- home
- Advanced Search
- Energy Research
- 13. Climate action
- 2. Zero hunger
- FR
- CA
- CN
- European Marine Science
- Energy Research
- 13. Climate action
- 2. Zero hunger
- FR
- CA
- CN
- European Marine Science
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017 AustraliaPublisher:Elsevier BV Funded by:EC | MARSEC| MARSAuthors:Zhou, Y.;
Ma, J.;Zhou, Y.
Zhou, Y. in OpenAIREZhang, Y.;
Qin, B.; +6 AuthorsZhang, Y.
Zhang, Y. in OpenAIREZhou, Y.;
Ma, J.;Zhou, Y.
Zhou, Y. in OpenAIREZhang, Y.;
Qin, B.;Zhang, Y.
Zhang, Y. in OpenAIREJeppesen, E.;
Jeppesen, E.
Jeppesen, E. in OpenAIREShi, K.;
Brookes, J.D.;
Spencer, R.G.M.; Zhu, G.; Gao, G.;Brookes, J.D.
Brookes, J.D. in OpenAIREThis study highlights how Chinese economic development detrimentally impacted water quality in recent decades and how this has been improved by enormous investment in environmental remediation funded by the Chinese government. To our knowledge, this study is the first to describe the variability of surface water quality in inland waters in China, the affecting drivers behind the changes, and how the government-financed conservation actions have impacted water quality. Water quality was found to be poorest in the North and the Northeast China Plain where there is greater coverage of developed land (cities + cropland), a higher gross domestic product (GDP), and higher population density. There are significant positive relationships between the concentration of the annual mean chemical oxygen demand (COD) and the percentage of developed land use (cities + cropland), GDP, and population density in the individual watersheds (p < 0.001). During the past decade, following Chinese government-financed investments in environmental restoration and reforestation, the water quality of Chinese inland waters has improved markedly, which is particularly evident from the significant and exponentially decreasing GDP-normalized COD and ammonium (NH4+-N) concentrations. It is evident that the increasing GDP in China over the past decade did not occur at the continued expense of its inland water ecosystems. This offers hope for the future, also for other industrializing countries, that with appropriate environmental investments a high GDP can be reached and maintained, while simultaneously preserving inland aquatic ecosystems, particularly through management of sewage discharge.
PURE Aarhus Universi... arrow_drop_down http://dx.doi.org/10.1016/j.wa...Other literature typeData sources: European Union Open Data PortalThe University of Adelaide: Digital LibraryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2017.04.035&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu161 citations 161 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert PURE Aarhus Universi... arrow_drop_down http://dx.doi.org/10.1016/j.wa...Other literature typeData sources: European Union Open Data PortalThe University of Adelaide: Digital LibraryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2017.04.035&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 ItalyPublisher:Wiley Authors:Jason M. Hall-Spencer;
Jason M. Hall-Spencer;Jason M. Hall-Spencer
Jason M. Hall-Spencer in OpenAIREShigeki Wada;
Shigeki Wada
Shigeki Wada in OpenAIREMayumi Kuroyama;
+6 AuthorsMayumi Kuroyama
Mayumi Kuroyama in OpenAIREJason M. Hall-Spencer;
Jason M. Hall-Spencer;Jason M. Hall-Spencer
Jason M. Hall-Spencer in OpenAIREShigeki Wada;
Shigeki Wada
Shigeki Wada in OpenAIREMayumi Kuroyama;
Nicolas Floc’h;Mayumi Kuroyama
Mayumi Kuroyama in OpenAIREBen P. Harvey;
Ben P. Harvey
Ben P. Harvey in OpenAIREMarco Milazzo;
Marco Milazzo
Marco Milazzo in OpenAIREKosei Komatsu;
Kosei Komatsu
Kosei Komatsu in OpenAIRESylvain Agostini;
Sylvain Agostini
Sylvain Agostini in OpenAIREKoetsu Kon;
Koetsu Kon
Koetsu Kon in OpenAIREAbstractOcean warming is altering the biogeographical distribution of marine organisms. In the tropics, rising sea surface temperatures are restructuring coral reef communities with sensitive species being lost. At the biogeographical divide between temperate and tropical communities, warming is causing macroalgal forest loss and the spread of tropical corals, fishes and other species, termed “tropicalization”. A lack of field research into the combined effects of warming and ocean acidification means there is a gap in our ability to understand and plan for changes in coastal ecosystems. Here, we focus on the tropicalization trajectory of temperate marine ecosystems becoming coral‐dominated systems. We conducted field surveys and in situ transplants at natural analogues for present and future conditions under (i) ocean warming and (ii) both ocean warming and acidification at a transition zone between kelp and coral‐dominated ecosystems. We show that increased herbivory by warm‐water fishes exacerbates kelp forest loss and that ocean acidification negates any benefits of warming for range extending tropical corals growth and physiology at temperate latitudes. Our data show that, as the combined effects of ocean acidification and warming ratchet up, marine coastal ecosystems lose kelp forests but do not gain scleractinian corals. Ocean acidification plus warming leads to overall habitat loss and a shift to simple turf‐dominated ecosystems, rather than the complex coral‐dominated tropicalized systems often seen with warming alone. Simplification of marine habitats by increased CO2 levels cascades through the ecosystem and could have severe consequences for the provision of goods and services.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15749&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 41 citations 41 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15749&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right External research report 2014 IrelandPublisher:Elsevier BV Dalton, C.; O Dwyer, B.; Taylor, D.; DeEyto, E.; Jennings, E.; Chen, G.; Poole, R.; Dillane, M.; McGinnity, P.;Oligotrophic catchments with short spatey streams, upland lakes and peaty soils characterise northwest European Atlantic coastal regions. These catchments are important biodiversity refuges, particularly for sensitive diadromous fish populations but are subject to changes in land use and land management practices associated with afforestation, agriculture and rural development. Quantification of the degree of catchment degradation resulting from such anthropogenic impacts is often limited by a lack of long-term baseline data in what are generally relatively isolated, poorly studied catchments. This research uses a combination of palaeolimnological (radiometrically-dated variations in sedimentary geochemical elements, pollen, diatoms and remains of cladocera), census, and instrumental data, along with hindcast estimates to quantify environmental changes and their aquatic impacts since the late 19th century. The most likely drivers of any change are also identified. Results confirm an aquatic biotic response (phyto- and zooplankton) to soil erosion and nutrient enrichment associated with the onset of commercial conifer afforestation, effects that were subsequently enhanced as a result of increased overgrazing in the catchment and, possibly, climate warming. The implications for the health of aquatic resources in the catchment are discussed Environmental Protection Agency in Ireland (ILLUMINATE 2005-W-MS-40, P.McGinnity was supported by the Beaufort Marine Research Award in Fish Population Genetics funded by the Irish Government under the Sea Change Programme.
Marine Institute Ope... arrow_drop_down Marine Institute Open Access Repository (OAR)External research report . 2014Data sources: Marine Institute Open Access Repository (OAR)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______2197::fdfd86dbf747f2d2017ab37b401961eb&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Marine Institute Ope... arrow_drop_down Marine Institute Open Access Repository (OAR)External research report . 2014Data sources: Marine Institute Open Access Repository (OAR)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______2197::fdfd86dbf747f2d2017ab37b401961eb&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Other literature type , Report , Article 2009 United Kingdom, FinlandPublisher:Springer Netherlands Publicly fundedAuthors: Arvola, Lauri; George, Glen; Livingstone, David M.;Jarvinen, Marko;
+7 AuthorsJarvinen, Marko
Jarvinen, Marko in OpenAIREArvola, Lauri; George, Glen; Livingstone, David M.;Jarvinen, Marko;
Blenckner, Thorsten; Dokulil, Martin T.; Jennings, Eleanor; Nic Aonghusa, Caitriona; Noges, Peeter; Noges, Tiina; Weyhnmeyer, Gesa A.;Jarvinen, Marko
Jarvinen, Marko in OpenAIREMeteorological forcing at the air-water interface is the main determinant of the heat balance of most lakes (Edinger et al., 1968; Sweers, 1976). Year-to-year changes in the weather therefore have a major effect on the thermal characteristics of lakes. However, lakes that differ with respect to their morphometry respond differently to these changes (Gorham, 1964), with deeper lakes integrating the effects of meteorological forcing over longer periods of time. Other important factors that can influence the thermal characteristics of lakes include hydraulic residence time, optical properties and landscape setting (e.g. Salonen et al., 1984; Fee et al., 1996; Livingstone et al., 1999). These factors modify the thermal responses of the lake to meteorological forcing (cf. Magnuson et al., 2004; Blenckner, 2005) and regulate the patterns of spatial coherence (Chapter 17) observed in the different regions (Livingstone, 1993; George et al., 2000; Livingstone and Dokulil, 2001; Jarvinen et al., 2002; Blenckner et al., 2004)
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1007/978-90...Part of book or chapter of book . 2009 . Peer-reviewedLicense: Springer TDMData sources: CrossrefNERC Open Research ArchivePart of book or chapter of book . 2010Data sources: NERC Open Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-90-481-2945-4_6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu57 citations 57 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1007/978-90...Part of book or chapter of book . 2009 . Peer-reviewedLicense: Springer TDMData sources: CrossrefNERC Open Research ArchivePart of book or chapter of book . 2010Data sources: NERC Open Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-90-481-2945-4_6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2013 FrancePublisher:Elsevier BV Authors: /Gilles, Sylvain; Fargier, L.; /Lazzaro, Xavier;/Baras, Etienne;
+5 Authors/Baras, Etienne
/Baras, Etienne in OpenAIRE/Gilles, Sylvain; Fargier, L.; /Lazzaro, Xavier;/Baras, Etienne;
De Wilde, N.; Drakides, C.; Amiel, C.; Rispal, B.; Blancheton, J. P.;/Baras, Etienne
/Baras, Etienne in OpenAIREpmid: 23031842
Integrated Multi-Trophic Aquaculture takes advantage of the mutualism between some detritivorous fish and phytoplankton. The fish recycle nutrients by consuming live (and dead) algae and provide the inorganic carbon to fuel the growth of live algae. In the meanwhile, algae purify the water and generate the oxygen required by fishes. Such mechanism stabilizes the functioning of an artificially recycling ecosystem, as exemplified by combining the euryhaline tilapia Sarotherodon melanotheron heudelotii and the unicellular alga Chlorella sp. Feed addition in this ecosystem results in faster fish growth but also in an increase in phytoplankton biomass, which must be limited. In the prototype described here, the algal population control is exerted by herbivorous zooplankton growing in a separate pond connected in parallel to the fish-algae ecosystem. The zooplankton production is then consumed by tilapia, particularly by the fry and juveniles, when water is returned to the main circuit. Chlorella sp. and Brachionus plicatilis are two planktonic species that have spontaneously colonized the brackish water of the prototype, which was set-up in Senegal along the Atlantic Ocean shoreline. In our system, water was entirely recycled and only evaporation was compensated (1.5% volume/day). Sediment, which accumulated in the zooplankton pond, was the only trophic cul-de-sac. The system was temporarily destabilized following an accidental rotifer invasion in the main circuit. This caused Chlorella disappearance and replacement by opportunist algae, not consumed by Brachionus. Following the entire consumption of the Brachionus population by tilapias, Chlorella predominated again. Our artificial ecosystem combining S. m. heudelotii, Chlorella and B. plicatilis thus appeared to be resilient. This farming system was operated over one year with a fish productivity of 1.85 kg/m2 per year during the cold season (January to April).
ArchiMer - Instituti... arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2013Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1017/s1751731112001279&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert ArchiMer - Instituti... arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2013Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1017/s1751731112001279&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2017 GermanyPublisher:Springer Science and Business Media LLC Funded by:NSERCNSERCAuthors:P. Chan;
J. Halfar; W. Adey;S. Hetzinger;
+5 AuthorsS. Hetzinger
S. Hetzinger in OpenAIREP. Chan;
J. Halfar; W. Adey;S. Hetzinger;
S. Hetzinger
S. Hetzinger in OpenAIRET. Zack;
G.W.K. Moore;
G.W.K. Moore
G.W.K. Moore in OpenAIREU. G. Wortmann;
U. G. Wortmann
U. G. Wortmann in OpenAIREB. Williams;
B. Williams
B. Williams in OpenAIREA. Hou;
AbstractAccelerated warming and melting of Arctic sea-ice has been associated with significant increases in phytoplankton productivity in recent years. Here, utilizing a multiproxy approach, we reconstruct an annually resolved record of Labrador Sea productivity related to sea-ice variability in Labrador, Canada that extends well into the Little Ice Age (LIA; 1646 AD). Barium-to-calcium ratios (Ba/Ca) and carbon isotopes (δ13C) measured in long-lived coralline algae demonstrate significant correlations to both observational and proxy records of sea-ice variability, and show persistent patterns of co-variability broadly consistent with the timing and phasing of the Atlantic Multidecadal Oscillation (AMO). Results indicate reduced productivity in the Subarctic Northwest Atlantic associated with AMO cool phases during the LIA, followed by a step-wise increase from 1910 to present levels—unprecedented in the last 363 years. Increasing phytoplankton productivity is expected to fundamentally alter marine ecosystems as warming and freshening is projected to intensify over the coming century.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ncomms15543&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 31 citations 31 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ncomms15543&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017 France, Norway, FrancePublisher:Wiley Authors:Lefevre, Sjannie;
Lefevre, Sjannie
Lefevre, Sjannie in OpenAIREMckenzie, David J.;
Nilsson, Göran E.;Mckenzie, David J.
Mckenzie, David J. in OpenAIREAbstractSome recent modelling papers projecting smaller fish sizes and catches in a warmer future are based on erroneous assumptions regarding (i) the scaling of gills with body mass and (ii) the energetic cost of ‘maintenance’. Assumption (i) posits that insurmountable geometric constraints prevent respiratory surface areas from growing as fast as body volume. It is argued that these constraints explain allometric scaling of energy metabolism, whereby larger fishes have relatively lower mass‐specific metabolic rates. Assumption (ii) concludes that when fishes reach a certain size, basal oxygen demands will not be met, because of assumption (i). We here demonstrate unequivocally, by applying accepted physiological principles with reference to the existing literature, that these assumptions are not valid. Gills are folded surfaces, where the scaling of surface area to volume is not constrained by spherical geometry. The gill surface area can, in fact, increase linearly in proportion to gill volume and body mass. We cite the large body of evidence demonstrating that respiratory surface areas in fishes reflect metabolic needs, not vice versa, which explains the large interspecific variation in scaling of gill surface areas. Finally, we point out that future studies basing their predictions on models should incorporate factors for scaling of metabolic rate and for temperature effects on metabolism, which agree with measured values, and should account for interspecific variation in scaling and temperature effects. It is possible that some fishes will become smaller in the future, but to make reliable predictions the underlying mechanisms need to be identified and sought elsewhere than in geometric constraints on gill surface area. Furthermore, to ensure that useful information is conveyed to the public and policymakers about the possible effects of climate change, it is necessary to improve communication and congruity between fish physiologists and fisheries scientists.
Hyper Article en Lig... arrow_drop_down Global Change BiologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefArchiMer - Institutional Archive of IfremerOther literature type . 2017Data sources: ArchiMer - Institutional Archive of IfremerUniversitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13652&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 133 citations 133 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Global Change BiologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefArchiMer - Institutional Archive of IfremerOther literature type . 2017Data sources: ArchiMer - Institutional Archive of IfremerUniversitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13652&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 ArgentinaPublisher:Elsevier BV Authors:Kopprio, Germán Adolfo;
Biancalana, Florencia;Kopprio, Germán Adolfo
Kopprio, Germán Adolfo in OpenAIREFricke, Anna;
Garzon Cardona, John Edison; +2 AuthorsFricke, Anna
Fricke, Anna in OpenAIREKopprio, Germán Adolfo;
Biancalana, Florencia;Kopprio, Germán Adolfo
Kopprio, Germán Adolfo in OpenAIREFricke, Anna;
Garzon Cardona, John Edison; Martínez, Ana; Lara, Ruben Jose;Fricke, Anna
Fricke, Anna in OpenAIREThe aims of this work are to provide an overview of the current stresses of estuaries in Argentina and to propose adaptation strategies from an ecohydrological approach. Several Argentinian estuaries are impacted by pollutants, derived mainly from sewage discharge and agricultural or industrial activities. Anthropogenic impacts are expected to rise with increasing human population. Climate-driven warmer temperature and hydrological changes will alter stratification, residence time, oxygen content, salinity, pollutant distribution, organism physiology and ecology, and nutrient dynamics. Good water quality is essential in enhancing estuarine ecological resilience to disturbances brought on by global change. The preservation, restoration, and creation of wetlands will help to protect the coast from erosion, increase sediment accretion rates, and improve water quality by removing excess nutrients and pollutants. The capacity of hydrologic basin ecosystems to absorb human and natural impacts can be improved through holistic management, which should consider social vulnerability in complex human-natural systems.
LAReferencia - Red F... arrow_drop_down Marine Pollution BulletinArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.marpolbul.2014.08.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 25 citations 25 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert LAReferencia - Red F... arrow_drop_down Marine Pollution BulletinArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.marpolbul.2014.08.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 TurkeyPublisher:Elsevier BV While climate change is now fully recognised as a reality, its impact on biodiversity is still not completely understood. To predict its impact, proxies coherent with the studied ecosystem or species are thus required. Marine turtles are threatened worldwide (though some populations are recovering) as they are particularly sensitive to temperature throughout their entire life cycle. This is especially true at the embryo stage when temperature affects both growth rates and sex determination. Nest temperature is thus of prime importance to understand the persistence of populations in the context of climate change. We analysed the nest temperature of 21 loggerheads (Caretta caretta) originating from Dalyan Beach in Turkey using day-lagged generalised mixed models with autocorrelation. Surprisingly, the selected model for nest temperature includes an effect for sea surface temperature 4-times higher than for air temperature. We also detected a very significant effect of metabolic heating during development compatible with what is already known about marine turtle nests. Our new methodology allows the prediction of marine turtle nest temperatures with good precision based on a combination of air temperature measured at beach level and sea surface temperature in front of the beach. These data are available in public databases for most of the beaches worldwide.
Pamukkale University... arrow_drop_down Pamukkale University RepositoryArticle . 2015Full-Text: https://hdl.handle.net/11499/10499Data sources: Bielefeld Academic Search Engine (BASE)Journal of Thermal BiologyArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefPamukkale Üniversitesi Açık Erişim ArşiviArticle . 2015Data sources: Pamukkale Üniversitesi Açık Erişim Arşiviadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jtherbio.2014.10.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Pamukkale University... arrow_drop_down Pamukkale University RepositoryArticle . 2015Full-Text: https://hdl.handle.net/11499/10499Data sources: Bielefeld Academic Search Engine (BASE)Journal of Thermal BiologyArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefPamukkale Üniversitesi Açık Erişim ArşiviArticle . 2015Data sources: Pamukkale Üniversitesi Açık Erişim Arşiviadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jtherbio.2014.10.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 FrancePublisher:Inter-Research Science Center Authors:Le Marchand, Marie;
Le Marchand, Marie
Le Marchand, Marie in OpenAIREHattab, Tarek;
Hattab, Tarek
Hattab, Tarek in OpenAIRENiquil, Nathalie;
Niquil, Nathalie
Niquil, Nathalie in OpenAIREAlbouy, Camille;
+2 AuthorsAlbouy, Camille
Albouy, Camille in OpenAIRELe Marchand, Marie;
Le Marchand, Marie
Le Marchand, Marie in OpenAIREHattab, Tarek;
Hattab, Tarek
Hattab, Tarek in OpenAIRENiquil, Nathalie;
Niquil, Nathalie
Niquil, Nathalie in OpenAIREAlbouy, Camille;
Albouy, Camille
Albouy, Camille in OpenAIRELe Loc’h, François;
Le Loc’h, François
Le Loc’h, François in OpenAIREBen Rais Lasram, Frida;
Ben Rais Lasram, Frida
Ben Rais Lasram, Frida in OpenAIREdoi: 10.3354/meps13401
Under climate change, future species assemblages will be driven by the movements and poleward shift of local species and the arrival of more thermophilic species from lower latitudes. To evaluate the impacts of climate change on marine communities in the Bay of Biscay, we used the hierarchical filters modelling approach. Models integrated 3 vertical depth layers and considered 2 Intergovernmental Panel on Climate Change (IPCC) scenarios (Representative Concentration Pathway, RCP2.6 and RCP8.5) and 2 periods (2041-2050 and 2091-2100) to simulate potential future species distributions. Results predicted potentially suitable future ranges for 163 species as well as future arrivals of non-indigenous southern species. We aggregated these results to map changes in species assemblages. Results revealed that coastal areas would undergo the highest species loss among the Bay of Biscay species, depending on their vertical habitat (benthic, demersal, benthopelagic or pelagic). Benthic and demersal species were projected to experience a westward shift, which would induce a deepening of those species. In contrast, pelagic species were projected to shift northward. The potential ecological niche for half of the studied species, mostly benthic and demersal, was projected to decrease under climate change. In addition, a high rate of southern species arrivals is expected (+28%). Assessment of community composition showed high species replacement within the 0-50 m isobath, driven by the replacement of native species by southern ones. This could lead to a major reorganization of trophic networks and have socio-economic impacts.
Marine Ecology Progr... arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2020Data sources: ArchiMer - Institutional Archive of IfremerUniversité de Bretagne Occidentale: HALArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Université de Bretagne Occidentale: HALArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/meps13401&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Marine Ecology Progr... arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2020Data sources: ArchiMer - Institutional Archive of IfremerUniversité de Bretagne Occidentale: HALArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Université de Bretagne Occidentale: HALArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/meps13401&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu