bight (North Sea). Therefore, the participating Ships should repeat the same tracks for four days (see map). One ship (RV Uthörn) covered the western part between Cuxhaven and Heligoland, the second ship (RV Littorina) went to the northern part between Heligoland and Büsum and the third vessel (RV Ludwig Prandtl) should have covered the middle part of the study area, but due to vandalism damage it could not participate on the cruise. During the whole cruise chemical and physical data were recorded continuously along the tracks. Additionally, discrete water samples were taken on six stations along the way for further analysis in the laboratory. The latter data is not included in the present dataset, and can be accessed via https://doi.pangaea.de/10.1594/PANGAEA.963455. For more information about the MOSES campaign and the "Sternfahrten" cruises see article cited in references.
PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2024License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.971858&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2024License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.971858&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:PANGAEA Schild, Laura; Kruse, Stefan; Heim, Birgit; Stieg, Amelie; von Hippel, Barbara; Gloy, Josias; Smirnikov, Viktor; Töpfer, Nils; Troeva, Elena I; Pestryakova, Luidmila A; Herzschuh, Ulrike;Vegetation surveys were carried out in four different study areas in the Sakha Republic, Russia: in the mountainous region of the Verkhoyansk Range within the Oymyakonsky and Tomponsky District (Event EN21-201 - EN21-219), and in three lowland regions of Central Yakutia within the Churapchinsky, Tattinsky and the Megino-Kangalassky District (Event EN21220 - EN21264). The study area is located within the boreal forest biome that is underlain by permafrost soils. The aim was to record the projective ground vegetation in different boreal forest types studied during the RU-Land_2021_Yakutia summer field campaign in August and September 2021.Ground vegetation was surveyed for different vegetation types within a circular forest plot of 15m radius. Depending on the heterogeneity of the forest plot, multiple vegetation types (VA, VB, or VC) were chosen for the survey. The assignment of a vegetation type is always unique to a site. Their cover on the circular forest plot was recorded in percent.In total, 84 vegetation types at 58 forest plots were assessed. All data were collected by scientists form the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) Germany, the University of Potsdam Germany, and the North-Easter Federal University of Yakutsk (NEFU) Russia.
PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2023License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.955784&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2023License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.955784&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:PANGAEA Authors: Sánchez, Nicolás; Brüggemann, Daniel; Goldenberg, Silvan Urs;This data was collected as a part of a mesocosm study to investigate the ecosystem impacts of ocean alkalinity enhancement, within the EU H2020 OceanNETs project. Nine mesocosms were deployed in Taliarte Harbour (Gran Canaria, Spain) and were regularly sampled using integrated water samplers between 10th September-25th October 2021. A gradient design was used in this experiment with a total of nine different alkalinity concentrations. Seawater alkalinity ranged between ambient (0 µeq kg-1 added alkalinity, OAE0) and 2400 µeq kg-1 additional alkalinity (OAE2400). The alkalinity levels increased in equal intervals of 300 µeq kg-1 across nine mesocosms (OAE0, OAE300, OAE600, OAE900, OAE1200, OAE1500, OAE1800, OAE2100, OAE2400). This data set contains metazoan zooplankton biomass (µgC per L) from these nine mesocosms. Biomass was calculated based on zooplankton abundances transformed using carbon mass conversion factors. Metazoan zooplankton were sampled with apstein net (ø17cm, mesh size 55µm, 64.06285L) hauls taken every two days (except for days 5 and 9). Zooplankton were size fractioned and assessed in the correspondent size class (small: 55-200µm; medium: 200-500µm; large: 500µm-3mm). Within each size class, all organisms were counted and identified to the lowest possible taxonomic level, and developmental stages were differentiated where possible. Zooplankton abundances (individuals per L) converted to carbon biomass (µgC per L) using biomass conversion factors. Conversion factors are obtained from different sources (Sanchez et al. (in prep)). Briefly: i) metazoan zooplankton functional groups were sampled and measured for carbon biomass using an elemental analyser at specific points throughout the experiment, ii) individual zooplankton were photographed, measured, and their biovolumes and carbon masses derived using standard conversions cited in the literature, iii) zooplankton conversion factors from KOSMOS Gran Canaria 2019 (https://doi.pangaea.de/10.1594/PANGAEA.971765). The experiment, which lasted 33 days, was divided into four response phases (see Sánchez et al. (in prep)): i) pretreatment (days 1 to 4, treatment was implemented on day 4), ii) immediate (days 5-10), iii) shorter term (days 11-22), iv) longer term (days 23 to 33). This data set is associated to the submission by Paul et al. (in review) (https://doi.pangaea.de/10.1594/PANGAEA.966941), so we refer to this data set for basic parameters like water temperature, salinity, pH and carbonate chemistry, to avoid repetition.
PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2024License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.971764&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2024License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.971764&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Embargo end date: 25 Jul 2024Publisher:Dryad Cipriani, Vittoria; Goldenberg, Silvan; Connell, Sean; Ravasi, Timothy; Nagelkerken, Ivan;# Can niche plasticity mediate species persistence under ocean acidification? [https://doi.org/10.5061/dryad.x0k6djhtq](https://doi.org/10.5061/dryad.x0k6djhtq) This dataset originates from a study investigating the impact of ocean acidification on a temperate rocky reef fish assemblage using natural CO2 vents as analogues. The dataset covers various niche dimensions, including trophic, habitat, and behavioural niches. The study focused on how fish niches are modified in response to ocean acidification, assessing changes in breadth, shift, and overlap with other species between the acidified site and the control site. ## Description of the data and file structure #### Raw\_single\_niche\_data The “*Raw_single_niche_data*” dataset consists of seven spreadsheets, each sharing two essential columns: 'group' and 'community'. These columns are crucial for subsequent analysis using the SIBER framework. **group** = species * Common = common triplefin, *Forsterygion lapillum* * Yaldwyn = Yaldwyn’s triplefin, *Notoclinops yaldwyni* * Blue_eyed = blue-eyed triplefin, *Notoclinops segmentatus* * Blenny = crested blenny, *Parablennius laticlavius* **community** = treatment * C = control * V = CO2 vents **Description of the seven spreadsheets:** 1. **Isotopes -** the dataset includes ratios of 13C/12C and 15N/14N expressed in the conventional δ notation as parts per thousand deviation from international standards. Stable isotopes were derived from a total of 251 fishes collected across three years of sampling. iso1= δ13C iso2= δ15N 2. **Stomach volumetric** - The dataset includes estimated volumetric measures of stomach contents, where the volume contribution of each prey category relative to the total stomach content (100%) was visually estimated. Data were collected between 2018 and 2019. The stomach content was analysed with this method for common triplefin, Yaldwyn's triplefin, blue eyed triplefin and crested blenny. There are 19 prey categories. 3. **Stomach count** - All prey items were counted in 10 prey categories: copepods, ostracods, polychaetes, amphipods, gastropods, bivalves, tanaids, mites, isopods , and others. Digested items that were not identifiable were excluded from the analysis. The stomach content was analysed with this method for common triplefin, Yaldwyn's triplefin and blue eyed triplefin. 4. **Stomach biomass -** The dataset includes calculated biomass derived from the mass of prey subsamples within each category, multiplied by their count. 5. **Habitat** - The microhabitat occupied and habitat orientation (horizontal, angled and vertical) was recorded using free roaming visual surveys on SCUBA (February 2018). *Microhabitat types:* t. = turf algae <10 cm in height ca. = erect calcareous algae cca. = crustose coralline algae b. = bare rocky substratum sp. = encrusting fleshy green algae cobble. = cobbles (~0.5–2 cm in diameter) *Type of surface orientation:* hor = horizontal angle = angled vert = vertical 6. **Behaviour** - Behavioural variables quantified from underwater footage and expressed as rates per minute. The behaviours are: swimming, jumping, feeding, attacking and fleeing from an attack. 7. **Aquarium**: Data from an aquarium experiment involving *Forsterygion lapillum and Notoclinops yaldwyni*, showing the proportion of time spent in available habitat types to assess habitat preference in controlled conditions. Time in each habitat type and spent in activity was derived from video recordings of 10 minutes and expressed as a proportion of total observation time. Common = common triplefin, *Forsterygion lapillum* Yaldwyn = Yaldwyn’s triplefin, *Notoclinops yaldwyni* Common.c = common triplefin in presence of Yaldwyn’s triplefin Yaldwyn.c = Yaldwyn’s triplefin in presence of common triplefin turf.horizontal = time spent on horizontal turf substratum bare.horizontal = time spent on horizontal bare substratum turf.vertical = time spent on vertical turf substratum bottom = time spent on the bottom of the tank swimming = time spent swimming aquarium.wall = time spent on the walls of the tank switches = numbers of changes between habitats #### Unified\_overlap\_dataset The *“Unified_overlap_dataset”* consists of ten spreadsheets, each sharing “id”, “year”, “location” and “species “column (with few exceptions detailed). These first columns need to be factors for analysis using the Unified overlap framework. We used the R scripts provided in the original study ([Geange et al, 2011](https://doi.org/10.1111/j.2041-210X.2010.00070.x)), as detailed in the manuscript. Data for control and vents are in separate data sheets, with C = control and V = vent. **Id**: sample number **Year:** year the data were collected **Location:** North (n) or South (s), site location **Species**: fish species * Common = common triplefin, *Forsterygion lapillum* * Yaldwyn = Yaldwyn’s triplefin, *Notoclinops yaldwyni* * Blue_eyed = blue-eyed triplefin, *Notoclinops segmentatus* * Blenny = crested blenny, *Parablennius laticlavius* We used the same data as per previous section. **Isotopes C and Isotopes V:** * iso1= δ13C * iso2= δ15N **Diet V and Diet C:** For **stomach content**: we used only volumetric stomach content data as inclusive of all species of interest. It is not raw data, but we used the reduced dimension obtained from nonmetric multidimensional scaling (nMDS), thus the 2 columns resulting from this analysis are vol1 and vol2. Raw data are in the datasheet **Stomach volumetric** in the “*Raw_single_niche_data*” dataset. **Habitat association C and Habitat association V** / **Habitat - C and Habitat - V** For **Habitat association**, the columns are id, species, habitat and position. The habitat association for each species is categorical based on habitat occupied and position (e.g., turf - vertical). Information for Crested blenny were extracted from the behavioural video recordings (with each video being a replicate). The dataset is then linked to **Habitat cover** in both control (C) and vent (V) sites to determine the choice of the habitat based on habitat availability. Therefore, the habitat cover only presents the percentage cover of each habitat type at control and vent. *Habitat:* turf = turf algae <10 cm in height ca = erect calcareous algae cca = crustose coralline algae barren = bare rocky substratum sp = encrusting fleshy green algae cobble = cobbles (~0.5–2 cm in diameter) sand = sand *Position:* hor = horizontal angle = angled vert = vertical **Behaviour C and Behaviour V**: Behavioural variables quantified from underwater footage and expressed as rates per minute. The behaviours are: swimming, jumping, feeding, attacking and fleeing from an attack. Reference: Geange, S. W., Pledger, S., Burns, K. C., & Shima, J. S. (2011). A unified analysis of niche overlap incorporating data of different types. *Methods in Ecology and Evolution*, 2(2), 175-184. [https://doi.org/10.1111/j.2041-210X.2010.00070.x](https://doi.org/10.1111/j.2041-210X.2010.00070.x) We used a small hand net and a mixture of ethanol and clove oil to collect the four species of interest (Forsterygion lapillum, Notoclinops yaldwyni, Notoclinops segmentatus and Parablennius laticlavius) at both control and vent sites over four years. For stable isotope analysis, white muscle tissue was extracted from each fish and oven-dried at 60 °C. The dried tissue was subsequently ground using a ball mill. Powdered muscle tissue from each fish was individually weighed into tin capsules and analysed for stable δ 15N and δ13C isotopes. Samples were combusted in an elemental analyser (EuroVector, EuroEA) coupled to a mass spectrometer (Nu Instruments Horizon) at the University of Adelaide. We then analysed the isotopic niche in SIBER. For stomach content analysis the entire gut was extracted from each fish. Using a stereomicroscope, for count and biomass, all prey items in the stomach were counted first. For each prey category, well-preserved individuals were photographed and their mass was calculated based on length and width. The average mass per individual for each category was then multiplied by the count to determine total prey biomass. For the volumetric method, the volume contribution of each prey category relative to the total stomach content was visually estimated (algae were accounted for). Digested items that were not identifiable were excluded from the analysis. Each stomach content dataset was reduced to two dimensions with non-metric multidimensional scaling (nMDS) to be then analysed in SIBER. To assess habitat choice, visual surveys were conducted on SCUBA, to record the microhabitat type and orientation occupied by Forsterygion lapillum, Notoclinops yaldwyni and Notoclinops segmentatus. The resulting dataset comprised a total of 17 distinct combinations of habitat types and surface orientations. The dataset was simplified to two dimensions using correspondence analysis (CA) for subsequent SIBER analysis. Fish behaviour was assessed using GoPro cameras both in situ and during controlled aquarium experiments. In the field, recordings lasted 30 minutes across 4 days, with analysis conducted using VLC. Initial acclimation and periodic intervals (10 minutes every 5 minutes) were excluded from analysis. In controlled aquarium settings, individuals of Forsterygion lapillum and Notoclinops yaldwyni were observed both in isolation and paired. Their habitat preference, surface orientation, and activity levels were recorded for 10 minutes to assess behaviour independent of external influences. Both datasets were dimensionally reduced for analysis in SIBER: non-metric multidimensional scaling (nMDS) was applied to the in situ behavioral data, while principal component analysis (PCA) was used for the aquarium experiments. Unified analysis of niche overlap We quantified the local realised niche space for each fish species at control and vent along the four niche classes, adapting the data as follows: isotopes (continuous data): raw data. stomach content (continuous data): reduced dimension from the volumetric measure of the previous step. habitat association (elective score): habitat and orientation preference linked to Manly’s Alpha association matrix. behaviour (continuous data): raw data. Global change stressors can modify ecological niches of species, and hence alter ecological interactions within communities and food webs. Yet, some species might take advantage of a fast-changing environment, and allow species with high niche plasticity to thrive under climate change. We used natural CO2 vents to test the effects of ocean acidification on niche modifications of a temperate rocky reef fish assemblage. We quantified three ecological niche traits (overlap, shift, and breadth) across three key niche dimensions (trophic, habitat, and behavioural). Only one species increased its niche width along multiple niche dimensions (trophic and behavioural), shifted its niche in the remaining (habitat), and was the only species to experience a highly increased density (i.e. doubling) at vents. The other three species that showed slightly increased or declining densities at vents only displayed a niche width increase in one (habitat niche) out of seven niche metrics considered. This niche modification was likely in response to habitat simplification (transition to a system dominated by turf algae) under ocean acidification. We further show that at the vents, the less abundant fishes have a negligible competitive impact on the most abundant and common species. Hence, this species appears to expand its niche space overlapping with other species, consequently leading to lower abundances of the latter under elevated CO2. We conclude that niche plasticity across multiple dimensions could be a potential adaptation in fishes to benefit from a changing environment in a high-CO2 world.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.x0k6djhtq&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.x0k6djhtq&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2020Publisher:Zenodo Funded by:EC | EdgeStressEC| EdgeStressThyrring, Jakob; Wegeberg, Susse; Blicher, Martin E.; Krause-Jensen, Dorte; Høgslund, Signe; Olesen, Birgit; Wiktor Jr, Jozef; Mouritsen, Kim N.; Peck, Lloyd S.; Sejr, Mikael K.;The data contains three supporting datasets: 1. Mid-intertidal data 2. Vertical transect data 3. GPS coordinates for all sites
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3920534&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3920534&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Collection , Dataset 2023Publisher:PANGAEA Ausems, Anne; Kuepper, Nadja; Archuby, Diego; Braun, Christina; Gębczyński, Andrzej; Gladbach, Anja; Hahn, Steffen; Jadwiszczak, Piotr; Krämer, Philipp; Libertelli, Marcela; Lorenz, Stefan; Richter, Benjamin; Ruß, Anja; Schmoll, Tim; Thorn, Simon; Turner, John; Wojczulanis-Jakubas, Katarzyna; Jakubas, Dariusz; Quillfeldt, Petra;This data set describes the population dynamics of Wilson's Storm Petrels (Oceanites oceanicus) at King George Island (Isla 25 de Mayo, Antarctica) over a forty year period (1978 – 2020). It includes all available data on Wilson's Storm Petrels from two colonies: around the Argentinian Base Carlini (62°14′S, 58°40′W; CA, formerly called Base Jubany) and the Henryk Arctowski Polish Antarctic Station (62°09′S, 58°27′W; HA). Data on population productivity (number of nests, eggs, chicks and fledglings) was collected by regular visits to the colonies and searching for nest burrows, or monitoring of the egg or chick if found. Data on adult abundance and estimated age categories (i.e., presence of foot spots; Quillfeldt et al. (2000, doi:10.1007/s003000000167) were collected at CA by using the same size mistnet every study year in the same location within the breeding colony. Chicks were measured regularly (varying intervals depending on the study) at both CA and HA. Chick tarsus was measured using callipers (vernier or digital depending on the study year) to the nearest 0.1 mm, chick wing length was measured using wing rulers to the nearest 1 mm, and chick body mass was measured using mechanical or digital scales depending on the study year to the nearest 0.1 g. Chick growth rates were calculated based on the linear growth period following Ausems et al. (2020, doi:10.1016/j.scitotenv.2020.138768). Chick food loads (g) were recorded at CA and determined based on changes in chick body mass on consecutive days (Gladbach et al. (2009, doi:10.1007/s00300-009-0628-z); Kuepper et al. (2018, doi:10.1016/j.cbpa.2018.06.018). This study was further supported by the Erasmus+ programm and thee German Academic Exchange Service (DAAD)
PANGAEA arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceCollection . 2023License: CC BY SAData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.963114&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert PANGAEA arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceCollection . 2023License: CC BY SAData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.963114&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2014Publisher:PANGAEA Funded by:DFG | Modelling flow over bedfo..., DFG | The Ocean Floor – Earth’s...DFG| Modelling flow over bedform fields in tidal environments ,DFG| The Ocean Floor – Earth’s Uncharted InterfaceZhuang, Guang-Chao; Lin, Yu-Shih; Elvert, Marcus; Heuer, Verena B; Hinrichs, Kai-Uwe;B2FIND arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2014License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.832454&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert B2FIND arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2014License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.832454&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Publisher:PANGAEA Funded by:AKA | Topoclimate, land surface..., EC | PETA-CARBAKA| Topoclimate, land surface conditions and atmospheric feedbacks ,EC| PETA-CARBKarjalainen, Olli; Luoto, Miska; Aalto, Juha; Etzelmüller, Bernd; Grosse, Guido; Jones, Benjamin M; Lilleøren, Karianne Staalesen; Hjort, Jan;This dataset contains spatial predictions of the potential environmental spaces for pingos, ice-wedge polygons and rock glaciers across the Northern Hemisphere permafrost areas. The potential environmental spaces, i.e. conditions where climate, topography and soil properties are suitable for landform presence, were predicted with statistical ensemble modelling employing geospatial data on environmental conditions at 30 arc-second resolution (~1 km). In addition to the baseline period (1950-2000), the predictions are provided for 2041-2060 and 2061-2080 using climate-forcing scenarios (Representative Concentration Pathways 4.5 and 8.5). The resulting dataset consists of five spatial predictions for each landform in GeoTIFF format.The data provide new information on 1) the fine-scale spatial distribution of permafrost landforms in the Northern Hemisphere, 2) the potential future alterations in the environmental suitability for permafrost landforms due to climate change, and 3) the circumpolar distribution of various ground ice types, and can 4) facilitate efforts to inventory permafrost landforms in incompletely mapped areas.
PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2020License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.922771&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2020License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.922771&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021 European UnionPublisher:NUI Galway Misurazioni orarie SMPS per Malin Head per l'anno 2019 Clima Chimica e Climate Change Network (AC3) Stazione: Testa di Malin (MLH) Le coordinate: 55º 22′ N, 7º 20′ O ALTITUDINE: 22 m s.l.m. Altezza di misura: 5 m Tipo di sito: fondo rurale Strumentazione: PALAS U200 SMPS Gamma di dati: 8-1200 nm (l'intestazione determina l'intervallo inferiore) Unità:[1/cm³] Tempo di consegna: TERMINI E CONDIZIONI Informazioni di base: Malin Head è l'attuale stazione meteorologica sinottica Met Eireann. Numero di serie dello strumento: Informazioni di calibrazione: Calibrato ogni 2 anni Погодинний вимірювання SMPS для Малін Голова на 2019 рік Хімія атмосфери та мережа змін клімату (AC3) Станція метро: Малін Голова (MLH) Географічні координати міста: 55° 22′ N, 7° 20′ ВТ ВИСОТА ПІДЙОМУ: 22 м с. Висота вимірювання: 5 м Тип сайту: сільський фон Вимірювальні прилади: ПАЛАС U200 SMPS Діапазон даних: 8-1200 нм (заголовок визначає нижній діапазон) Одиниці:[1/см³] Час роботи: СТВОРЕННЯ UTC Довідкова інформація: Малін Хед - існуюча синоптична метеорологічна станція Met Eireann. Серійний номер приладу: Інформація про калібрування: Калібрується кожні 2 роки Stundas SMPS mērījumi Malin Head 2019. gadam Atmosfēras ķīmijas un klimata pārmaiņu tīkls (AC3) Atrašanās vieta: Malin Head (MLH) Koordinātas: 55° 22′ ZIEMEĻU PLATUMA, 7° 20′ RIETUMU GARUMA, AUGSTUMS VIRS JŪRAS LĪMEŅA: 22 m asl Mērīšanas augstums: 5 m Vietnes tips: lauku vide Instrumenti: PALAS U200 SMPS Datu diapazons: 8–1200 nm (virsma nosaka zemāko diapazonu) Vienības:[1/cm³] Laiks: UTC UTC Vispārīga informācija: Malin Head ir esošā Met Eireann sinoptiskās meteoroloģijas stacija. Instrumenta sērijas numurs: Kalibrēšanas informācija: Kalibrēts ik pēc 2 gadiem Kejl fis-siegħa tal-SMPS għal Malin Head għas-sena 2019 Netwerk dwar il-Kimika u t-Tibdil fil-Klima (AC3) Stazzjon: Ras ta’ Malin (MLH) Koordinati: 55° 22′ N, 7° 20′ W ALTITUDNI: 22 m asl L-għoli tal-kejl: 5 m Tip ta’ sit: sfond rurali Strumentazzjoni: PALAS U200 SMPS Firxa ta’ dejta: 8–1200 nm (l-intestatura tiddetermina l-firxa aktar baxxa) Unitajiet:[1/cm³] Ħin: UTC Informazzjoni ta’ sfond: Malin Head huwa l-istazzjon eżistenti tal-meteoroloġija sinottika Met Eireann. Numru tas-serje tal-istrument: Informazzjoni ta’ kalibrazzjoni: Kalibrat kull sentejn Valandiniai SMPS matavimai Malin Head 2019 metams Atmosferos chemijos ir klimato kaitos tinklas (AC3) Stotelės: Malin Head (MLH) Koordinatės: 55° 22′ ŠIAURĖS PLATUMOS, 7° 20′ VAKARŲ ILGUMOS AUKŠTIS: 22 m asl Matavimo aukštis: 5 m Svetainės tipas: kaimo fonas Instrumentai: PALAS U200 SMPS Duomenų diapazonas: 8–1200 nm (antraštė nustato žemesnį diapazoną) Vienetų skaičius:[1/cm³] Laikas: UTC Pagrindinė informacija: Malin Head yra esama Met Eireann sinoptinės meteorologijos stotis. Priemonės serijos numeris: Kalibravimo informacija: Kalibruojama kas 2 metus Mediciones por hora de SMPS para Malin Head para el año 2019 Red de Química y Cambio Climático de la Atmósfera (AC3) De la estación: Malin Head (MLH) Coordenadas: 55.º 22′ N, 7.º 20′ O ALTURA: 22 m asl Altura de medición: 5 m Tipo de sitio: fondo rural Instrumentación: PALAS U200 SMPS Rango de datos: 8-1200 nm (la cabecera determina el rango inferior) Unidades:[1/cm³] Hora: UTC Información de antecedentes: Malin Head es la estación de meteorología sinóptica Met Eireann existente. Número de serie del instrumento: Información de calibración: Calibrado cada 2 años Medições horárias SMPS para Malin Head para o ano 2019 Rede de Química da Atmosfera e Alterações Climáticas (AC3) Estação: Cabeça de Malin (MLH) Coordenadas: 55.º 22′ N, 7.º 20′ W ALTITUDE: 22 m/sl Altura da medição: 5 m Tipo do site: contexto rural Instrumentação: PALAS U200 SMPS Gama de dados: 8-1200 nm (o cabeçalho determina o intervalo mais baixo) Unidades:[1/cm³] Hora: UTC Informações gerais: Malin Head é a estação de meteorologia sinóptica Met Eireann existente. Número de série do instrumento: Informações de calibração: Calibrado a cada 2 anos SMPS-metingen per uur voor Malin Head voor het jaar 2019 Netwerk van atmosfeerchemie en klimaatverandering (AC3) Locatie: Malin Hoofd (MLH) Coördinaten: 55° 22′ NOORDERBREEDTE, 7° 20′ WL HOOGTE: 22 m asl De hoogte van de meting: 5 m Soort site: landelijke achtergrond Instrumentatie: PALAS U200 SMPS Gegevensbereik: 8-1200 nm (header bepaalt een lager bereik) Eenheden:[1/cm³] Tijd: UTC Achtergrondinformatie: Malin Head is het bestaande synoptische meteorologisch station Met Eireann. Instrument serienummer: Kalibratie info: Om de 2 jaar gekalibreerd Почасови SMPS измервания за Malin Head за 2019 г. Мрежа за химия на атмосферата и изменение на климата (AC3) Станция: Malin Head (MLH) Координати: 55° 22′ С.Ш., 7° 20′ З.Д. ВИСОЧИНА:22 m asl Височина на измерване:5 м Тип на сайта:произход на селските райони Инструментална апаратура:PALAS U200 SMPS Обхват на данните:8—1200 nm (главата определя долен обхват) Единици:[1/cm³] Време:UTC Основна информация: Malin Head е съществуващата метеорологична станция Met Eireann. Сериен номер на инструмента: Информация за калибриране: Калибрирани на всеки 2 години Mesures horaires SMPS pour Malin Head pour l’année 2019 Réseau de chimie de l’atmosphère et du changement climatique (AC3) Station: Tête de Malin (MLH) Coordonnées: 55° 22′ N, 7° 20′ O ALTITUDE:22 m asl Hauteur de mesure:5 m Type de site:milieu rural Instrumentation:PALAS U200 SMPS Plage de données:8-1200 nm (l’en-tête détermine la plage inférieure) Unités:[1/cm³] Temps:UTC Informations générales: Malin Head est la station météorologique synoptique de Met Eireann. Numéro de série de l’instrument: Informations d’étalonnage: Calibré tous les 2 ans
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r3c4b2081b22::34b7896afd80eb796859fcdc532b165b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r3c4b2081b22::34b7896afd80eb796859fcdc532b165b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2019Publisher:Zenodo Funded by:EC | MARINET, EC | MARINET2EC| MARINET ,EC| MARINET2Authors: Domagalski, Piotr; Sætran, Lars Roar;Herewith we present the extended 1Hz dataset of wind measurements from a Skipheia meteorological station on the island of Frøya on the western coast of Norway, Trondelag. The data binned in 10 min averages can be find at: https://doi.org/10.5281/zenodo.2557500 The site represents an exposed coastal wind climate with open sea, land and mixed fetch from various directions. UTM-coordinates of the Met-mast: 8.34251 E and 63.66638 N. See the map for details (NorwegianMapping Authority): https://www.norgeskart.no/#!?project=norgeskart&layers=1003&zoom=3&lat=7035885.49&lon=539601.41&markerLat=7077031.483032227&markerLon=170902.83203125&panel=searchOptionsPanel&sok=Titranveien Presented data were gathered between years 2009-2016. Data&hardware summary: Years 2009-2016: Mast2 equipped with 6 pairs of 2D sonic anemometers at 10, 16, 25, 40, 70, 100 m above the ground, independent temperature measurements at the same heights and near the ground; pressure and relative humidity from local meteostation (Sula, 20 km away). Years 2014-2016: Mast4 equipped with 2 pairs of 2D sonic anemometers at 40 and 100 m above the ground. The distance between the masts is 79 m. Data is binned in years and months and stored in a ‘*.txt’ tab-separated values file. Data column order is described in SkipheiaMast2_header.txt and SkipheiaMast4_header.txt, where WSx is the wind speed (m/s), WDx is the wind direction (360 deg), ATx is the air temperature (deg C) and x designates the instrument number. The instruments are numbered starting from the ground. Example: For Mast2 (6 pairs of anemometers, ground temperature + 6 temperature sensors on the mast) that means that AT0 is the ground temperature. WS1 and WS2 are wind speed records at 10 m level. WS3 and WS4 are wind speed records at 16 m. For Mast4 (2 pairs of anemometers) that means that WS1 and WS2 are wind speed records at 40 m level. WS3 and WS4 are wind speed records at 100 m. Detailed site description with wind climate description can be found in attached analysis: Site analysys.pdf. Additional information and analysis can be found in listed below works, using data from Frøya site: Bardal, L. M., & Sætran, L. R. (2016, September). Spatial correlation of atmospheric wind at scales relevant for large scale wind turbines. In Journal of Physics: Conference Series (Vol. 753, No. 3, p. 032033). IOP Publishing, doi:10.1088/1742-6596/753/3/032033, https://iopscience.iop.org/article/10.1088/1742-6596/753/3/032033/pdf Bardal, L. M., & Sætran, L. R. (2016). Wind gust factors in a coastal wind climate. Energy Procedia, 94, 417-424, https://doi.org/10.1016/j.egypro.2016.09.207 IEA Wind TCP Task 27 Compendium of IEA Wind TCP Task 27 Case Studies, Technical Report, Prepared by Ignacio Cruz Cruz, CIEMAT, Spain Trudy Forsyth, WAT, United States, October 2018; Chapter 1.8. https://community.ieawind.org/HigherLogic/System/DownloadDocumentFile.ashx?DocumentFileKey=8afc06ec-bb68-0be8-8481-6622e9e95ae7&forceDialog=0 Domagalski, P., Bardal, L. M., & Sætran, L. Vertical Wind Profiles in Non-neutral Conditions-Comparison of Models and Measurements from Froya. Journal of Offshore Mechanics and Arctic Engineering, doi: 10.1115/1.4041816, http://offshoremechanics.asmedigitalcollection.asme.org/article.aspx?articleid=2711333&resultClick=3 Møller, M., Domagalski, P., & Sætran, L. R. (2019, October). Characteristics of abnormal vertical wind profiles at a coastal site. In Journal of Physics: Conference Series (Vol. 1356, No. 1, p. 012030). IOP Publishing. https://iopscience.iop.org/article/10.1088/1742-6596/1356/1/012030 Møller, M., Domagalski, P., and Sætran, L. R.: Comparing Abnormalities in Onshore and Offshore Vertical Wind Profiles, Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2019-40 , in review, 2019.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3403362&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3403362&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:PANGAEA Authors: Bussmann, Ingeborg; Anselm, Norbert; Fischer, Philipp; von der Esch, Elisabeth;The main objective of this Sternfahrt-8, from 10th to 16th September 2021, was to assess the temporal variance of oceanographic real time data in the Elbe influence area of the German Bight (North Sea). Therefore, the participating Ships should repeat the same tracks for four days (see map). One ship (RV Uthörn) covered the western part between Cuxhaven and Heligoland, the second ship (RV Littorina) went to the northern part between Heligoland and Büsum and the third vessel (RV Ludwig Prandtl) should have covered the middle part of the study area, but due to vandalism damage it could not participate on the cruise. During the whole cruise chemical and physical data were recorded continuously along the tracks. Additionally, discrete water samples were taken on six stations along the way for further analysis in the laboratory. The latter data is not included in the present dataset, and can be accessed via https://doi.pangaea.de/10.1594/PANGAEA.963455. For more information about the MOSES campaign and the "Sternfahrten" cruises see article cited in references.
PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2024License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.971858&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2024License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.971858&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:PANGAEA Schild, Laura; Kruse, Stefan; Heim, Birgit; Stieg, Amelie; von Hippel, Barbara; Gloy, Josias; Smirnikov, Viktor; Töpfer, Nils; Troeva, Elena I; Pestryakova, Luidmila A; Herzschuh, Ulrike;Vegetation surveys were carried out in four different study areas in the Sakha Republic, Russia: in the mountainous region of the Verkhoyansk Range within the Oymyakonsky and Tomponsky District (Event EN21-201 - EN21-219), and in three lowland regions of Central Yakutia within the Churapchinsky, Tattinsky and the Megino-Kangalassky District (Event EN21220 - EN21264). The study area is located within the boreal forest biome that is underlain by permafrost soils. The aim was to record the projective ground vegetation in different boreal forest types studied during the RU-Land_2021_Yakutia summer field campaign in August and September 2021.Ground vegetation was surveyed for different vegetation types within a circular forest plot of 15m radius. Depending on the heterogeneity of the forest plot, multiple vegetation types (VA, VB, or VC) were chosen for the survey. The assignment of a vegetation type is always unique to a site. Their cover on the circular forest plot was recorded in percent.In total, 84 vegetation types at 58 forest plots were assessed. All data were collected by scientists form the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) Germany, the University of Potsdam Germany, and the North-Easter Federal University of Yakutsk (NEFU) Russia.
PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2023License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.955784&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2023License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.955784&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:PANGAEA Authors: Sánchez, Nicolás; Brüggemann, Daniel; Goldenberg, Silvan Urs;This data was collected as a part of a mesocosm study to investigate the ecosystem impacts of ocean alkalinity enhancement, within the EU H2020 OceanNETs project. Nine mesocosms were deployed in Taliarte Harbour (Gran Canaria, Spain) and were regularly sampled using integrated water samplers between 10th September-25th October 2021. A gradient design was used in this experiment with a total of nine different alkalinity concentrations. Seawater alkalinity ranged between ambient (0 µeq kg-1 added alkalinity, OAE0) and 2400 µeq kg-1 additional alkalinity (OAE2400). The alkalinity levels increased in equal intervals of 300 µeq kg-1 across nine mesocosms (OAE0, OAE300, OAE600, OAE900, OAE1200, OAE1500, OAE1800, OAE2100, OAE2400). This data set contains metazoan zooplankton biomass (µgC per L) from these nine mesocosms. Biomass was calculated based on zooplankton abundances transformed using carbon mass conversion factors. Metazoan zooplankton were sampled with apstein net (ø17cm, mesh size 55µm, 64.06285L) hauls taken every two days (except for days 5 and 9). Zooplankton were size fractioned and assessed in the correspondent size class (small: 55-200µm; medium: 200-500µm; large: 500µm-3mm). Within each size class, all organisms were counted and identified to the lowest possible taxonomic level, and developmental stages were differentiated where possible. Zooplankton abundances (individuals per L) converted to carbon biomass (µgC per L) using biomass conversion factors. Conversion factors are obtained from different sources (Sanchez et al. (in prep)). Briefly: i) metazoan zooplankton functional groups were sampled and measured for carbon biomass using an elemental analyser at specific points throughout the experiment, ii) individual zooplankton were photographed, measured, and their biovolumes and carbon masses derived using standard conversions cited in the literature, iii) zooplankton conversion factors from KOSMOS Gran Canaria 2019 (https://doi.pangaea.de/10.1594/PANGAEA.971765). The experiment, which lasted 33 days, was divided into four response phases (see Sánchez et al. (in prep)): i) pretreatment (days 1 to 4, treatment was implemented on day 4), ii) immediate (days 5-10), iii) shorter term (days 11-22), iv) longer term (days 23 to 33). This data set is associated to the submission by Paul et al. (in review) (https://doi.pangaea.de/10.1594/PANGAEA.966941), so we refer to this data set for basic parameters like water temperature, salinity, pH and carbonate chemistry, to avoid repetition.
PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2024License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.971764&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2024License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.971764&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Embargo end date: 25 Jul 2024Publisher:Dryad Cipriani, Vittoria; Goldenberg, Silvan; Connell, Sean; Ravasi, Timothy; Nagelkerken, Ivan;# Can niche plasticity mediate species persistence under ocean acidification? [https://doi.org/10.5061/dryad.x0k6djhtq](https://doi.org/10.5061/dryad.x0k6djhtq) This dataset originates from a study investigating the impact of ocean acidification on a temperate rocky reef fish assemblage using natural CO2 vents as analogues. The dataset covers various niche dimensions, including trophic, habitat, and behavioural niches. The study focused on how fish niches are modified in response to ocean acidification, assessing changes in breadth, shift, and overlap with other species between the acidified site and the control site. ## Description of the data and file structure #### Raw\_single\_niche\_data The “*Raw_single_niche_data*” dataset consists of seven spreadsheets, each sharing two essential columns: 'group' and 'community'. These columns are crucial for subsequent analysis using the SIBER framework. **group** = species * Common = common triplefin, *Forsterygion lapillum* * Yaldwyn = Yaldwyn’s triplefin, *Notoclinops yaldwyni* * Blue_eyed = blue-eyed triplefin, *Notoclinops segmentatus* * Blenny = crested blenny, *Parablennius laticlavius* **community** = treatment * C = control * V = CO2 vents **Description of the seven spreadsheets:** 1. **Isotopes -** the dataset includes ratios of 13C/12C and 15N/14N expressed in the conventional δ notation as parts per thousand deviation from international standards. Stable isotopes were derived from a total of 251 fishes collected across three years of sampling. iso1= δ13C iso2= δ15N 2. **Stomach volumetric** - The dataset includes estimated volumetric measures of stomach contents, where the volume contribution of each prey category relative to the total stomach content (100%) was visually estimated. Data were collected between 2018 and 2019. The stomach content was analysed with this method for common triplefin, Yaldwyn's triplefin, blue eyed triplefin and crested blenny. There are 19 prey categories. 3. **Stomach count** - All prey items were counted in 10 prey categories: copepods, ostracods, polychaetes, amphipods, gastropods, bivalves, tanaids, mites, isopods , and others. Digested items that were not identifiable were excluded from the analysis. The stomach content was analysed with this method for common triplefin, Yaldwyn's triplefin and blue eyed triplefin. 4. **Stomach biomass -** The dataset includes calculated biomass derived from the mass of prey subsamples within each category, multiplied by their count. 5. **Habitat** - The microhabitat occupied and habitat orientation (horizontal, angled and vertical) was recorded using free roaming visual surveys on SCUBA (February 2018). *Microhabitat types:* t. = turf algae <10 cm in height ca. = erect calcareous algae cca. = crustose coralline algae b. = bare rocky substratum sp. = encrusting fleshy green algae cobble. = cobbles (~0.5–2 cm in diameter) *Type of surface orientation:* hor = horizontal angle = angled vert = vertical 6. **Behaviour** - Behavioural variables quantified from underwater footage and expressed as rates per minute. The behaviours are: swimming, jumping, feeding, attacking and fleeing from an attack. 7. **Aquarium**: Data from an aquarium experiment involving *Forsterygion lapillum and Notoclinops yaldwyni*, showing the proportion of time spent in available habitat types to assess habitat preference in controlled conditions. Time in each habitat type and spent in activity was derived from video recordings of 10 minutes and expressed as a proportion of total observation time. Common = common triplefin, *Forsterygion lapillum* Yaldwyn = Yaldwyn’s triplefin, *Notoclinops yaldwyni* Common.c = common triplefin in presence of Yaldwyn’s triplefin Yaldwyn.c = Yaldwyn’s triplefin in presence of common triplefin turf.horizontal = time spent on horizontal turf substratum bare.horizontal = time spent on horizontal bare substratum turf.vertical = time spent on vertical turf substratum bottom = time spent on the bottom of the tank swimming = time spent swimming aquarium.wall = time spent on the walls of the tank switches = numbers of changes between habitats #### Unified\_overlap\_dataset The *“Unified_overlap_dataset”* consists of ten spreadsheets, each sharing “id”, “year”, “location” and “species “column (with few exceptions detailed). These first columns need to be factors for analysis using the Unified overlap framework. We used the R scripts provided in the original study ([Geange et al, 2011](https://doi.org/10.1111/j.2041-210X.2010.00070.x)), as detailed in the manuscript. Data for control and vents are in separate data sheets, with C = control and V = vent. **Id**: sample number **Year:** year the data were collected **Location:** North (n) or South (s), site location **Species**: fish species * Common = common triplefin, *Forsterygion lapillum* * Yaldwyn = Yaldwyn’s triplefin, *Notoclinops yaldwyni* * Blue_eyed = blue-eyed triplefin, *Notoclinops segmentatus* * Blenny = crested blenny, *Parablennius laticlavius* We used the same data as per previous section. **Isotopes C and Isotopes V:** * iso1= δ13C * iso2= δ15N **Diet V and Diet C:** For **stomach content**: we used only volumetric stomach content data as inclusive of all species of interest. It is not raw data, but we used the reduced dimension obtained from nonmetric multidimensional scaling (nMDS), thus the 2 columns resulting from this analysis are vol1 and vol2. Raw data are in the datasheet **Stomach volumetric** in the “*Raw_single_niche_data*” dataset. **Habitat association C and Habitat association V** / **Habitat - C and Habitat - V** For **Habitat association**, the columns are id, species, habitat and position. The habitat association for each species is categorical based on habitat occupied and position (e.g., turf - vertical). Information for Crested blenny were extracted from the behavioural video recordings (with each video being a replicate). The dataset is then linked to **Habitat cover** in both control (C) and vent (V) sites to determine the choice of the habitat based on habitat availability. Therefore, the habitat cover only presents the percentage cover of each habitat type at control and vent. *Habitat:* turf = turf algae <10 cm in height ca = erect calcareous algae cca = crustose coralline algae barren = bare rocky substratum sp = encrusting fleshy green algae cobble = cobbles (~0.5–2 cm in diameter) sand = sand *Position:* hor = horizontal angle = angled vert = vertical **Behaviour C and Behaviour V**: Behavioural variables quantified from underwater footage and expressed as rates per minute. The behaviours are: swimming, jumping, feeding, attacking and fleeing from an attack. Reference: Geange, S. W., Pledger, S., Burns, K. C., & Shima, J. S. (2011). A unified analysis of niche overlap incorporating data of different types. *Methods in Ecology and Evolution*, 2(2), 175-184. [https://doi.org/10.1111/j.2041-210X.2010.00070.x](https://doi.org/10.1111/j.2041-210X.2010.00070.x) We used a small hand net and a mixture of ethanol and clove oil to collect the four species of interest (Forsterygion lapillum, Notoclinops yaldwyni, Notoclinops segmentatus and Parablennius laticlavius) at both control and vent sites over four years. For stable isotope analysis, white muscle tissue was extracted from each fish and oven-dried at 60 °C. The dried tissue was subsequently ground using a ball mill. Powdered muscle tissue from each fish was individually weighed into tin capsules and analysed for stable δ 15N and δ13C isotopes. Samples were combusted in an elemental analyser (EuroVector, EuroEA) coupled to a mass spectrometer (Nu Instruments Horizon) at the University of Adelaide. We then analysed the isotopic niche in SIBER. For stomach content analysis the entire gut was extracted from each fish. Using a stereomicroscope, for count and biomass, all prey items in the stomach were counted first. For each prey category, well-preserved individuals were photographed and their mass was calculated based on length and width. The average mass per individual for each category was then multiplied by the count to determine total prey biomass. For the volumetric method, the volume contribution of each prey category relative to the total stomach content was visually estimated (algae were accounted for). Digested items that were not identifiable were excluded from the analysis. Each stomach content dataset was reduced to two dimensions with non-metric multidimensional scaling (nMDS) to be then analysed in SIBER. To assess habitat choice, visual surveys were conducted on SCUBA, to record the microhabitat type and orientation occupied by Forsterygion lapillum, Notoclinops yaldwyni and Notoclinops segmentatus. The resulting dataset comprised a total of 17 distinct combinations of habitat types and surface orientations. The dataset was simplified to two dimensions using correspondence analysis (CA) for subsequent SIBER analysis. Fish behaviour was assessed using GoPro cameras both in situ and during controlled aquarium experiments. In the field, recordings lasted 30 minutes across 4 days, with analysis conducted using VLC. Initial acclimation and periodic intervals (10 minutes every 5 minutes) were excluded from analysis. In controlled aquarium settings, individuals of Forsterygion lapillum and Notoclinops yaldwyni were observed both in isolation and paired. Their habitat preference, surface orientation, and activity levels were recorded for 10 minutes to assess behaviour independent of external influences. Both datasets were dimensionally reduced for analysis in SIBER: non-metric multidimensional scaling (nMDS) was applied to the in situ behavioral data, while principal component analysis (PCA) was used for the aquarium experiments. Unified analysis of niche overlap We quantified the local realised niche space for each fish species at control and vent along the four niche classes, adapting the data as follows: isotopes (continuous data): raw data. stomach content (continuous data): reduced dimension from the volumetric measure of the previous step. habitat association (elective score): habitat and orientation preference linked to Manly’s Alpha association matrix. behaviour (continuous data): raw data. Global change stressors can modify ecological niches of species, and hence alter ecological interactions within communities and food webs. Yet, some species might take advantage of a fast-changing environment, and allow species with high niche plasticity to thrive under climate change. We used natural CO2 vents to test the effects of ocean acidification on niche modifications of a temperate rocky reef fish assemblage. We quantified three ecological niche traits (overlap, shift, and breadth) across three key niche dimensions (trophic, habitat, and behavioural). Only one species increased its niche width along multiple niche dimensions (trophic and behavioural), shifted its niche in the remaining (habitat), and was the only species to experience a highly increased density (i.e. doubling) at vents. The other three species that showed slightly increased or declining densities at vents only displayed a niche width increase in one (habitat niche) out of seven niche metrics considered. This niche modification was likely in response to habitat simplification (transition to a system dominated by turf algae) under ocean acidification. We further show that at the vents, the less abundant fishes have a negligible competitive impact on the most abundant and common species. Hence, this species appears to expand its niche space overlapping with other species, consequently leading to lower abundances of the latter under elevated CO2. We conclude that niche plasticity across multiple dimensions could be a potential adaptation in fishes to benefit from a changing environment in a high-CO2 world.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.x0k6djhtq&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.x0k6djhtq&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu