- home
- Advanced Search
- Energy Research
- Open Access
- Closed Access
- Open Source
- Embargo
- ES
- European Marine Science
- Energy Research
- Open Access
- Closed Access
- Open Source
- Embargo
- ES
- European Marine Science
description Publicationkeyboard_double_arrow_right Bachelor thesis 2018 SpainPublisher:Universitat Politècnica de Catalunya Authors: Landeira Fernández, Francisco; Díez Vázquez, Javier;handle: 2117/114807
[CASTELLÀ] En este trabajo de final de grado hemos realizado un prototipo mecánico capaz de captar la energía que se pierde de las olas del mar (energía undimotriz) en el espigón de Vilanova i la Geltrú. Estudiando y analizando los mecanismos y prototipos de las empresas actuales en el mercado, obtenemos unas ideas para nuestro dispositivo. A parte hemos analizado el comportamiento del oleaje en nuestro punto de estudio, que es en el espigón de la playa del faro (Vilanova i la Geltrú) y teniendo en cuenta el oleaje y las mareas, hemos diseñado un prototipo más idóneo para esta ubicación. Nuestra idea final trataría de poner varios dispositivos a lo largo del espigón para así de esta manera poder captar la máxima energía en esta zona. [ANGLÈS] In this final degree project we have made a mechanical prototype capable of capturing the energy that is lost from the waves of the sea (wave energy) in the breakwater of Vilanova i la Geltrú. By studying and analysing the mechanisms and prototypes of current companies in the market, we obtain some ideas for our device. We have also analysed the behaviour of the waves at our point of study, which is at the pier of the beach of the lighthouse (Vilanova i la Geltrú) and taking into account the waves and tides, we have designed a more suitable prototype for this location. Our final idea would try to put several devices along the jetty in order to capture the maximum energy in this area.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTABachelor thesis . 2018License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCBachelor thesis . 2018License: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=2117/114807&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTABachelor thesis . 2018License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCBachelor thesis . 2018License: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=2117/114807&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Embargo end date: 10 Mar 2022 SpainPublisher:Dryad Funded by:EC | DPaTh-To-AdaptEC| DPaTh-To-AdaptBennett, Scott; Marba, Nuria; Vaquer-Sunyer, Raquel; Jordá, Gabriel; Forteza, Marina; Roca, Guillem;handle: 10261/311232
[Experimental design: thermal performance experiments] All experiments were run in climate-controlled incubation facilities of the Institut Mediterrani d’Estudis Avançats (Mallorca, Spain). Following 48 hrs under ambient (collection site) conditions, samples were transferred to individual experimental aquaria, which consisted of a double layered transparent plastic bag filled with 2 L of filtered seawater (60 μm) (following Savva et al. 2018). 16 experimental bags were suspended within 80L temperature-controlled baths. In total, ten baths were used, one for each experimental temperature treatment. Bath temperatures were initially set to the acclimatization temperature (i.e. in situ temperatures) and were subsequently increased or decreased by 1 °C every 24 hours until the desired experimental temperature was achieved. Experimental temperatures were: 15, 18, 21, 24, 26, 28, 30, 32, 34 and 36°C (Table S2). For each species, four replicate aquarium bags were used for each temperature treatment with three individually marked seagrass shoots or three algal fragments placed into each bag. For P. oceanica, each marked plant was a single shoot including leaves, vertical rhizome and roots. For C. nodosa, each marked individual consisted of a 10 cm fragment of horizontal rhizome containing three vertical shoots. Individually marked seaweeds contained the holdfast, and 4-5 fronds of P. pavonica (0.98 ± 0.06 g FW; mean ± SE) or a standardised 5-8 cm fragment with meristematic tip for C. compressa (3.67 ± 0.1 g FW; mean ± SE). Experimental plants were cleaned of conspicuous epiphytes. Once the targeted temperatures were reached in all of the baths, experiments ran for 14 days for the algal species and 21 days for seagrasses to allow for measurable growth in all species at the end of the experiment. Experiments were conducted inside a temperature-controlled chamber at constant humidity and air temperature (15 °C). Bags were arranged in a 4x4 grid within each bath, enabling four species/population treatments to be run simultaneously. Bags were mixed within each bath so that one replicate bag was in each row and column of the grid, to minimise any potential within bath effects of bag position. Replicate bags were suspended with their surface kept open to allow gas exchange and were illuminated with a 14h light:10h dark photoperiod through fluorescent aquarium growth lamps. The water within the bags were mixed with aquaria pumps. The light intensity within each bag was measured via a photometric bulb sensor (LI-COR) and ranged between 180-258 μmol m-2 s-1. Light intensity was constant between experiments and did not significantly differ between experimental treatments (p > 0.05). The temperature in the baths was controlled and recorded with an IKS-AQUASTAR system, which was connected to heaters and thermometers. The seawater within the bags was renewed every 72 hrs and salinity was monitored daily with an YSI multi-parameter meter. Distilled water was added when necessary to ensure salinity levels remained within the range of 36-39 PSU, typical of the study region. Carbon and Nitrogen concentrations in the leaf tissue were measured at the end of the experiment for triplicates of the 24ºC treatment for each species and location (Fig. S2) at Unidade de Técnicas Instrumentais de Análise (University of Coruña, Spain) with an elemental analyser FlashEA112 (ThermoFinnigan). [Species description and distribution] The species used in this study are all common species throughout the Mediterranean Sea, although differ in their biological traits, evolutionary histories and thermo-geographic affinities (Fig. S1). P. oceanica is endemic to the Mediterranean Sea with the all other Posidonia species found in temperate Australia (Aires et al. 2011). The distribution of P. oceanica is restricted to the Mediterranean, spanning from Gibraltar in the west to Cyprus in the east and north into the Aegean and Adriatic seas (Telesca et al. 2015) (Fig. S1A). C. nodosa distribution extends across the Mediterranean Sea and eastern Atlantic Ocean, where it is found from south west Portugal, down the African coast to Mauritania and west to Macaronesia (Alberto et al. 2008) (Fig. S1B). Congeneric species of C. nodosa are found in tropical waters of the Red Sea and Indo-Pacific, suggesting origins in the region at least prior to the closure of the Suez Isthmus, approximately 10Mya. Like C. nodosa, Cystoseira compressa has a distribution that extends across the Mediterranean and into the eastern Atlantic, where it is found west to Macaronesia and south to northwest Africa (Fig. S1C). The genus Cystoseira has recently been reclassified to include just four species with all congeneric Cystoseira spp. having warm-temperate distributions from the Mediterranean to the eastern Atlantic (Orellana et al. 2019). The distribution of Padina pavonica is conservatively considered to resemble C. nodosa and C. compressa, spanning throughout the Mediterranean and into the eastern Atlantic. We considered the poleward distribution limit of P. pavonica to be the British Isles 50ºN (Herbert et al. 2016). P. pavonica was previously thought to have a global distribution, but molecular analysis of the genus has found no evidence to support this (Silberfeld et al. 2013). Instead it has been suggested that P. pavonica was potentially misclassified outside of the Mediterranean, due to morphological similarity with congeneric species (Silberfeld et al. 2013). Padina is a monophyletic genus with a worldwide distribution from tropical to cold temperate waters (Silberfeld et al. 2013). Most species have a regional distribution, with few confirmed examples of species spanning beyond a single marine realm (sensu Spalding et al. 2007). [Metabolic rates] Net production (NP), gross primary production (GPP) and respiration (R) were measured for all species from the four sites for five different experimental temperatures containing the in-situ temperature during sampling up to a 6ºC warming (see SM Table S3 for details). Individuals of the different species were moved to methacrylate cylinders containing seawater treated with UV radiation to remove bacteria and phytoplankton, in incubation tanks at the 5 selected temperatures. Cylinders were closed using gas-tight lids that prevent gas exchange with the atmosphere, containing an optical dissolved oxygen sensor (ODOS® IKS), with a measuring range from 0-200 % saturation and accuracy at 25ºC of 1% saturation, and magnetic stirrers inserted to ensure mixing along the height of the core. Triplicates were measured for each species and location, along with controls consisting in cylinders filled with the UV-treated seawater, in order to account for any residual production or respiration derived from microorganisms (changes in oxygen in controls was subtracted from treatments). Oxygen was measured continuously and recorded every 15 minutes for 24 hours. Changes in the dissolved oxygen (DO) were assumed to result from the biological metabolic processes and represent NP. During the night, changes in DO are assumed to be driven by R, as in the absence of light, no photosynthetic production can occur. R was calculated from the rate of change in oxygen at night, from half an hour after lights went off to half an hour before light went on (NP in darkness equalled R). NP was calculated from the rate of change in DO, at 15 min intervals, accumulated over each 24 h period. Assuming that daytime R equals that during the night, GPP was estimated as the sum of NP and R. To derive daily metabolic rates, we accumulated individual estimates of GPP, NP, and R resolved at 15 min intervals over each 24 h period during experiments and reported them in mmol O2 m−3 day−1. A detailed description of calculation of metabolic rates can be found at Vaquer-Sunyer et al. (Vaquer-Sunyer et al. 2015). [Thermal distribution and thermal safety margins] We estimated the realised thermal distribution for the four experimental species by downloading occurrence records from the Global Biodiversity Information Facility (GBIF.org (11/03/2020) GBIF Occurrence Download). Occurrence records from GBIF were screened for outliers and distributions were verified from the primary literature (Alberto et al. 2008, Draisma et al. 2010, Ni-Ni-Win et al. 2010, Silberfeld et al. 2013, Telesca et al. 2015, Orellana et al. 2019) and Enrique Ballesteros (pers. comms) (Fig. S1). Mean, 1st and 99th percentiles of daily SST’s were downloaded for each occurrence site for the period between 1981-2019 using the SST products described above (Table S4). Thermal range position of species at each experimental site were standardised by their global distribution using a Range Index (RI; Sagarin & Gaines 2002). Median SST at the experimental collection sites were standardized relative to the thermal range observed across a species realized distribution, using the equation: RI = 2(SM- DM)/DB where SM = the median temperature at the experimental collection site, Dm = the thermal midpoint of the species global thermal distribution and DB = range of median temperatures (ºC) that a species experiences across its distribution. The RI scales from -1 to 1, whereby ‘-1’ represents the cool, leading edge of a species distribution, ‘0’ represents the thermal midpoint of a species distribution and ‘1’ represents the warm, trailing edge of a species distribution (Sagarin & Gaines 2002). Thermal safety margins for each population were calculated as the difference between empirically derived upper thermal limits for each population and the maximum long term habitat temperatures recorded at collection sites. Each population’s thermal safety margin was plotted against its range position to examine patterns in thermal sensitivity across a species distribution. [Growth measurements and statistical analyses] Net growth rate of seagrass shoots was measured using leaf piercing-technique (Short & Duarte 2001). At the beginning of the experiment seagrass shoots were pierced just below the ligule with a syringe needle and shoot growth rate was estimated as the elongation of leaf tissue in between the ligule and the mark position of all leaves in a shoot at the end of the experiment, divided by the experimental duration. Net growth rate of macroalgae individuals was measured as the difference in wet weight at the end of the experiment from the beginning of the experiment divided by the duration of the experiment. Moisture on macroalgae specimens was carefully removed before weighing them. Patterns of growth in response to temperature were examined for each experimental population using a gaussian function: g = ke[-0.5(TMA-μ)2/σ2], where k = amplitude, μ = mean and σ = standard deviation of the curve. Best fit values for each parameter were determined using a non-linear least squares regression using the ‘nlstools’ package (Baty et al. 2015) in R (Team 2020). 95% CI for each of the parameters were calculated using non-parametric bootstrapping of the mean centred residuals. The relationship between growth metrics and the best-fit model was determined by comparing the sum of squared deviations (SS) of the observed data from the model, to the SS of 104 randomly resampled datasets. Growth metrics were considered to display a significant relationship to the best-fit model if the observed SS was smaller than the 5th percentile of randomised SS. Upper thermal limits were defined as the optimal temperature + 2 standard deviations (95th percentile of curve) or where net growth = 0. Samples that had lost all pigment or structural integrity by the end of the experiment were considered dead and any positive growth was treated as zero. Comparative patterns in thermal performance between populations have fundamental implications for a species thermal sensitivity to warming and extreme events. Despite this, within-species variation in thermal performance is seldom measured. Here we compare thermal performance between-species variation within communities, for two species of seagrass (Posidonia oceanica and Cymodocea nodosa) and two species of seaweed (Padina pavonica and Cystoseira compressa). Experimental populations from four locations spanning approximately 75% of each species global distribution and a 6ºC gradient in summer temperatures were exposed to 10 temperature treatments (15ºC to 36ºC), reflecting median, maximum and future temperatures. Experimental thermal performance displayed the greatest variability between species, with optimal temperatures differing by over 10ºC within the same location. Within-species differences in thermal performance were also important for P. oceanica which displayed large thermal safety margins within cool and warm-edge populations and small safety margins within central populations. Our findings suggest patterns of thermal performance in Mediterranean seagrasses and seaweeds retain deep ‘pre-Mediterranean’ evolutionary legacies, suggesting marked differences in sensitivity to warming within and between benthic marine communities. [Sample collection] Sample collections were conducted at two sites, separated by approximately 1 km, within each location. Collections were conducted at the same depth (1-3 m) at each location and were spaced across the reef or meadow to try and minimise relatedness between shoots or fragments. Upon collection, fragments were placed into a mesh bag and transported back to holding tanks in cool, damp, dark conditions (following Bennett et al. 2021). Fragments were kept in aerated holding tanks in the collection sites at ambient seawater temperature and maintained under a 14:10 light-dark cycle until transport back to Mallorca, where experiments were performed. Prior to transport, P. oceanica shoots were clipped to 25 cm length (from meristem to tip), to standardise initial conditions and remove old tissue for transport. For transport back to Mallorca, fragments were packed in layers within cool-boxes. Cool-packs were wrapped in damp tea towels (rinsed in seawater) and placed between layers of samples. Samples from Catalonia, Crete and Cyprus experienced approximately 12hrs of transit time. On arrival at the destination, samples were returned to holding tanks with aerated seawater and a 14:10 light-dark cycle. [Sea temperature measurements and reconstruction] Sea surface temperature data for each collection site were based on daily SST maps with a spatial resolution of 1/4°, obtained from the National Center for Environmental Information (NCEI, https://www.ncdc.noaa.gov/oisst (Reynolds et al. 2007). These maps have been generated through the optimal interpolation of Advanced Very High Resolution Radiometer (AVHRR) data for the period 1981-2019. Underwater temperature loggers (ONSET Hobo pro v2 Data logger) were deployed at each site and recorded hourly temperatures throughout one year. In order to obtain an extended time series of temperature at each collection site, a calibration procedure was performed comparing logger data with sea surface temperature from the nearest point on SST maps. In particular, SST data were linearly fitted to logger data for the common period. Then, the calibration coefficients were applied to the whole SST time series to obtain corrected-SST data and reconstruct daily habitat temperatures from 1981-2019. [Field collections] Thermal tolerance experiments were conducted on two seagrass species (P. oceanica and Cymodocea nodosa) and two brown seaweed species (Cystoseira compressa and P. pavonica) from four locations spanning 8 degrees in latitude and 30 degrees in longitude across the Mediterranean (Fig. 1, Table S1). These four species were chosen as they are dominant foundation species and cosmopolitan across the Mediterranean Sea. Thermal performance experiments from Catalonia and Mallorca were conducted simultaneously in June 2016 for seaweeds (P. pavonica and C. compressa) and in August 2016 for seagrasses (P. oceanica and C. nodosa). Experiments for all four species were conducted in July 2017 for Crete and in September 2017 for Cyprus. Horizon 2020 Framework Programme, Award: 659246; Juan de la Cierva Formacion, Award: FJCI-2016-30728; Spanish Ministry of Economy, Industry and Competitiveness, Award: MedShift, CGL2015-71809-P; Spanish Ministry of Science, Innovation and Universities, Award: SUMAECO, RTI2018-095441-B-C21
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTADataset . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.d2547d81r&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 21visibility views 21 download downloads 19 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTADataset . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.d2547d81r&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:MDPI AG Funded by:FCT | SFRH/BD/73269/2010, FCT | SFRH/BPD/78269/2011FCT| SFRH/BD/73269/2010 ,FCT| SFRH/BPD/78269/2011Authors: Marisa Silva; Vijaya Pratheepa; Luis Botana; Vitor Vasconcelos;Harmful Algal Blooms (HAB) are complex to manage due to their intermittent nature and their severe impact on the economy and human health. The conditions which promote HAB have not yet been fully explained, though climate change and anthropogenic intervention are pointed as significant factors. The rise of water temperature, the opening of new sea canals and the introduction of ship ballast waters all contribute to the dispersion and establishment of toxin-producing invasive species that promote the settling of emergent toxins in the food-chain. Tetrodotoxin, ciguatoxin, palytoxin and cyclic imines are commonly reported in warm waters but have also caused poisoning incidents in temperate zones. There is evidence that monitoring for these toxins exclusively in bivalves is simplistic and underestimates the risk to public health, since new vectors have been reported for these toxins and as well for regulated toxins such as PSTs and DSTs. In order to avoid public health impacts, there is a need for adequate monitoring programs, a need for establishing appropriate legislation, and a need for optimizing effective methods of analysis. In this review, we will compile evidence concerning emergent marine toxins and provide data that may indicate the need to restructure the current monitoring programs of HAB.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/toxins7030859&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/toxins7030859&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 SpainPublisher:Elsevier BV Funded by:EC | TROPOS, EC | H2OCEAN, EC | MARIBE +1 projectsEC| TROPOS ,EC| H2OCEAN ,EC| MARIBE ,EC| MERMAIDCarlos V.C. Weiss; Jarbas Bonetti; Marinez E.G. Scherer; Bárbara Ondiviela; Raúl Guanche; José A. Juanes;The marine environment has been in the spotlight of economic development due to the growing demand for areas to promote activities associated with the concept of Blue Economy. This is the case of the renewable energy and aquaculture sectors, whose expansion towards offshore is determined by the increase global demand for energy and food, and by exceeding of the carrying capacity of coastal and terrestrial systems. In this context, the multi-use strategy can be an alternative to minimize conflicts between activities and impacts on the surrounding social-ecological environment. This contribution presents a preliminary approach to identify opportunities for individual exploitation and the possibilities of multi-use between wind energy, wave energy and aquaculture in Brazil?s Exclusive Economic Zone. Technical, operational, and biological aspects were evaluated, through a Suitability Index validated in previous works, to identify zones with favorable conditions for energy exploitation and farming of six fish species. Additionally, overlaps between conservation areas and multi-use zones were considered to analyze possible spatial conflicts. Zones with multi-use possibilities with different combinations between these sectors were identified: i) wave energy and aquaculture presented the largest areas for multi-use, distributed in the south, southeast and northeast; ii) possibility of combining wind energy and aquaculture was identified in the northeast; and iii) multi-use possibilities in the south for marine energies. Zones with multi-use possibilities were identified in protection and conservation areas, such as the combination of wave exploitation and Greater Amberjack farming, with 63% overlap. Therefore, this case study is a guide for future local studies in the marine region of Brazil, mainly in the selection of sites for analysis. The present contribution represents a starting point for the discussion about multi-use in the country C.V.C. Weiss is grateful to the Brazilian National Council for Scientific and Technological Development (CNPq) for the PDJ (Pós-doutorado Junior) fellowship granted (151228/2020–5), and the financial support from the Universidad de Cantabria (UC) through the Agusto González de Linares and Margarita Salas Grants (POS-UC-2019-06 and RMS-04, respectively). J. Bonetti is a Research Fellow of CNPq (Grant 306633/2019–1). Raúl Guanche acknowledges the Grant RYC-2017-23260 funded by MCIN/AEI/10.13039/501100011033 and “ESF Investing in your future”. This work is framed in the project “ACUFLOT”, supported by the Biodiversity Foundation of the Ecological Transition and Demographic Challenge Ministry of Spain and the IHCantabria - Instituto de Hidráulica Ambiental de la Universidad de Cantabria
Ocean & Coastal Mana... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ocecoaman.2023.106764&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 11visibility views 11 download downloads 6 Powered bymore_vert Ocean & Coastal Mana... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ocecoaman.2023.106764&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Other literature type , Conference object 2018 FrancePublisher:Springer International Publishing Funded by:EC | BAMMBOEC| BAMMBOAuthors: Perez-Lopez, Paula; Feijoo, Gumersindo,; Moreira, Maria;The biotechnological development has traditionally focused on the compliance with regulatory demands rather than optimising the processes or analysing their sustainability. This work proposes the combination of available tools for the comprehensive sustainability assessment of a blue biotechnology process based on the cultivation of the microalgae Haematococcus pluvialis. The work aims to include environmental, economic and social dimensions to measure the sustainability of the production of a carotenoid with potential applications in food, nutraceutical, cosmetics and eventually pharmaceutical industries. Electricity for cultivation was identified as the major contributor to the environmental impacts, which depended significantly on the production scale. Social benefits were mainly related to workers and consumers, while the economic assessment suggested a profitable process with a relatively short period to recover the initial investment.
Hyper Article en Lig... arrow_drop_down MINES ParisTech: Open Archive (HAL)Part of book or chapter of book . 2018Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://hal-mines-paristech.ar...Part of book or chapter of bookLicense: CC BYData sources: UnpayWallINRIA a CCSD electronic archive serverConference object . 2017Data sources: INRIA a CCSD electronic archive serverMémoires en Sciences de l'Information et de la CommunicationPart of book or chapter of book . 2018Mémoires en Sciences de l'Information et de la CommunicationConference object . 2017add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-319-66981-6_53&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 8 citations 8 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down MINES ParisTech: Open Archive (HAL)Part of book or chapter of book . 2018Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://hal-mines-paristech.ar...Part of book or chapter of bookLicense: CC BYData sources: UnpayWallINRIA a CCSD electronic archive serverConference object . 2017Data sources: INRIA a CCSD electronic archive serverMémoires en Sciences de l'Information et de la CommunicationPart of book or chapter of book . 2018Mémoires en Sciences de l'Information et de la CommunicationConference object . 2017add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-319-66981-6_53&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Qatar, Norway, United Kingdom, Denmark, Qatar, United Kingdom, United KingdomPublisher:Springer Science and Business Media LLC Funded by:NSERC, UKRI | The role of Arctic sea ic..., AKA | RESILIENCE IN SOCIAL-ECOL... +6 projectsNSERC ,UKRI| The role of Arctic sea ice in climatic and ecological processes ,AKA| RESILIENCE IN SOCIAL-ECOLOGICAL SYSTEMS IN IN NORTHWEST EURASIA (RISES) ,RCN| Understanding ecosystem functionality, expansion and retreat of species in the Scandinavian mountain tundra under multiple drivers of change ,UKRI| Permafrost catchments in transition: hydrological controls on carbon cycling and greenhouse gas budgets ,AKA| Consequences of climate-driven changes in background below- and aboveground herbivory for tree growth, forest productivity, and ecosystem functions ,[no funder available] ,EC| INTERACT ,NWO| Feedbacks of vegetation change to permafrost thawing, soil nutrient availability and carbon storage in tundra ecosystemsSigne Normand; Maite Gartzia; Philip A. Wookey; Maja K. Sundqvist; Maja K. Sundqvist; Martin Wilmking; Juha M. Alatalo; Alexander Sokolov; James D. M. Speed; Anna Skoracka; Dagmar Egelkraut; Lee Ann Fishback; Ashley L. Asmus; C. Guillermo Bueno; Timo Kumpula; Dorothee Ehrich; Agata Buchwal; Agata Buchwal; Elina Kaarlejärvi; Elina Kaarlejärvi; Toke T. Høye; Martin Hallinger; Vitali Zverev; Milena Holmgren; Mariska te Beest; Eeva M. Soininen; Jean-Pierre Tremblay; Kari Anne Bråthen; Sergey A. Uvarov; Natalya A. Sokolova; Elin Lindén; Judith Sitters; Judith Sitters; Isla H. Myers-Smith; Johan Olofsson; Katherine S. Christie; Eric Post; Cynthia Y.M.J.G. Lange; Esther Lévesque; Ingibjörg S. Jónsdóttir; Ingibjörg S. Jónsdóttir; Juul Limpens; Paul Grogan; Yulia V. Denisova; Tommi Andersson; Marc Macias-Fauria; David A. Watts; Heike Zimmermann; Adrian V. Rocha; Diane C. Huebner; Julia Boike; David S. Hik; Otso Suominen; Christine Urbanowicz; Isabel C. Barrio; Nikita Tananaev; Annika Hofgaard; Jelena Lange; Bruce C. Forbes; John P. Bryant; Lorna E. Street; Monique M. P. D. Heijmans; Mikhail V. Kozlov; Erik J. van Nieukerken; Niels Martin Schmidt;Chronic, low intensity herbivory by invertebrates, termed background herbivory, has been understudied in tundra, yet its impacts are likely to increase in a warmer Arctic. The magnitude of these changes is however hard to predict as we know little about the drivers of current levels of invertebrate herbivory in tundra. We assessed the intensity of invertebrate herbivory on a common tundra plant, the dwarf birch (Betula glandulosa-nana complex), and investigated its relationship to latitude and climate across the tundra biome. Leaf damage by defoliating, mining and gall-forming invertebrates was measured in samples collected from 192 sites at 56 locations. Our results indicate that invertebrate herbivory is nearly ubiquitous across the tundra biome but occurs at low intensity. On average, invertebrates damaged 11.2% of the leaves and removed 1.4% of total leaf area. The damage was mainly caused by external leaf feeders, and most damaged leaves were only slightly affected (12% leaf area lost). Foliar damage was consistently positively correlated with mid-summer (July) temperature and, to a lesser extent, precipitation in the year of data collection, irrespective of latitude. Our models predict that, on average, foliar losses to invertebrates on dwarf birch are likely to increase by 6--7% over the current levels with a 1 textdegreeC increase in summer temperatures. Our results show that invertebrate herbivory on dwarf birch is small in magnitude but given its prevalence and dependence on climatic variables, background invertebrate herbivory should be included in predictions of climate change impacts on tundra ecosystems.
CORE arrow_drop_down University of Copenhagen: ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Qatar University: QU Institutional RepositoryArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00300-017-2139-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 49 citations 49 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
download 63download downloads 63 Powered bymore_vert CORE arrow_drop_down University of Copenhagen: ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Qatar University: QU Institutional RepositoryArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00300-017-2139-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 New Zealand, Denmark, Spain, United States, New ZealandPublisher:American Association for the Advancement of Science (AAAS) Wu-Bing Xu; Wen-Yong Guo; Josep M. Serra-Diaz; Franziska Schrodt; Wolf L. Eiserhardt; Brian J. Enquist; Brian S. Maitner; Cory Merow; Cyrille Violle; Madhur Anand; Michaël Belluau; Hans Henrik Bruun; Chaeho Byun; Jane A. Catford; Bruno E. L. Cerabolini; Eduardo Chacón-Madrigal; Daniela Ciccarelli; J. Hans C. Cornelissen; Anh Tuan Dang-Le; Angel de Frutos; Arildo S. Dias; Aelton B. Giroldo; Alvaro G. Gutiérrez; Wesley Hattingh; Tianhua He; Peter Hietz; Nate Hough-Snee; Steven Jansen; Jens Kattge; Benjamin Komac; Nathan J. B. Kraft; Koen Kramer; Sandra Lavorel; Christopher H. Lusk; Adam R. Martin; Ke-Ping Ma; Maurizio Mencuccini; Sean T. Michaletz; Vanessa Minden; Akira S. Mori; Ülo Niinemets; Yusuke Onoda; Renske E. Onstein; Josep Peñuelas; Valério D. Pillar; Jan Pisek; Matthew J. Pound; Bjorn J. M. Robroek; Brandon Schamp; Martijn Slot; Miao Sun; Ênio E. Sosinski; Nadejda A. Soudzilovskaia; Nelson Thiffault; Peter M. van Bodegom; Fons van der Plas; Jingming Zheng; Jens-Christian Svenning; Alejandro Ordonez;As Earth’s climate has varied strongly through geological time, studying the impacts of past climate change on biodiversity helps to understand the risks from future climate change. However, it remains unclear how paleoclimate shapes spatial variation in biodiversity. Here, we assessed the influence of Quaternary climate change on spatial dissimilarity in taxonomic, phylogenetic, and functional composition among neighboring 200-kilometer cells (beta-diversity) for angiosperm trees worldwide. We found that larger glacial-interglacial temperature change was strongly associated with lower spatial turnover (species replacements) and higher nestedness (richness changes) components of beta-diversity across all three biodiversity facets. Moreover, phylogenetic and functional turnover was lower and nestedness higher than random expectations based on taxonomic beta-diversity in regions that experienced large temperature change, reflecting phylogenetically and functionally selective processes in species replacement, extinction, and colonization during glacial-interglacial oscillations. Our results suggest that future human-driven climate change could cause local homogenization and reduction in taxonomic, phylogenetic, and functional diversity of angiosperm trees worldwide.
The University of Wa... arrow_drop_down The University of Waikato: Research CommonsArticle . 2023License: CC BYFull-Text: https://hdl.handle.net/10289/15686Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2023License: CC BYData sources: Diposit Digital de Documents de la UABUniversity of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.add8553&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The University of Wa... arrow_drop_down The University of Waikato: Research CommonsArticle . 2023License: CC BYFull-Text: https://hdl.handle.net/10289/15686Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2023License: CC BYData sources: Diposit Digital de Documents de la UABUniversity of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.add8553&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2019Publisher:F1000 Research Ltd Authors: Sandra Akugpoka Atindana; Patrick K. Ofori‐Danson; Sandra Brucet;Background: Ghana’s marine artisanal fisheries, particularly the small pelagic fisheries, are in a state of crisis. The decline in the number of small pelagic fish are attributable to overfishing, climate variability and unsustainable fishing methods. Similarly, in the wake of climate change, shellfishes (particularly oysters, scallops and mussels) are highly vulnerable. Methods: A total of 55 years’ worth of data from Ghana’s marine artisanal fisheries were studied in relation to climate indices. The primary objective was to develop a simple linear regression model for predicting shellfish catch in Ghana. Key informant interviews were employed in soliciting data on changes in climate along the coastline and trends in marine artisanal shell fish catch. Results: The predictor variable that significantly explained shellfish production was temperature. Hence, the model is a valuable tool to predict future trends in the shellfish catch in marine artisanal fisheries. Conclusions: Increases in sea surface temperature will adversely affect shellfish production. It is therefore important that the Ministry of Fisheries and Aquaculture Development and other stakeholders should, in their decision-making processes, ensure the formulation of climate smart policies and management strategies for sustainable use of the resource.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.12688/aasopenres.12956.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.12688/aasopenres.12956.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Article , Journal 2021 SpainPublisher:Elsevier BV Francesco Colloca; Fabio Bulleri; Antonio Di Franco; Cristiana Guerranti; Monia Renzi; Enric Ballesteros; Maria Cristina Mangano; Carlo Cerrano; Antonio Pusceddu; Gianluca Sarà; Ferdinando Boero; Ferdinando Boero; Gil Rilov; Stanislao Bevilacqua; Joaquim Garrabou; Joaquim Garrabou; Marco Milazzo; Laura Airoldi; Laura Airoldi; Fiorenza Micheli; Benjamin S. Halpern; Paolo Guidetti; Paolo Guidetti; Joachim Claudet; Lisandro Benedetti-Cecchi; Giuseppe Guarnieri; Martina Coppari; Antonio Terlizzi; Antonio Terlizzi; Emma Cebrian; Simonetta Fraschetti; Stelios Katsanevakis;Global change is striking harder and faster in the Mediterranean Sea than elsewhere, where high levels of human pressure and proneness to climate change interact in modifying the structure and disrupting regulative mechanisms of marine ecosystems. Rocky reefs are particularly exposed to such environmental changes with ongoing trends of degradation being impressive. Due to the variety of habitat types and associated marine biodiversity, rocky reefs are critical for the functioning of marine ecosystems, and their decline could profoundly affect the provision of essential goods and services which human populations in coastal areas rely upon. Here, we provide an up-to-date overview of the status of rocky reefs, trends in human-driven changes undermining their integrity, and current and upcoming management and conservation strategies, attempting a projection on what could be the future of this essential component of Mediterranean marine ecosystems.
https://hal.archives... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAhttps://doi.org/10.1016/bs.amb...Part of book or chapter of book . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/bs.amb.2021.08.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 32 citations 32 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert https://hal.archives... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAhttps://doi.org/10.1016/bs.amb...Part of book or chapter of book . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/bs.amb.2021.08.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Morocco, SpainPublisher:Elsevier BV Funded by:EC | CERESEC| CERESRuiz-Jarabo, Ignacio; Laiz Carrión, R.; Ortega, A.; Gándara, F. de la; Quintanilla, J.M.; Mancera, J.M.;handle: 10508/15848 , 10261/313406
In this study, we assessed the effect of environmental salinity and pH as independent factors on larval survival of Atlantic bluefin tuna (ABFT –Thunnus thynnus) together with their whole-body Na+/K+-ATPase and v-type H+-ATPase activities. Fertilized eggs of ABFT were obtained from a spontaneous spawning of broodstock in the farming facilities at El Gorguel (Cartagena, SE Spain) and were transferred to facilities of the Spanish Institute of Oceanography (IEO) in Mazarrón (SE Spain). In a first experiment, eggs (200 fertilized eggs L−1 per treatment, in 3 replicates) were exposed to different salinities treatments and constant pH 8.0 (control) until hatch was completed (50 h post-fertilization, hpf, at 23 °C): 27, 30, 33, 36, 37, 38 (control), 39, 40, 43, 46 and 49 ppt. In a second experiment eggs (200 fertilized eggs L−1, in 3 replicates) were exposed to seawater salinity (SW: 38 ppt) and four reduced pH treatments until hatch was completed (50 hpf at 23 °C): 8.0 (control), 7.7, 7.5 and 7.3. An inverse “U-shaped” relationship was observed between environmental salinity and number of hatched larvae. An opposite pattern was observed for both Na+/K+-ATPase and H+-ATPase activities in hatched larvae, increasing both activities in groups exposed to extreme salinities. Thus, larval survival was higher at intermediate salinities and lower at the extreme salinities tested. These results suggest higher survival rates with lower active pumps activities. No significant differences in larval survival were observed with pH treatment, but lower H+-ATPase activity was detected at control environmental pH (pH 8.0). Survival results are discussed in terms of osmoregulatory cost adapting to a salinity and pH predicted for the near future scenarios. 2,041
Aquaculture arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio de Objetos de Docencia e Investigación de la Universidad de CádizArticle . 2022License: CC BY NCRepositorio Institucional Digital del IEOArticle . 2022License: CC BY NC NDData sources: Repositorio Institucional Digital del IEORepositorio Institucional Digital del IEOArticle . 2022License: CC BY NC NDData sources: Repositorio Institucional Digital del IEOadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.aquaculture.2022.738457&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 5visibility views 5 download downloads 23 Powered bymore_vert Aquaculture arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio de Objetos de Docencia e Investigación de la Universidad de CádizArticle . 2022License: CC BY NCRepositorio Institucional Digital del IEOArticle . 2022License: CC BY NC NDData sources: Repositorio Institucional Digital del IEORepositorio Institucional Digital del IEOArticle . 2022License: CC BY NC NDData sources: Repositorio Institucional Digital del IEOadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.aquaculture.2022.738457&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Bachelor thesis 2018 SpainPublisher:Universitat Politècnica de Catalunya Authors: Landeira Fernández, Francisco; Díez Vázquez, Javier;handle: 2117/114807
[CASTELLÀ] En este trabajo de final de grado hemos realizado un prototipo mecánico capaz de captar la energía que se pierde de las olas del mar (energía undimotriz) en el espigón de Vilanova i la Geltrú. Estudiando y analizando los mecanismos y prototipos de las empresas actuales en el mercado, obtenemos unas ideas para nuestro dispositivo. A parte hemos analizado el comportamiento del oleaje en nuestro punto de estudio, que es en el espigón de la playa del faro (Vilanova i la Geltrú) y teniendo en cuenta el oleaje y las mareas, hemos diseñado un prototipo más idóneo para esta ubicación. Nuestra idea final trataría de poner varios dispositivos a lo largo del espigón para así de esta manera poder captar la máxima energía en esta zona. [ANGLÈS] In this final degree project we have made a mechanical prototype capable of capturing the energy that is lost from the waves of the sea (wave energy) in the breakwater of Vilanova i la Geltrú. By studying and analysing the mechanisms and prototypes of current companies in the market, we obtain some ideas for our device. We have also analysed the behaviour of the waves at our point of study, which is at the pier of the beach of the lighthouse (Vilanova i la Geltrú) and taking into account the waves and tides, we have designed a more suitable prototype for this location. Our final idea would try to put several devices along the jetty in order to capture the maximum energy in this area.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTABachelor thesis . 2018License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCBachelor thesis . 2018License: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=2117/114807&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTABachelor thesis . 2018License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCBachelor thesis . 2018License: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=2117/114807&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Embargo end date: 10 Mar 2022 SpainPublisher:Dryad Funded by:EC | DPaTh-To-AdaptEC| DPaTh-To-AdaptBennett, Scott; Marba, Nuria; Vaquer-Sunyer, Raquel; Jordá, Gabriel; Forteza, Marina; Roca, Guillem;handle: 10261/311232
[Experimental design: thermal performance experiments] All experiments were run in climate-controlled incubation facilities of the Institut Mediterrani d’Estudis Avançats (Mallorca, Spain). Following 48 hrs under ambient (collection site) conditions, samples were transferred to individual experimental aquaria, which consisted of a double layered transparent plastic bag filled with 2 L of filtered seawater (60 μm) (following Savva et al. 2018). 16 experimental bags were suspended within 80L temperature-controlled baths. In total, ten baths were used, one for each experimental temperature treatment. Bath temperatures were initially set to the acclimatization temperature (i.e. in situ temperatures) and were subsequently increased or decreased by 1 °C every 24 hours until the desired experimental temperature was achieved. Experimental temperatures were: 15, 18, 21, 24, 26, 28, 30, 32, 34 and 36°C (Table S2). For each species, four replicate aquarium bags were used for each temperature treatment with three individually marked seagrass shoots or three algal fragments placed into each bag. For P. oceanica, each marked plant was a single shoot including leaves, vertical rhizome and roots. For C. nodosa, each marked individual consisted of a 10 cm fragment of horizontal rhizome containing three vertical shoots. Individually marked seaweeds contained the holdfast, and 4-5 fronds of P. pavonica (0.98 ± 0.06 g FW; mean ± SE) or a standardised 5-8 cm fragment with meristematic tip for C. compressa (3.67 ± 0.1 g FW; mean ± SE). Experimental plants were cleaned of conspicuous epiphytes. Once the targeted temperatures were reached in all of the baths, experiments ran for 14 days for the algal species and 21 days for seagrasses to allow for measurable growth in all species at the end of the experiment. Experiments were conducted inside a temperature-controlled chamber at constant humidity and air temperature (15 °C). Bags were arranged in a 4x4 grid within each bath, enabling four species/population treatments to be run simultaneously. Bags were mixed within each bath so that one replicate bag was in each row and column of the grid, to minimise any potential within bath effects of bag position. Replicate bags were suspended with their surface kept open to allow gas exchange and were illuminated with a 14h light:10h dark photoperiod through fluorescent aquarium growth lamps. The water within the bags were mixed with aquaria pumps. The light intensity within each bag was measured via a photometric bulb sensor (LI-COR) and ranged between 180-258 μmol m-2 s-1. Light intensity was constant between experiments and did not significantly differ between experimental treatments (p > 0.05). The temperature in the baths was controlled and recorded with an IKS-AQUASTAR system, which was connected to heaters and thermometers. The seawater within the bags was renewed every 72 hrs and salinity was monitored daily with an YSI multi-parameter meter. Distilled water was added when necessary to ensure salinity levels remained within the range of 36-39 PSU, typical of the study region. Carbon and Nitrogen concentrations in the leaf tissue were measured at the end of the experiment for triplicates of the 24ºC treatment for each species and location (Fig. S2) at Unidade de Técnicas Instrumentais de Análise (University of Coruña, Spain) with an elemental analyser FlashEA112 (ThermoFinnigan). [Species description and distribution] The species used in this study are all common species throughout the Mediterranean Sea, although differ in their biological traits, evolutionary histories and thermo-geographic affinities (Fig. S1). P. oceanica is endemic to the Mediterranean Sea with the all other Posidonia species found in temperate Australia (Aires et al. 2011). The distribution of P. oceanica is restricted to the Mediterranean, spanning from Gibraltar in the west to Cyprus in the east and north into the Aegean and Adriatic seas (Telesca et al. 2015) (Fig. S1A). C. nodosa distribution extends across the Mediterranean Sea and eastern Atlantic Ocean, where it is found from south west Portugal, down the African coast to Mauritania and west to Macaronesia (Alberto et al. 2008) (Fig. S1B). Congeneric species of C. nodosa are found in tropical waters of the Red Sea and Indo-Pacific, suggesting origins in the region at least prior to the closure of the Suez Isthmus, approximately 10Mya. Like C. nodosa, Cystoseira compressa has a distribution that extends across the Mediterranean and into the eastern Atlantic, where it is found west to Macaronesia and south to northwest Africa (Fig. S1C). The genus Cystoseira has recently been reclassified to include just four species with all congeneric Cystoseira spp. having warm-temperate distributions from the Mediterranean to the eastern Atlantic (Orellana et al. 2019). The distribution of Padina pavonica is conservatively considered to resemble C. nodosa and C. compressa, spanning throughout the Mediterranean and into the eastern Atlantic. We considered the poleward distribution limit of P. pavonica to be the British Isles 50ºN (Herbert et al. 2016). P. pavonica was previously thought to have a global distribution, but molecular analysis of the genus has found no evidence to support this (Silberfeld et al. 2013). Instead it has been suggested that P. pavonica was potentially misclassified outside of the Mediterranean, due to morphological similarity with congeneric species (Silberfeld et al. 2013). Padina is a monophyletic genus with a worldwide distribution from tropical to cold temperate waters (Silberfeld et al. 2013). Most species have a regional distribution, with few confirmed examples of species spanning beyond a single marine realm (sensu Spalding et al. 2007). [Metabolic rates] Net production (NP), gross primary production (GPP) and respiration (R) were measured for all species from the four sites for five different experimental temperatures containing the in-situ temperature during sampling up to a 6ºC warming (see SM Table S3 for details). Individuals of the different species were moved to methacrylate cylinders containing seawater treated with UV radiation to remove bacteria and phytoplankton, in incubation tanks at the 5 selected temperatures. Cylinders were closed using gas-tight lids that prevent gas exchange with the atmosphere, containing an optical dissolved oxygen sensor (ODOS® IKS), with a measuring range from 0-200 % saturation and accuracy at 25ºC of 1% saturation, and magnetic stirrers inserted to ensure mixing along the height of the core. Triplicates were measured for each species and location, along with controls consisting in cylinders filled with the UV-treated seawater, in order to account for any residual production or respiration derived from microorganisms (changes in oxygen in controls was subtracted from treatments). Oxygen was measured continuously and recorded every 15 minutes for 24 hours. Changes in the dissolved oxygen (DO) were assumed to result from the biological metabolic processes and represent NP. During the night, changes in DO are assumed to be driven by R, as in the absence of light, no photosynthetic production can occur. R was calculated from the rate of change in oxygen at night, from half an hour after lights went off to half an hour before light went on (NP in darkness equalled R). NP was calculated from the rate of change in DO, at 15 min intervals, accumulated over each 24 h period. Assuming that daytime R equals that during the night, GPP was estimated as the sum of NP and R. To derive daily metabolic rates, we accumulated individual estimates of GPP, NP, and R resolved at 15 min intervals over each 24 h period during experiments and reported them in mmol O2 m−3 day−1. A detailed description of calculation of metabolic rates can be found at Vaquer-Sunyer et al. (Vaquer-Sunyer et al. 2015). [Thermal distribution and thermal safety margins] We estimated the realised thermal distribution for the four experimental species by downloading occurrence records from the Global Biodiversity Information Facility (GBIF.org (11/03/2020) GBIF Occurrence Download). Occurrence records from GBIF were screened for outliers and distributions were verified from the primary literature (Alberto et al. 2008, Draisma et al. 2010, Ni-Ni-Win et al. 2010, Silberfeld et al. 2013, Telesca et al. 2015, Orellana et al. 2019) and Enrique Ballesteros (pers. comms) (Fig. S1). Mean, 1st and 99th percentiles of daily SST’s were downloaded for each occurrence site for the period between 1981-2019 using the SST products described above (Table S4). Thermal range position of species at each experimental site were standardised by their global distribution using a Range Index (RI; Sagarin & Gaines 2002). Median SST at the experimental collection sites were standardized relative to the thermal range observed across a species realized distribution, using the equation: RI = 2(SM- DM)/DB where SM = the median temperature at the experimental collection site, Dm = the thermal midpoint of the species global thermal distribution and DB = range of median temperatures (ºC) that a species experiences across its distribution. The RI scales from -1 to 1, whereby ‘-1’ represents the cool, leading edge of a species distribution, ‘0’ represents the thermal midpoint of a species distribution and ‘1’ represents the warm, trailing edge of a species distribution (Sagarin & Gaines 2002). Thermal safety margins for each population were calculated as the difference between empirically derived upper thermal limits for each population and the maximum long term habitat temperatures recorded at collection sites. Each population’s thermal safety margin was plotted against its range position to examine patterns in thermal sensitivity across a species distribution. [Growth measurements and statistical analyses] Net growth rate of seagrass shoots was measured using leaf piercing-technique (Short & Duarte 2001). At the beginning of the experiment seagrass shoots were pierced just below the ligule with a syringe needle and shoot growth rate was estimated as the elongation of leaf tissue in between the ligule and the mark position of all leaves in a shoot at the end of the experiment, divided by the experimental duration. Net growth rate of macroalgae individuals was measured as the difference in wet weight at the end of the experiment from the beginning of the experiment divided by the duration of the experiment. Moisture on macroalgae specimens was carefully removed before weighing them. Patterns of growth in response to temperature were examined for each experimental population using a gaussian function: g = ke[-0.5(TMA-μ)2/σ2], where k = amplitude, μ = mean and σ = standard deviation of the curve. Best fit values for each parameter were determined using a non-linear least squares regression using the ‘nlstools’ package (Baty et al. 2015) in R (Team 2020). 95% CI for each of the parameters were calculated using non-parametric bootstrapping of the mean centred residuals. The relationship between growth metrics and the best-fit model was determined by comparing the sum of squared deviations (SS) of the observed data from the model, to the SS of 104 randomly resampled datasets. Growth metrics were considered to display a significant relationship to the best-fit model if the observed SS was smaller than the 5th percentile of randomised SS. Upper thermal limits were defined as the optimal temperature + 2 standard deviations (95th percentile of curve) or where net growth = 0. Samples that had lost all pigment or structural integrity by the end of the experiment were considered dead and any positive growth was treated as zero. Comparative patterns in thermal performance between populations have fundamental implications for a species thermal sensitivity to warming and extreme events. Despite this, within-species variation in thermal performance is seldom measured. Here we compare thermal performance between-species variation within communities, for two species of seagrass (Posidonia oceanica and Cymodocea nodosa) and two species of seaweed (Padina pavonica and Cystoseira compressa). Experimental populations from four locations spanning approximately 75% of each species global distribution and a 6ºC gradient in summer temperatures were exposed to 10 temperature treatments (15ºC to 36ºC), reflecting median, maximum and future temperatures. Experimental thermal performance displayed the greatest variability between species, with optimal temperatures differing by over 10ºC within the same location. Within-species differences in thermal performance were also important for P. oceanica which displayed large thermal safety margins within cool and warm-edge populations and small safety margins within central populations. Our findings suggest patterns of thermal performance in Mediterranean seagrasses and seaweeds retain deep ‘pre-Mediterranean’ evolutionary legacies, suggesting marked differences in sensitivity to warming within and between benthic marine communities. [Sample collection] Sample collections were conducted at two sites, separated by approximately 1 km, within each location. Collections were conducted at the same depth (1-3 m) at each location and were spaced across the reef or meadow to try and minimise relatedness between shoots or fragments. Upon collection, fragments were placed into a mesh bag and transported back to holding tanks in cool, damp, dark conditions (following Bennett et al. 2021). Fragments were kept in aerated holding tanks in the collection sites at ambient seawater temperature and maintained under a 14:10 light-dark cycle until transport back to Mallorca, where experiments were performed. Prior to transport, P. oceanica shoots were clipped to 25 cm length (from meristem to tip), to standardise initial conditions and remove old tissue for transport. For transport back to Mallorca, fragments were packed in layers within cool-boxes. Cool-packs were wrapped in damp tea towels (rinsed in seawater) and placed between layers of samples. Samples from Catalonia, Crete and Cyprus experienced approximately 12hrs of transit time. On arrival at the destination, samples were returned to holding tanks with aerated seawater and a 14:10 light-dark cycle. [Sea temperature measurements and reconstruction] Sea surface temperature data for each collection site were based on daily SST maps with a spatial resolution of 1/4°, obtained from the National Center for Environmental Information (NCEI, https://www.ncdc.noaa.gov/oisst (Reynolds et al. 2007). These maps have been generated through the optimal interpolation of Advanced Very High Resolution Radiometer (AVHRR) data for the period 1981-2019. Underwater temperature loggers (ONSET Hobo pro v2 Data logger) were deployed at each site and recorded hourly temperatures throughout one year. In order to obtain an extended time series of temperature at each collection site, a calibration procedure was performed comparing logger data with sea surface temperature from the nearest point on SST maps. In particular, SST data were linearly fitted to logger data for the common period. Then, the calibration coefficients were applied to the whole SST time series to obtain corrected-SST data and reconstruct daily habitat temperatures from 1981-2019. [Field collections] Thermal tolerance experiments were conducted on two seagrass species (P. oceanica and Cymodocea nodosa) and two brown seaweed species (Cystoseira compressa and P. pavonica) from four locations spanning 8 degrees in latitude and 30 degrees in longitude across the Mediterranean (Fig. 1, Table S1). These four species were chosen as they are dominant foundation species and cosmopolitan across the Mediterranean Sea. Thermal performance experiments from Catalonia and Mallorca were conducted simultaneously in June 2016 for seaweeds (P. pavonica and C. compressa) and in August 2016 for seagrasses (P. oceanica and C. nodosa). Experiments for all four species were conducted in July 2017 for Crete and in September 2017 for Cyprus. Horizon 2020 Framework Programme, Award: 659246; Juan de la Cierva Formacion, Award: FJCI-2016-30728; Spanish Ministry of Economy, Industry and Competitiveness, Award: MedShift, CGL2015-71809-P; Spanish Ministry of Science, Innovation and Universities, Award: SUMAECO, RTI2018-095441-B-C21
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTADataset . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.d2547d81r&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 21visibility views 21 download downloads 19 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTADataset . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.d2547d81r&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:MDPI AG Funded by:FCT | SFRH/BD/73269/2010, FCT | SFRH/BPD/78269/2011FCT| SFRH/BD/73269/2010 ,FCT| SFRH/BPD/78269/2011Authors: Marisa Silva; Vijaya Pratheepa; Luis Botana; Vitor Vasconcelos;Harmful Algal Blooms (HAB) are complex to manage due to their intermittent nature and their severe impact on the economy and human health. The conditions which promote HAB have not yet been fully explained, though climate change and anthropogenic intervention are pointed as significant factors. The rise of water temperature, the opening of new sea canals and the introduction of ship ballast waters all contribute to the dispersion and establishment of toxin-producing invasive species that promote the settling of emergent toxins in the food-chain. Tetrodotoxin, ciguatoxin, palytoxin and cyclic imines are commonly reported in warm waters but have also caused poisoning incidents in temperate zones. There is evidence that monitoring for these toxins exclusively in bivalves is simplistic and underestimates the risk to public health, since new vectors have been reported for these toxins and as well for regulated toxins such as PSTs and DSTs. In order to avoid public health impacts, there is a need for adequate monitoring programs, a need for establishing appropriate legislation, and a need for optimizing effective methods of analysis. In this review, we will compile evidence concerning emergent marine toxins and provide data that may indicate the need to restructure the current monitoring programs of HAB.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/toxins7030859&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/toxins7030859&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 SpainPublisher:Elsevier BV Funded by:EC | TROPOS, EC | H2OCEAN, EC | MARIBE +1 projectsEC| TROPOS ,EC| H2OCEAN ,EC| MARIBE ,EC| MERMAIDCarlos V.C. Weiss; Jarbas Bonetti; Marinez E.G. Scherer; Bárbara Ondiviela; Raúl Guanche; José A. Juanes;The marine environment has been in the spotlight of economic development due to the growing demand for areas to promote activities associated with the concept of Blue Economy. This is the case of the renewable energy and aquaculture sectors, whose expansion towards offshore is determined by the increase global demand for energy and food, and by exceeding of the carrying capacity of coastal and terrestrial systems. In this context, the multi-use strategy can be an alternative to minimize conflicts between activities and impacts on the surrounding social-ecological environment. This contribution presents a preliminary approach to identify opportunities for individual exploitation and the possibilities of multi-use between wind energy, wave energy and aquaculture in Brazil?s Exclusive Economic Zone. Technical, operational, and biological aspects were evaluated, through a Suitability Index validated in previous works, to identify zones with favorable conditions for energy exploitation and farming of six fish species. Additionally, overlaps between conservation areas and multi-use zones were considered to analyze possible spatial conflicts. Zones with multi-use possibilities with different combinations between these sectors were identified: i) wave energy and aquaculture presented the largest areas for multi-use, distributed in the south, southeast and northeast; ii) possibility of combining wind energy and aquaculture was identified in the northeast; and iii) multi-use possibilities in the south for marine energies. Zones with multi-use possibilities were identified in protection and conservation areas, such as the combination of wave exploitation and Greater Amberjack farming, with 63% overlap. Therefore, this case study is a guide for future local studies in the marine region of Brazil, mainly in the selection of sites for analysis. The present contribution represents a starting point for the discussion about multi-use in the country C.V.C. Weiss is grateful to the Brazilian National Council for Scientific and Technological Development (CNPq) for the PDJ (Pós-doutorado Junior) fellowship granted (151228/2020–5), and the financial support from the Universidad de Cantabria (UC) through the Agusto González de Linares and Margarita Salas Grants (POS-UC-2019-06 and RMS-04, respectively). J. Bonetti is a Research Fellow of CNPq (Grant 306633/2019–1). Raúl Guanche acknowledges the Grant RYC-2017-23260 funded by MCIN/AEI/10.13039/501100011033 and “ESF Investing in your future”. This work is framed in the project “ACUFLOT”, supported by the Biodiversity Foundation of the Ecological Transition and Demographic Challenge Ministry of Spain and the IHCantabria - Instituto de Hidráulica Ambiental de la Universidad de Cantabria
Ocean & Coastal Mana... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ocecoaman.2023.106764&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 11visibility views 11 download downloads 6 Powered bymore_vert Ocean & Coastal Mana... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ocecoaman.2023.106764&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Other literature type , Conference object 2018 FrancePublisher:Springer International Publishing Funded by:EC | BAMMBOEC| BAMMBOAuthors: Perez-Lopez, Paula; Feijoo, Gumersindo,; Moreira, Maria;The biotechnological development has traditionally focused on the compliance with regulatory demands rather than optimising the processes or analysing their sustainability. This work proposes the combination of available tools for the comprehensive sustainability assessment of a blue biotechnology process based on the cultivation of the microalgae Haematococcus pluvialis. The work aims to include environmental, economic and social dimensions to measure the sustainability of the production of a carotenoid with potential applications in food, nutraceutical, cosmetics and eventually pharmaceutical industries. Electricity for cultivation was identified as the major contributor to the environmental impacts, which depended significantly on the production scale. Social benefits were mainly related to workers and consumers, while the economic assessment suggested a profitable process with a relatively short period to recover the initial investment.
Hyper Article en Lig... arrow_drop_down MINES ParisTech: Open Archive (HAL)Part of book or chapter of book . 2018Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://hal-mines-paristech.ar...Part of book or chapter of bookLicense: CC BYData sources: UnpayWallINRIA a CCSD electronic archive serverConference object . 2017Data sources: INRIA a CCSD electronic archive serverMémoires en Sciences de l'Information et de la CommunicationPart of book or chapter of book . 2018Mémoires en Sciences de l'Information et de la CommunicationConference object . 2017add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-319-66981-6_53&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 8 citations 8 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down MINES ParisTech: Open Archive (HAL)Part of book or chapter of book . 2018Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://hal-mines-paristech.ar...Part of book or chapter of bookLicense: CC BYData sources: UnpayWallINRIA a CCSD electronic archive serverConference object . 2017Data sources: INRIA a CCSD electronic archive serverMémoires en Sciences de l'Information et de la CommunicationPart of book or chapter of book . 2018Mémoires en Sciences de l'Information et de la CommunicationConference object . 2017add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-319-66981-6_53&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Qatar, Norway, United Kingdom, Denmark, Qatar, United Kingdom, United KingdomPublisher:Springer Science and Business Media LLC Funded by:NSERC, UKRI | The role of Arctic sea ic..., AKA | RESILIENCE IN SOCIAL-ECOL... +6 projectsNSERC ,UKRI| The role of Arctic sea ice in climatic and ecological processes ,AKA| RESILIENCE IN SOCIAL-ECOLOGICAL SYSTEMS IN IN NORTHWEST EURASIA (RISES) ,RCN| Understanding ecosystem functionality, expansion and retreat of species in the Scandinavian mountain tundra under multiple drivers of change ,UKRI| Permafrost catchments in transition: hydrological controls on carbon cycling and greenhouse gas budgets ,AKA| Consequences of climate-driven changes in background below- and aboveground herbivory for tree growth, forest productivity, and ecosystem functions ,[no funder available] ,EC| INTERACT ,NWO| Feedbacks of vegetation change to permafrost thawing, soil nutrient availability and carbon storage in tundra ecosystemsSigne Normand; Maite Gartzia; Philip A. Wookey; Maja K. Sundqvist; Maja K. Sundqvist; Martin Wilmking; Juha M. Alatalo; Alexander Sokolov; James D. M. Speed; Anna Skoracka; Dagmar Egelkraut; Lee Ann Fishback; Ashley L. Asmus; C. Guillermo Bueno; Timo Kumpula; Dorothee Ehrich; Agata Buchwal; Agata Buchwal; Elina Kaarlejärvi; Elina Kaarlejärvi; Toke T. Høye; Martin Hallinger; Vitali Zverev; Milena Holmgren; Mariska te Beest; Eeva M. Soininen; Jean-Pierre Tremblay; Kari Anne Bråthen; Sergey A. Uvarov; Natalya A. Sokolova; Elin Lindén; Judith Sitters; Judith Sitters; Isla H. Myers-Smith; Johan Olofsson; Katherine S. Christie; Eric Post; Cynthia Y.M.J.G. Lange; Esther Lévesque; Ingibjörg S. Jónsdóttir; Ingibjörg S. Jónsdóttir; Juul Limpens; Paul Grogan; Yulia V. Denisova; Tommi Andersson; Marc Macias-Fauria; David A. Watts; Heike Zimmermann; Adrian V. Rocha; Diane C. Huebner; Julia Boike; David S. Hik; Otso Suominen; Christine Urbanowicz; Isabel C. Barrio; Nikita Tananaev; Annika Hofgaard; Jelena Lange; Bruce C. Forbes; John P. Bryant; Lorna E. Street; Monique M. P. D. Heijmans; Mikhail V. Kozlov; Erik J. van Nieukerken; Niels Martin Schmidt;Chronic, low intensity herbivory by invertebrates, termed background herbivory, has been understudied in tundra, yet its impacts are likely to increase in a warmer Arctic. The magnitude of these changes is however hard to predict as we know little about the drivers of current levels of invertebrate herbivory in tundra. We assessed the intensity of invertebrate herbivory on a common tundra plant, the dwarf birch (Betula glandulosa-nana complex), and investigated its relationship to latitude and climate across the tundra biome. Leaf damage by defoliating, mining and gall-forming invertebrates was measured in samples collected from 192 sites at 56 locations. Our results indicate that invertebrate herbivory is nearly ubiquitous across the tundra biome but occurs at low intensity. On average, invertebrates damaged 11.2% of the leaves and removed 1.4% of total leaf area. The damage was mainly caused by external leaf feeders, and most damaged leaves were only slightly affected (12% leaf area lost). Foliar damage was consistently positively correlated with mid-summer (July) temperature and, to a lesser extent, precipitation in the year of data collection, irrespective of latitude. Our models predict that, on average, foliar losses to invertebrates on dwarf birch are likely to increase by 6--7% over the current levels with a 1 textdegreeC increase in summer temperatures. Our results show that invertebrate herbivory on dwarf birch is small in magnitude but given its prevalence and dependence on climatic variables, background invertebrate herbivory should be included in predictions of climate change impacts on tundra ecosystems.
CORE arrow_drop_down University of Copenhagen: ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Qatar University: QU Institutional RepositoryArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00300-017-2139-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 49 citations 49 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
download 63download downloads 63 Powered bymore_vert CORE arrow_drop_down University of Copenhagen: ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Qatar University: QU Institutional RepositoryArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00300-017-2139-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 New Zealand, Denmark, Spain, United States, New ZealandPublisher:American Association for the Advancement of Science (AAAS) Wu-Bing Xu; Wen-Yong Guo; Josep M. Serra-Diaz; Franziska Schrodt; Wolf L. Eiserhardt; Brian J. Enquist; Brian S. Maitner; Cory Merow; Cyrille Violle; Madhur Anand; Michaël Belluau; Hans Henrik Bruun; Chaeho Byun; Jane A. Catford; Bruno E. L. Cerabolini; Eduardo Chacón-Madrigal; Daniela Ciccarelli; J. Hans C. Cornelissen; Anh Tuan Dang-Le; Angel de Frutos; Arildo S. Dias; Aelton B. Giroldo; Alvaro G. Gutiérrez; Wesley Hattingh; Tianhua He; Peter Hietz; Nate Hough-Snee; Steven Jansen; Jens Kattge; Benjamin Komac; Nathan J. B. Kraft; Koen Kramer; Sandra Lavorel; Christopher H. Lusk; Adam R. Martin; Ke-Ping Ma; Maurizio Mencuccini; Sean T. Michaletz; Vanessa Minden; Akira S. Mori; Ülo Niinemets; Yusuke Onoda; Renske E. Onstein; Josep Peñuelas; Valério D. Pillar; Jan Pisek; Matthew J. Pound; Bjorn J. M. Robroek; Brandon Schamp; Martijn Slot; Miao Sun; Ênio E. Sosinski; Nadejda A. Soudzilovskaia; Nelson Thiffault; Peter M. van Bodegom; Fons van der Plas; Jingming Zheng; Jens-Christian Svenning; Alejandro Ordonez;As Earth’s climate has varied strongly through geological time, studying the impacts of past climate change on biodiversity helps to understand the risks from future climate change. However, it remains unclear how paleoclimate shapes spatial variation in biodiversity. Here, we assessed the influence of Quaternary climate change on spatial dissimilarity in taxonomic, phylogenetic, and functional composition among neighboring 200-kilometer cells (beta-diversity) for angiosperm trees worldwide. We found that larger glacial-interglacial temperature change was strongly associated with lower spatial turnover (species replacements) and higher nestedness (richness changes) components of beta-diversity across all three biodiversity facets. Moreover, phylogenetic and functional turnover was lower and nestedness higher than random expectations based on taxonomic beta-diversity in regions that experienced large temperature change, reflecting phylogenetically and functionally selective processes in species replacement, extinction, and colonization during glacial-interglacial oscillations. Our results suggest that future human-driven climate change could cause local homogenization and reduction in taxonomic, phylogenetic, and functional diversity of angiosperm trees worldwide.
The University of Wa... arrow_drop_down The University of Waikato: Research CommonsArticle . 2023License: CC BYFull-Text: https://hdl.handle.net/10289/15686Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2023License: CC BYData sources: Diposit Digital de Documents de la UABUniversity of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.add8553&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The University of Wa... arrow_drop_down The University of Waikato: Research CommonsArticle . 2023License: CC BYFull-Text: https://hdl.handle.net/10289/15686Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2023License: CC BYData sources: Diposit Digital de Documents de la UABUniversity of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.add8553&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2019Publisher:F1000 Research Ltd Authors: Sandra Akugpoka Atindana; Patrick K. Ofori‐Danson; Sandra Brucet;Background: Ghana’s marine artisanal fisheries, particularly the small pelagic fisheries, are in a state of crisis. The decline in the number of small pelagic fish are attributable to overfishing, climate variability and unsustainable fishing methods. Similarly, in the wake of climate change, shellfishes (particularly oysters, scallops and mussels) are highly vulnerable. Methods: A total of 55 years’ worth of data from Ghana’s marine artisanal fisheries were studied in relation to climate indices. The primary objective was to develop a simple linear regression model for predicting shellfish catch in Ghana. Key informant interviews were employed in soliciting data on changes in climate along the coastline and trends in marine artisanal shell fish catch. Results: The predictor variable that significantly explained shellfish production was temperature. Hence, the model is a valuable tool to predict future trends in the shellfish catch in marine artisanal fisheries. Conclusions: Increases in sea surface temperature will adversely affect shellfish production. It is therefore important that the Ministry of Fisheries and Aquaculture Development and other stakeholders should, in their decision-making processes, ensure the formulation of climate smart policies and management strategies for sustainable use of the resource.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.12688/aasopenres.12956.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.12688/aasopenres.12956.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Article , Journal 2021 SpainPublisher:Elsevier BV Francesco Colloca; Fabio Bulleri; Antonio Di Franco; Cristiana Guerranti; Monia Renzi; Enric Ballesteros; Maria Cristina Mangano; Carlo Cerrano; Antonio Pusceddu; Gianluca Sarà; Ferdinando Boero; Ferdinando Boero; Gil Rilov; Stanislao Bevilacqua; Joaquim Garrabou; Joaquim Garrabou; Marco Milazzo; Laura Airoldi; Laura Airoldi; Fiorenza Micheli; Benjamin S. Halpern; Paolo Guidetti; Paolo Guidetti; Joachim Claudet; Lisandro Benedetti-Cecchi; Giuseppe Guarnieri; Martina Coppari; Antonio Terlizzi; Antonio Terlizzi; Emma Cebrian; Simonetta Fraschetti; Stelios Katsanevakis;Global change is striking harder and faster in the Mediterranean Sea than elsewhere, where high levels of human pressure and proneness to climate change interact in modifying the structure and disrupting regulative mechanisms of marine ecosystems. Rocky reefs are particularly exposed to such environmental changes with ongoing trends of degradation being impressive. Due to the variety of habitat types and associated marine biodiversity, rocky reefs are critical for the functioning of marine ecosystems, and their decline could profoundly affect the provision of essential goods and services which human populations in coastal areas rely upon. Here, we provide an up-to-date overview of the status of rocky reefs, trends in human-driven changes undermining their integrity, and current and upcoming management and conservation strategies, attempting a projection on what could be the future of this essential component of Mediterranean marine ecosystems.
https://hal.archives... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAhttps://doi.org/10.1016/bs.amb...Part of book or chapter of book . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/bs.amb.2021.08.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 32 citations 32 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert https://hal.archives... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAhttps://doi.org/10.1016/bs.amb...Part of book or chapter of book . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/bs.amb.2021.08.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Morocco, SpainPublisher:Elsevier BV Funded by:EC | CERESEC| CERESRuiz-Jarabo, Ignacio; Laiz Carrión, R.; Ortega, A.; Gándara, F. de la; Quintanilla, J.M.; Mancera, J.M.;handle: 10508/15848 , 10261/313406
In this study, we assessed the effect of environmental salinity and pH as independent factors on larval survival of Atlantic bluefin tuna (ABFT –Thunnus thynnus) together with their whole-body Na+/K+-ATPase and v-type H+-ATPase activities. Fertilized eggs of ABFT were obtained from a spontaneous spawning of broodstock in the farming facilities at El Gorguel (Cartagena, SE Spain) and were transferred to facilities of the Spanish Institute of Oceanography (IEO) in Mazarrón (SE Spain). In a first experiment, eggs (200 fertilized eggs L−1 per treatment, in 3 replicates) were exposed to different salinities treatments and constant pH 8.0 (control) until hatch was completed (50 h post-fertilization, hpf, at 23 °C): 27, 30, 33, 36, 37, 38 (control), 39, 40, 43, 46 and 49 ppt. In a second experiment eggs (200 fertilized eggs L−1, in 3 replicates) were exposed to seawater salinity (SW: 38 ppt) and four reduced pH treatments until hatch was completed (50 hpf at 23 °C): 8.0 (control), 7.7, 7.5 and 7.3. An inverse “U-shaped” relationship was observed between environmental salinity and number of hatched larvae. An opposite pattern was observed for both Na+/K+-ATPase and H+-ATPase activities in hatched larvae, increasing both activities in groups exposed to extreme salinities. Thus, larval survival was higher at intermediate salinities and lower at the extreme salinities tested. These results suggest higher survival rates with lower active pumps activities. No significant differences in larval survival were observed with pH treatment, but lower H+-ATPase activity was detected at control environmental pH (pH 8.0). Survival results are discussed in terms of osmoregulatory cost adapting to a salinity and pH predicted for the near future scenarios. 2,041
Aquaculture arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio de Objetos de Docencia e Investigación de la Universidad de CádizArticle . 2022License: CC BY NCRepositorio Institucional Digital del IEOArticle . 2022License: CC BY NC NDData sources: Repositorio Institucional Digital del IEORepositorio Institucional Digital del IEOArticle . 2022License: CC BY NC NDData sources: Repositorio Institucional Digital del IEOadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.aquaculture.2022.738457&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 5visibility views 5 download downloads 23 Powered bymore_vert Aquaculture arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio de Objetos de Docencia e Investigación de la Universidad de CádizArticle . 2022License: CC BY NCRepositorio Institucional Digital del IEOArticle . 2022License: CC BY NC NDData sources: Repositorio Institucional Digital del IEORepositorio Institucional Digital del IEOArticle . 2022License: CC BY NC NDData sources: Repositorio Institucional Digital del IEOadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.aquaculture.2022.738457&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu