- home
- Advanced Search
- Energy Research
- Restricted
- Open Source
- US
- CA
- FR
- European Marine Science
- Energy Research
- Restricted
- Open Source
- US
- CA
- FR
- European Marine Science
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017 AustraliaPublisher:Elsevier BV Funded by:EC | MARSEC| MARSZhou, Y.; Ma, J.; Zhang, Y.; Qin, B.; Jeppesen, E.; Shi, K.; Brookes, J.D.; Spencer, R.G.M.; Zhu, G.; Gao, G.;This study highlights how Chinese economic development detrimentally impacted water quality in recent decades and how this has been improved by enormous investment in environmental remediation funded by the Chinese government. To our knowledge, this study is the first to describe the variability of surface water quality in inland waters in China, the affecting drivers behind the changes, and how the government-financed conservation actions have impacted water quality. Water quality was found to be poorest in the North and the Northeast China Plain where there is greater coverage of developed land (cities + cropland), a higher gross domestic product (GDP), and higher population density. There are significant positive relationships between the concentration of the annual mean chemical oxygen demand (COD) and the percentage of developed land use (cities + cropland), GDP, and population density in the individual watersheds (p < 0.001). During the past decade, following Chinese government-financed investments in environmental restoration and reforestation, the water quality of Chinese inland waters has improved markedly, which is particularly evident from the significant and exponentially decreasing GDP-normalized COD and ammonium (NH4+-N) concentrations. It is evident that the increasing GDP in China over the past decade did not occur at the continued expense of its inland water ecosystems. This offers hope for the future, also for other industrializing countries, that with appropriate environmental investments a high GDP can be reached and maintained, while simultaneously preserving inland aquatic ecosystems, particularly through management of sewage discharge.
PURE Aarhus Universi... arrow_drop_down http://dx.doi.org/10.1016/j.wa...Other literature typeData sources: European Union Open Data PortalThe University of Adelaide: Digital LibraryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2017.04.035&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu161 citations 161 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert PURE Aarhus Universi... arrow_drop_down http://dx.doi.org/10.1016/j.wa...Other literature typeData sources: European Union Open Data PortalThe University of Adelaide: Digital LibraryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2017.04.035&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017 AustraliaPublisher:Elsevier BV Funded by:EC | MARSEC| MARSZhou, Y.; Ma, J.; Zhang, Y.; Qin, B.; Jeppesen, E.; Shi, K.; Brookes, J.D.; Spencer, R.G.M.; Zhu, G.; Gao, G.;This study highlights how Chinese economic development detrimentally impacted water quality in recent decades and how this has been improved by enormous investment in environmental remediation funded by the Chinese government. To our knowledge, this study is the first to describe the variability of surface water quality in inland waters in China, the affecting drivers behind the changes, and how the government-financed conservation actions have impacted water quality. Water quality was found to be poorest in the North and the Northeast China Plain where there is greater coverage of developed land (cities + cropland), a higher gross domestic product (GDP), and higher population density. There are significant positive relationships between the concentration of the annual mean chemical oxygen demand (COD) and the percentage of developed land use (cities + cropland), GDP, and population density in the individual watersheds (p < 0.001). During the past decade, following Chinese government-financed investments in environmental restoration and reforestation, the water quality of Chinese inland waters has improved markedly, which is particularly evident from the significant and exponentially decreasing GDP-normalized COD and ammonium (NH4+-N) concentrations. It is evident that the increasing GDP in China over the past decade did not occur at the continued expense of its inland water ecosystems. This offers hope for the future, also for other industrializing countries, that with appropriate environmental investments a high GDP can be reached and maintained, while simultaneously preserving inland aquatic ecosystems, particularly through management of sewage discharge.
PURE Aarhus Universi... arrow_drop_down http://dx.doi.org/10.1016/j.wa...Other literature typeData sources: European Union Open Data PortalThe University of Adelaide: Digital LibraryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2017.04.035&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu161 citations 161 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert PURE Aarhus Universi... arrow_drop_down http://dx.doi.org/10.1016/j.wa...Other literature typeData sources: European Union Open Data PortalThe University of Adelaide: Digital LibraryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2017.04.035&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1987 GermanyPublisher:Elsevier BV Authors: Kim, H.C.; Bishnoi, P.R.; Heidemann, R.A.; Rizvi, S.S.H.;Abstract The kinetics of methane hydrate decomposition was studied using a semibatch stirred-tank reactor. The decomposition was accomplished by reducing the pressure on a hydrate slurry in water to a value below the three-phase equilibrium pressure at the reactor temperature. The data were obtained at temperatures from 274 to 283 K and pressures from 0.17 to 6.97 MPa. The stirring rates were high enough to eliminate mass-transfer effects. Analysis of the data indicated that the decomposition rate was proportional to the particle surface area and to the difference in the fugacity of methane at the equilibrium pressure and the decomposition pressure. The proportionality constant showed an Arrhenius temperature dependence. An estimate of the hydrate particle diameters in the experiments permitted the development of an intrinsic model for the kinetics of hydrate decomposition.
OceanRep arrow_drop_down OceanRepArticle . 1987 . Peer-reviewedFull-Text: http://oceanrep.geomar.de/54292/1/Kim.pdfData sources: OceanRepChemical Engineering ScienceArticle . 1987 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0009-2509(87)80169-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu868 citations 868 popularity Top 0.1% influence Top 0.1% impulse Top 1% Powered by BIP!
more_vert OceanRep arrow_drop_down OceanRepArticle . 1987 . Peer-reviewedFull-Text: http://oceanrep.geomar.de/54292/1/Kim.pdfData sources: OceanRepChemical Engineering ScienceArticle . 1987 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0009-2509(87)80169-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1987 GermanyPublisher:Elsevier BV Authors: Kim, H.C.; Bishnoi, P.R.; Heidemann, R.A.; Rizvi, S.S.H.;Abstract The kinetics of methane hydrate decomposition was studied using a semibatch stirred-tank reactor. The decomposition was accomplished by reducing the pressure on a hydrate slurry in water to a value below the three-phase equilibrium pressure at the reactor temperature. The data were obtained at temperatures from 274 to 283 K and pressures from 0.17 to 6.97 MPa. The stirring rates were high enough to eliminate mass-transfer effects. Analysis of the data indicated that the decomposition rate was proportional to the particle surface area and to the difference in the fugacity of methane at the equilibrium pressure and the decomposition pressure. The proportionality constant showed an Arrhenius temperature dependence. An estimate of the hydrate particle diameters in the experiments permitted the development of an intrinsic model for the kinetics of hydrate decomposition.
OceanRep arrow_drop_down OceanRepArticle . 1987 . Peer-reviewedFull-Text: http://oceanrep.geomar.de/54292/1/Kim.pdfData sources: OceanRepChemical Engineering ScienceArticle . 1987 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0009-2509(87)80169-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu868 citations 868 popularity Top 0.1% influence Top 0.1% impulse Top 1% Powered by BIP!
more_vert OceanRep arrow_drop_down OceanRepArticle . 1987 . Peer-reviewedFull-Text: http://oceanrep.geomar.de/54292/1/Kim.pdfData sources: OceanRepChemical Engineering ScienceArticle . 1987 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0009-2509(87)80169-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2025Embargo end date: 06 Jan 2025 United KingdomPublisher:Springer Science and Business Media LLC Funded by:NSF | Tracing Past Methane Vari...NSF| Tracing Past Methane Variations with Stable Isotopes in Antarctic Ice CoresBen Riddell-Young; James Edward Lee; Edward J. Brook; Jochen Schmitt; Hubertus Fischer; Thomas K. Bauska; James A. Menking; René Iseli; Justin Reid Clark;pmid: 39743610
Understanding the causes of past atmospheric methane (CH4) variability is important for characterizing the relationship between CH4, global climate and terrestrial biogeochemical cycling. Ice core records of atmospheric CH4 contain rapid variations linked to abrupt climate changes of the last glacial period known as Dansgaard-Oeschger (DO) events and Heinrich events (HE)1,2. The drivers of these CH4 variations remain unknown but can be constrained with ice core measurements of the stable isotopic composition of atmospheric CH4, which is sensitive to the strength of different isotopically distinguishable emission categories (microbial, pyrogenic and geologic)3-5. Here we present multi-decadal-scale measurements of δ13C-CH4 and δD-CH4 from the WAIS Divide and Talos Dome ice cores and identify abrupt 1‰ enrichments in δ13C-CH4 synchronous with HE CH4 pulses and 0.5‰ δ13C-CH4 enrichments synchronous with DO CH4 increases. δD-CH4 varied little across the abrupt CH4 changes. Using box models to interpret these isotopic shifts6 and assuming a constant δ13C-CH4 of microbial emissions, we propose that abrupt shifts in tropical rainfall associated with HEs and DO events enhanced 13C-enriched pyrogenic CH4 emissions, and by extension global wildfire extent, by 90-150%. Carbon cycle box modelling experiments7 suggest that the resulting released terrestrial carbon could have caused from one-third to all of the abrupt CO2 increases associated with HEs. These findings suggest that fire regimes and the terrestrial carbon cycle varied contemporaneously and substantially with past abrupt climate changes of the last glacial period.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-024-08363-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-024-08363-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2025Embargo end date: 06 Jan 2025 United KingdomPublisher:Springer Science and Business Media LLC Funded by:NSF | Tracing Past Methane Vari...NSF| Tracing Past Methane Variations with Stable Isotopes in Antarctic Ice CoresBen Riddell-Young; James Edward Lee; Edward J. Brook; Jochen Schmitt; Hubertus Fischer; Thomas K. Bauska; James A. Menking; René Iseli; Justin Reid Clark;pmid: 39743610
Understanding the causes of past atmospheric methane (CH4) variability is important for characterizing the relationship between CH4, global climate and terrestrial biogeochemical cycling. Ice core records of atmospheric CH4 contain rapid variations linked to abrupt climate changes of the last glacial period known as Dansgaard-Oeschger (DO) events and Heinrich events (HE)1,2. The drivers of these CH4 variations remain unknown but can be constrained with ice core measurements of the stable isotopic composition of atmospheric CH4, which is sensitive to the strength of different isotopically distinguishable emission categories (microbial, pyrogenic and geologic)3-5. Here we present multi-decadal-scale measurements of δ13C-CH4 and δD-CH4 from the WAIS Divide and Talos Dome ice cores and identify abrupt 1‰ enrichments in δ13C-CH4 synchronous with HE CH4 pulses and 0.5‰ δ13C-CH4 enrichments synchronous with DO CH4 increases. δD-CH4 varied little across the abrupt CH4 changes. Using box models to interpret these isotopic shifts6 and assuming a constant δ13C-CH4 of microbial emissions, we propose that abrupt shifts in tropical rainfall associated with HEs and DO events enhanced 13C-enriched pyrogenic CH4 emissions, and by extension global wildfire extent, by 90-150%. Carbon cycle box modelling experiments7 suggest that the resulting released terrestrial carbon could have caused from one-third to all of the abrupt CO2 increases associated with HEs. These findings suggest that fire regimes and the terrestrial carbon cycle varied contemporaneously and substantially with past abrupt climate changes of the last glacial period.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-024-08363-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-024-08363-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 France, GermanyPublisher:Elsevier BV C. Bommarito; S. Noè; D.M. Díaz-Morales; I. Lukić; C. Hiebenthal; G. Rilov; T. Guy-Haim; M. Wahl;pmid: 38056641
Climate change is driving compositional shifts in ecological communities directly by affecting species and indirectly through changes in species interactions. For example, competitive hierarchies can be inversed when competitive dominants are more susceptible to climate change. The brown seaweed Fucus vesiculosus is a foundation species in the Baltic Sea, experiencing novel interactions with the invasive red seaweed Gracilaria vermiculophylla, which is known for its high tolerance to environmental stress. We investigated the direct and interactive effects of warming and co-occurrence of the two algal species on their performance, by applying four climate change-relevant temperature scenarios: 1) cooling ) 2 °C below ambient - representing past conditions), 2) ambient summer temperature (18 °C), 3) IPCC RCP2.6 warming scenario (1 °C above ambient), and 4) RCP8.5 warming (3 °C above ambient) for 30 days and two compositional levels (mono and co-cultured algae) in a fully-crossed design. The RCP8.5 warming scenario increased photosynthesis, respiration, and nutrients' uptake rates of mono- and co-cultured G. vermiculophylla while growth was reduced. An increase in photosynthesis and essential nutrients' uptake and, at the same time, a growth reduction might result from increasing stress and energy demand of G. vermiculophylla under warming. In contrast, the growth of mono-cultured F. vesiculosus significantly increased in the highest warming treatment (+3 °C). The cooling treatment (-2 °C) exerted a slight negative effect only on co-cultured F. vesiculosus photosynthesis, compared to the ambient treatment. Interestingly, at ambient and warming (RCP2.6 and RCP8.5 scenarios) treatments, both F. vesiculosus and G. vermiculophylla appear to benefit from the presence of each other. Our results suggest that short exposure of F. vesiculosus to moderate or severe global warming scenarios may not directly affect or even slightly enhance its performance, while G. vermiculophylla net performance (growth) could be directly hampered by warming.
OceanRep arrow_drop_down The Science of The Total EnvironmentArticle . 2024 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2024Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2023.169087&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert OceanRep arrow_drop_down The Science of The Total EnvironmentArticle . 2024 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2024Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2023.169087&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 France, GermanyPublisher:Elsevier BV C. Bommarito; S. Noè; D.M. Díaz-Morales; I. Lukić; C. Hiebenthal; G. Rilov; T. Guy-Haim; M. Wahl;pmid: 38056641
Climate change is driving compositional shifts in ecological communities directly by affecting species and indirectly through changes in species interactions. For example, competitive hierarchies can be inversed when competitive dominants are more susceptible to climate change. The brown seaweed Fucus vesiculosus is a foundation species in the Baltic Sea, experiencing novel interactions with the invasive red seaweed Gracilaria vermiculophylla, which is known for its high tolerance to environmental stress. We investigated the direct and interactive effects of warming and co-occurrence of the two algal species on their performance, by applying four climate change-relevant temperature scenarios: 1) cooling ) 2 °C below ambient - representing past conditions), 2) ambient summer temperature (18 °C), 3) IPCC RCP2.6 warming scenario (1 °C above ambient), and 4) RCP8.5 warming (3 °C above ambient) for 30 days and two compositional levels (mono and co-cultured algae) in a fully-crossed design. The RCP8.5 warming scenario increased photosynthesis, respiration, and nutrients' uptake rates of mono- and co-cultured G. vermiculophylla while growth was reduced. An increase in photosynthesis and essential nutrients' uptake and, at the same time, a growth reduction might result from increasing stress and energy demand of G. vermiculophylla under warming. In contrast, the growth of mono-cultured F. vesiculosus significantly increased in the highest warming treatment (+3 °C). The cooling treatment (-2 °C) exerted a slight negative effect only on co-cultured F. vesiculosus photosynthesis, compared to the ambient treatment. Interestingly, at ambient and warming (RCP2.6 and RCP8.5 scenarios) treatments, both F. vesiculosus and G. vermiculophylla appear to benefit from the presence of each other. Our results suggest that short exposure of F. vesiculosus to moderate or severe global warming scenarios may not directly affect or even slightly enhance its performance, while G. vermiculophylla net performance (growth) could be directly hampered by warming.
OceanRep arrow_drop_down The Science of The Total EnvironmentArticle . 2024 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2024Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2023.169087&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert OceanRep arrow_drop_down The Science of The Total EnvironmentArticle . 2024 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2024Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2023.169087&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 ItalyPublisher:Wiley Funded by:NSERCNSERCAmanda Xuereb; Cassidy C. D'Aloia; Marco Andrello; Louis Bernatchez; Marie‐Josée Fortin;AbstractThe availability of genomic data for an increasing number of species makes it possible to incorporate evolutionary processes into conservation plans. Recent studies show how genetic data can inform spatial conservation prioritization (SCP), but they focus on metrics of diversity and distinctness derived primarily from neutral genetic data sets. Identifying adaptive genetic markers can provide important information regarding the capacity for populations to adapt to environmental change. Yet, the effect of including metrics based on adaptive genomic data into SCP in comparison to more widely used neutral genetic metrics has not been explored. We used existing genomic data on a commercially exploited species, the giant California sea cucumber (Parastichopus californicus), to perform SCP for the coastal region of British Columbia (BC), Canada. Using a RAD‐seq data set for 717P. californicusindividuals across 24 sampling locations, we identified putatively adaptive (i.e., candidate) single nucleotide polymorphisms (SNPs) based on genotype–environment associations with seafloor temperature. We calculated various metrics for both neutral and candidate SNPs and compared SCP outcomes with independent metrics and combinations of metrics. Priority areas varied depending on whether neutral or candidate SNPs were used and on the specific metric used. For example, targeting sites with a high frequency of warm‐temperature‐associated alleles to support persistence under future warming prioritized areas in the southern coastal region. In contrast, targeting sites with high expected heterozygosity at candidate loci to support persistence under future environmental uncertainty prioritized areas in the north. When combining metrics, all scenarios generated intermediate solutions, protecting sites that span latitudinal and thermal gradients. Our results demonstrate that distinguishing between neutral and adaptive markers can affect conservation solutions and emphasize the importance of defining objectives when choosing among various genomic metrics for SCP.
IRIS Cnr arrow_drop_down Conservation BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/cobi.13609&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu46 citations 46 popularity Top 1% influence Average impulse Top 1% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down Conservation BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/cobi.13609&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 ItalyPublisher:Wiley Funded by:NSERCNSERCAmanda Xuereb; Cassidy C. D'Aloia; Marco Andrello; Louis Bernatchez; Marie‐Josée Fortin;AbstractThe availability of genomic data for an increasing number of species makes it possible to incorporate evolutionary processes into conservation plans. Recent studies show how genetic data can inform spatial conservation prioritization (SCP), but they focus on metrics of diversity and distinctness derived primarily from neutral genetic data sets. Identifying adaptive genetic markers can provide important information regarding the capacity for populations to adapt to environmental change. Yet, the effect of including metrics based on adaptive genomic data into SCP in comparison to more widely used neutral genetic metrics has not been explored. We used existing genomic data on a commercially exploited species, the giant California sea cucumber (Parastichopus californicus), to perform SCP for the coastal region of British Columbia (BC), Canada. Using a RAD‐seq data set for 717P. californicusindividuals across 24 sampling locations, we identified putatively adaptive (i.e., candidate) single nucleotide polymorphisms (SNPs) based on genotype–environment associations with seafloor temperature. We calculated various metrics for both neutral and candidate SNPs and compared SCP outcomes with independent metrics and combinations of metrics. Priority areas varied depending on whether neutral or candidate SNPs were used and on the specific metric used. For example, targeting sites with a high frequency of warm‐temperature‐associated alleles to support persistence under future warming prioritized areas in the southern coastal region. In contrast, targeting sites with high expected heterozygosity at candidate loci to support persistence under future environmental uncertainty prioritized areas in the north. When combining metrics, all scenarios generated intermediate solutions, protecting sites that span latitudinal and thermal gradients. Our results demonstrate that distinguishing between neutral and adaptive markers can affect conservation solutions and emphasize the importance of defining objectives when choosing among various genomic metrics for SCP.
IRIS Cnr arrow_drop_down Conservation BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/cobi.13609&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu46 citations 46 popularity Top 1% influence Average impulse Top 1% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down Conservation BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/cobi.13609&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2011 NetherlandsPublisher:Springer Science and Business Media LLC McQuatters-Gollop, A.; Reid, P.C.; Edwards, M.; Burkill, P.H.; Castellani, C.; Batten, S.; Gieskes, W.; Beare, D.J.; Bidigare, R.R.; Head, E.; Johnson, R.; Kahru, M.; Koslow, J.A.; Pena, A.;Phytoplankton account for approximately 50% of global primary production, form the trophic base of nearly all marine ecosystems, are fundamental in trophic energy transfer and have key roles in climate regulation, carbon sequestration and oxygen production. Boyce et al.1 compiled a chlorophyll index by combining in situ chlorophyll and Secchi disk depth measurements that spanned a more than 100-year time period and showed a decrease in marine phytoplankton biomass of approximately 1% of the global median per year over the past century. Eight decades of data on phytoplankton biomass collected in the North Atlantic by the Continuous Plankton Recorder (CPR) survey2, however, show an increase in an index of chlorophyll (Phytoplankton Colour Index) in both the Northeast and Northwest Atlantic basins3,4,5,6,7 (Fig. 1), and other long-term time series, including the Hawaii Ocean Time-series (HOT)8, the Bermuda Atlantic Time Series (BATS)8 and the California Cooperative Oceanic Fisheries Investigations (CalCOFI)9 also indicate increased phytoplankton biomass over the last 20–50 years. These findings, which were not discussed by Boyce et al.1, are not in accordance with their conclusions and illustrate the importance of using consistent observations when estimating long-term trends.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature09950&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu103 citations 103 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature09950&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2011 NetherlandsPublisher:Springer Science and Business Media LLC McQuatters-Gollop, A.; Reid, P.C.; Edwards, M.; Burkill, P.H.; Castellani, C.; Batten, S.; Gieskes, W.; Beare, D.J.; Bidigare, R.R.; Head, E.; Johnson, R.; Kahru, M.; Koslow, J.A.; Pena, A.;Phytoplankton account for approximately 50% of global primary production, form the trophic base of nearly all marine ecosystems, are fundamental in trophic energy transfer and have key roles in climate regulation, carbon sequestration and oxygen production. Boyce et al.1 compiled a chlorophyll index by combining in situ chlorophyll and Secchi disk depth measurements that spanned a more than 100-year time period and showed a decrease in marine phytoplankton biomass of approximately 1% of the global median per year over the past century. Eight decades of data on phytoplankton biomass collected in the North Atlantic by the Continuous Plankton Recorder (CPR) survey2, however, show an increase in an index of chlorophyll (Phytoplankton Colour Index) in both the Northeast and Northwest Atlantic basins3,4,5,6,7 (Fig. 1), and other long-term time series, including the Hawaii Ocean Time-series (HOT)8, the Bermuda Atlantic Time Series (BATS)8 and the California Cooperative Oceanic Fisheries Investigations (CalCOFI)9 also indicate increased phytoplankton biomass over the last 20–50 years. These findings, which were not discussed by Boyce et al.1, are not in accordance with their conclusions and illustrate the importance of using consistent observations when estimating long-term trends.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature09950&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu103 citations 103 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature09950&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 ItalyPublisher:Elsevier BV Funded by:EC | MUSESEC| MUSESDepellegrin D; Venier C; Kyriazi Z; Vassilopoulou V; Castellani C; Ramieri E; Bocci M; Fernandez J; Barbanti A;European seas are experiencing rapid development. The anthropogenic demand for marine resources and space exerts the need for novel concepts for sustainable resource exploitation and smart space allocation. Multi-Use (MU) is an emerging concept to overcome spatial claims and support Blue Growth, however its actual potentials and current status of implementation in different sea basins is to a large extent unexplored. An analytical framework using a mixed method approach is proposed for the identification and analysis of MU potentialities in eight EU countries of the Euro-Mediterranean sea basin. The paper addresses opportunities and challenges of ten existing and potential MU combinations driven by three maritime sectors: tourism, renewable energy and Oil & Gas industry. Opportunities and challenges for MU development were presented in terms of drivers, added values, barriers and impacts. Results show that highest potential for MU development are related to tourism-driven MU combinations (e.g. pescatourism), but also emerging MU potentials exist related to Floating Offshore Wind energy and aquaculture (Gulf of Lion) and the re-use of Oil & Gas decommissioned platforms (Northern-Central Adriatic Sea). Findings were discussed for their geospatial distribution and their policy, socio-economic, technical and environmental boundary conditions. Recommendations on actions to foster MU development in the Euro-Mediterranean sea space are provided.
CNR ExploRA arrow_drop_down The Science of The Total EnvironmentArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2018.10.308&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu58 citations 58 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CNR ExploRA arrow_drop_down The Science of The Total EnvironmentArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2018.10.308&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 ItalyPublisher:Elsevier BV Funded by:EC | MUSESEC| MUSESDepellegrin D; Venier C; Kyriazi Z; Vassilopoulou V; Castellani C; Ramieri E; Bocci M; Fernandez J; Barbanti A;European seas are experiencing rapid development. The anthropogenic demand for marine resources and space exerts the need for novel concepts for sustainable resource exploitation and smart space allocation. Multi-Use (MU) is an emerging concept to overcome spatial claims and support Blue Growth, however its actual potentials and current status of implementation in different sea basins is to a large extent unexplored. An analytical framework using a mixed method approach is proposed for the identification and analysis of MU potentialities in eight EU countries of the Euro-Mediterranean sea basin. The paper addresses opportunities and challenges of ten existing and potential MU combinations driven by three maritime sectors: tourism, renewable energy and Oil & Gas industry. Opportunities and challenges for MU development were presented in terms of drivers, added values, barriers and impacts. Results show that highest potential for MU development are related to tourism-driven MU combinations (e.g. pescatourism), but also emerging MU potentials exist related to Floating Offshore Wind energy and aquaculture (Gulf of Lion) and the re-use of Oil & Gas decommissioned platforms (Northern-Central Adriatic Sea). Findings were discussed for their geospatial distribution and their policy, socio-economic, technical and environmental boundary conditions. Recommendations on actions to foster MU development in the Euro-Mediterranean sea space are provided.
CNR ExploRA arrow_drop_down The Science of The Total EnvironmentArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2018.10.308&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu58 citations 58 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CNR ExploRA arrow_drop_down The Science of The Total EnvironmentArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2018.10.308&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 ItalyPublisher:Elsevier BV Xue, K; van Nostrand, J. D.; Vangronsveld, J.; Witters, N.; Janssen, J. O.; Kumpiene, J.; Siebielec, G.; Galazka, R.; GIAGNONI, LAURA; ARENELLA, MARIARITA; Zhou, J. Z.; RENELLA, GIANCARLO;pmid: 26183942
handle: 11577/3313856 , 11379/538229 , 2158/1007769
We studied the microbial functional diversity, biochemical activity, heavy metals (HM) availability and soil toxicity of Cd, Pb and Zn contaminated soils, kept under grassland or short rotation coppice (SRC) to attenuate the risks associated with HM contamination and restore the soil ecological functions. Soil microbial functional diversity was analyzed by the GeoChip, a functional gene microarray containing probes for genes involved in nutrient cycling, metal resistance and stress response. Soil under SRC showed a higher abundance of microbial genes involved in C, N, P and S cycles and resistance to various HM, higher microbial biomass, respiration and enzyme activity rates, and lower HM availability than the grassland soil. The linkages between functional genes of soil microbial communities and soil chemical properties, HM availability and biochemical activity were also investigated. Soil toxicity and N, P and Pb availability were important factors in shaping the microbial functional diversity, as determined by CCA. We concluded that in HM contaminated soils the microbial functional diversity was positively influenced by SRC management through the reduction of HM availability and soil toxicity increase of nutrient cycling. The presented results can be important in predicting the long term environmental sustainability of plant-based soil remediation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2015.06.062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2015.06.062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 ItalyPublisher:Elsevier BV Xue, K; van Nostrand, J. D.; Vangronsveld, J.; Witters, N.; Janssen, J. O.; Kumpiene, J.; Siebielec, G.; Galazka, R.; GIAGNONI, LAURA; ARENELLA, MARIARITA; Zhou, J. Z.; RENELLA, GIANCARLO;pmid: 26183942
handle: 11577/3313856 , 11379/538229 , 2158/1007769
We studied the microbial functional diversity, biochemical activity, heavy metals (HM) availability and soil toxicity of Cd, Pb and Zn contaminated soils, kept under grassland or short rotation coppice (SRC) to attenuate the risks associated with HM contamination and restore the soil ecological functions. Soil microbial functional diversity was analyzed by the GeoChip, a functional gene microarray containing probes for genes involved in nutrient cycling, metal resistance and stress response. Soil under SRC showed a higher abundance of microbial genes involved in C, N, P and S cycles and resistance to various HM, higher microbial biomass, respiration and enzyme activity rates, and lower HM availability than the grassland soil. The linkages between functional genes of soil microbial communities and soil chemical properties, HM availability and biochemical activity were also investigated. Soil toxicity and N, P and Pb availability were important factors in shaping the microbial functional diversity, as determined by CCA. We concluded that in HM contaminated soils the microbial functional diversity was positively influenced by SRC management through the reduction of HM availability and soil toxicity increase of nutrient cycling. The presented results can be important in predicting the long term environmental sustainability of plant-based soil remediation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2015.06.062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2015.06.062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 GermanyPublisher:Elsevier BV Duong, Celina; Bower, Charles; Hume, Ken; Rock, Luc; Tessarolo, Stephen;Abstract Quest is a fully integrated Carbon Capture and Storage (CCS) project that started CO2 injection in August of 2015. The Quest CCS Project is located near Fort Saskatchewan, Alberta, Canada. It includes a capture facility which uses a Shell amine technology, a pipeline of about 65 km length, and three injection well pads. Each injection well pad has an injection well, a deep monitoring well, and shallow groundwater wells. The storage complex is geologically defined by the injection reservoir, a deep saline aquifer called the Basal Cambrian Sand (BCS) (about 45 m thick) and several seals, including the Middle Cambrian Shale (about 50 m thick) and Lotsberg Salts (about 120 m thick). As of August 2018, over three million tonnes of CO2 have been safely injected and permanently stored in the BCS. The Alberta Carbon Competitiveness Incentive Regulation (CCIR) requires the use of standard methods of quantification for reporting greenhouse gas (GHG) emissions for facilities with over 100,000 tonnes of carbon dioxide equivalent (CO2e) per year. An emission offset project is required to comply with CCIR, associated standards and protocols, to demonstrate a reduction in the specified gas emissions and, in the case of Quest, geological sequestration. Quest is the first CCS project to implement an offset project in the context of commercial scale on-shore CO2 geological sequestration within a saline aquifer. Quest uses the Quantification Protocol for CO2 Capture and Permanent Storage in Deep Saline Aquifers, from Alberta Environment and Parks. An offset project must develop an offset project plan (OPP) which demonstrates how the project meets the requirement of the protocol, describes how GHG emissions reductions are achieved, identifies risks associated with the quantification of emission reduction benefits, and describes methodologies used to quantify sources and sinks. Subsequent to completing the OPP, an offset project will put together offset project reports (OPR) to report on the net reductions of GHG emissions for a specific period. The intent of this paper is a) to provide an overview of the OPP and OPR for the Quest CCS project, and b) to discuss learnings from the initial compilation and submission of offset project reports. The key learning at this time is associated to the equipment improvements to the injection gas online analyzer.
OceanRep arrow_drop_down OceanRepArticle . 2019 . Peer-reviewedFull-Text: http://oceanrep.geomar.de/48332/1/Duong.pdfData sources: OceanRepInternational Journal of Greenhouse Gas ControlArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2019.06.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert OceanRep arrow_drop_down OceanRepArticle . 2019 . Peer-reviewedFull-Text: http://oceanrep.geomar.de/48332/1/Duong.pdfData sources: OceanRepInternational Journal of Greenhouse Gas ControlArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2019.06.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 GermanyPublisher:Elsevier BV Duong, Celina; Bower, Charles; Hume, Ken; Rock, Luc; Tessarolo, Stephen;Abstract Quest is a fully integrated Carbon Capture and Storage (CCS) project that started CO2 injection in August of 2015. The Quest CCS Project is located near Fort Saskatchewan, Alberta, Canada. It includes a capture facility which uses a Shell amine technology, a pipeline of about 65 km length, and three injection well pads. Each injection well pad has an injection well, a deep monitoring well, and shallow groundwater wells. The storage complex is geologically defined by the injection reservoir, a deep saline aquifer called the Basal Cambrian Sand (BCS) (about 45 m thick) and several seals, including the Middle Cambrian Shale (about 50 m thick) and Lotsberg Salts (about 120 m thick). As of August 2018, over three million tonnes of CO2 have been safely injected and permanently stored in the BCS. The Alberta Carbon Competitiveness Incentive Regulation (CCIR) requires the use of standard methods of quantification for reporting greenhouse gas (GHG) emissions for facilities with over 100,000 tonnes of carbon dioxide equivalent (CO2e) per year. An emission offset project is required to comply with CCIR, associated standards and protocols, to demonstrate a reduction in the specified gas emissions and, in the case of Quest, geological sequestration. Quest is the first CCS project to implement an offset project in the context of commercial scale on-shore CO2 geological sequestration within a saline aquifer. Quest uses the Quantification Protocol for CO2 Capture and Permanent Storage in Deep Saline Aquifers, from Alberta Environment and Parks. An offset project must develop an offset project plan (OPP) which demonstrates how the project meets the requirement of the protocol, describes how GHG emissions reductions are achieved, identifies risks associated with the quantification of emission reduction benefits, and describes methodologies used to quantify sources and sinks. Subsequent to completing the OPP, an offset project will put together offset project reports (OPR) to report on the net reductions of GHG emissions for a specific period. The intent of this paper is a) to provide an overview of the OPP and OPR for the Quest CCS project, and b) to discuss learnings from the initial compilation and submission of offset project reports. The key learning at this time is associated to the equipment improvements to the injection gas online analyzer.
OceanRep arrow_drop_down OceanRepArticle . 2019 . Peer-reviewedFull-Text: http://oceanrep.geomar.de/48332/1/Duong.pdfData sources: OceanRepInternational Journal of Greenhouse Gas ControlArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2019.06.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert OceanRep arrow_drop_down OceanRepArticle . 2019 . Peer-reviewedFull-Text: http://oceanrep.geomar.de/48332/1/Duong.pdfData sources: OceanRepInternational Journal of Greenhouse Gas ControlArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2019.06.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 GermanyPublisher:Elsevier BV Guangqing Zhang; Pu Wang; Meirong Tang; Kuangsheng Zhang; Dawei Zhou; Dawei Zhou;Abstract The effects of CO2-brine-rock interaction on the physical and macro-mechanical properties of rock have been extensively studied in CO2 sequestration-related research. However, there are few studies focus on mechanochemical effects of the interaction of supercritical CO2 (SC−CO2), water, and rock and its effects on micromechanical properties of sandstone. In this work, we studied the micromechanical mechanism of crack initiation induced by SC−CO2-water saturated sandstone. A micromechanical model including parameters of fracture cohesive strength, friction coefficient, and fracture energy was proposed, which extended the “sliding surface” to include not only the friction, but also the cohesions on the surfaces and the tensile resistance at the crack-tips. To this end, tests of two saturation conditions, water and SC−CO2-water, were conducted on 25 mm diameter by 50 mm length Sichuan sandstone with a porosity of ∼15.57 % for 15 days and 30 days under temperature of 80 ℃ and pressure of 30 MPa. Afterward, samples were subjected to triaxial compression tests with confining pressure up to 24 MPa. The mineralogical alteration and induced crack morphology were examined to better understand the mechanism of mechanochemical coupling on compression failure induced by SC−CO2-water-rock interaction. Experimentally, mineralogical and microstructural changes induced by illite and kaolinite dissolution, weaken the quartz grain contacts in SC−CO2-water saturated sandstone. Compared to water-saturated sandstone, the SC−CO2-water saturated sandstone exhibits a maximum reduction by 18.82 % and 21.21 % in compressive strength and crack initiation stress respectively under unconfined condition. Additionally, reductions of 5%, 50 %, and 37.3 % were observed in friction coefficient, fracture energy, and cohesive strength respectively for SC−CO2-water saturated sandstone. The reductions of these three parameters, especially the fracture energy and cohesive strength, significantly weaken SC−CO2-water saturated sandstone. The results are representative for the partly saturated zone where SC−CO2 is displacing the in-situ pore fluid and could be used to analyze effects of CO2 injection on stability and integrity of storage formation under mechanochemical coupling effects of SC−CO2-water on sandstone.
OceanRep arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2020.103040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu30 citations 30 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert OceanRep arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2020.103040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 GermanyPublisher:Elsevier BV Guangqing Zhang; Pu Wang; Meirong Tang; Kuangsheng Zhang; Dawei Zhou; Dawei Zhou;Abstract The effects of CO2-brine-rock interaction on the physical and macro-mechanical properties of rock have been extensively studied in CO2 sequestration-related research. However, there are few studies focus on mechanochemical effects of the interaction of supercritical CO2 (SC−CO2), water, and rock and its effects on micromechanical properties of sandstone. In this work, we studied the micromechanical mechanism of crack initiation induced by SC−CO2-water saturated sandstone. A micromechanical model including parameters of fracture cohesive strength, friction coefficient, and fracture energy was proposed, which extended the “sliding surface” to include not only the friction, but also the cohesions on the surfaces and the tensile resistance at the crack-tips. To this end, tests of two saturation conditions, water and SC−CO2-water, were conducted on 25 mm diameter by 50 mm length Sichuan sandstone with a porosity of ∼15.57 % for 15 days and 30 days under temperature of 80 ℃ and pressure of 30 MPa. Afterward, samples were subjected to triaxial compression tests with confining pressure up to 24 MPa. The mineralogical alteration and induced crack morphology were examined to better understand the mechanism of mechanochemical coupling on compression failure induced by SC−CO2-water-rock interaction. Experimentally, mineralogical and microstructural changes induced by illite and kaolinite dissolution, weaken the quartz grain contacts in SC−CO2-water saturated sandstone. Compared to water-saturated sandstone, the SC−CO2-water saturated sandstone exhibits a maximum reduction by 18.82 % and 21.21 % in compressive strength and crack initiation stress respectively under unconfined condition. Additionally, reductions of 5%, 50 %, and 37.3 % were observed in friction coefficient, fracture energy, and cohesive strength respectively for SC−CO2-water saturated sandstone. The reductions of these three parameters, especially the fracture energy and cohesive strength, significantly weaken SC−CO2-water saturated sandstone. The results are representative for the partly saturated zone where SC−CO2 is displacing the in-situ pore fluid and could be used to analyze effects of CO2 injection on stability and integrity of storage formation under mechanochemical coupling effects of SC−CO2-water on sandstone.
OceanRep arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2020.103040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu30 citations 30 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert OceanRep arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2020.103040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017 AustraliaPublisher:Elsevier BV Funded by:EC | MARSEC| MARSZhou, Y.; Ma, J.; Zhang, Y.; Qin, B.; Jeppesen, E.; Shi, K.; Brookes, J.D.; Spencer, R.G.M.; Zhu, G.; Gao, G.;This study highlights how Chinese economic development detrimentally impacted water quality in recent decades and how this has been improved by enormous investment in environmental remediation funded by the Chinese government. To our knowledge, this study is the first to describe the variability of surface water quality in inland waters in China, the affecting drivers behind the changes, and how the government-financed conservation actions have impacted water quality. Water quality was found to be poorest in the North and the Northeast China Plain where there is greater coverage of developed land (cities + cropland), a higher gross domestic product (GDP), and higher population density. There are significant positive relationships between the concentration of the annual mean chemical oxygen demand (COD) and the percentage of developed land use (cities + cropland), GDP, and population density in the individual watersheds (p < 0.001). During the past decade, following Chinese government-financed investments in environmental restoration and reforestation, the water quality of Chinese inland waters has improved markedly, which is particularly evident from the significant and exponentially decreasing GDP-normalized COD and ammonium (NH4+-N) concentrations. It is evident that the increasing GDP in China over the past decade did not occur at the continued expense of its inland water ecosystems. This offers hope for the future, also for other industrializing countries, that with appropriate environmental investments a high GDP can be reached and maintained, while simultaneously preserving inland aquatic ecosystems, particularly through management of sewage discharge.
PURE Aarhus Universi... arrow_drop_down http://dx.doi.org/10.1016/j.wa...Other literature typeData sources: European Union Open Data PortalThe University of Adelaide: Digital LibraryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2017.04.035&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu161 citations 161 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert PURE Aarhus Universi... arrow_drop_down http://dx.doi.org/10.1016/j.wa...Other literature typeData sources: European Union Open Data PortalThe University of Adelaide: Digital LibraryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2017.04.035&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017 AustraliaPublisher:Elsevier BV Funded by:EC | MARSEC| MARSZhou, Y.; Ma, J.; Zhang, Y.; Qin, B.; Jeppesen, E.; Shi, K.; Brookes, J.D.; Spencer, R.G.M.; Zhu, G.; Gao, G.;This study highlights how Chinese economic development detrimentally impacted water quality in recent decades and how this has been improved by enormous investment in environmental remediation funded by the Chinese government. To our knowledge, this study is the first to describe the variability of surface water quality in inland waters in China, the affecting drivers behind the changes, and how the government-financed conservation actions have impacted water quality. Water quality was found to be poorest in the North and the Northeast China Plain where there is greater coverage of developed land (cities + cropland), a higher gross domestic product (GDP), and higher population density. There are significant positive relationships between the concentration of the annual mean chemical oxygen demand (COD) and the percentage of developed land use (cities + cropland), GDP, and population density in the individual watersheds (p < 0.001). During the past decade, following Chinese government-financed investments in environmental restoration and reforestation, the water quality of Chinese inland waters has improved markedly, which is particularly evident from the significant and exponentially decreasing GDP-normalized COD and ammonium (NH4+-N) concentrations. It is evident that the increasing GDP in China over the past decade did not occur at the continued expense of its inland water ecosystems. This offers hope for the future, also for other industrializing countries, that with appropriate environmental investments a high GDP can be reached and maintained, while simultaneously preserving inland aquatic ecosystems, particularly through management of sewage discharge.
PURE Aarhus Universi... arrow_drop_down http://dx.doi.org/10.1016/j.wa...Other literature typeData sources: European Union Open Data PortalThe University of Adelaide: Digital LibraryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2017.04.035&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu161 citations 161 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert PURE Aarhus Universi... arrow_drop_down http://dx.doi.org/10.1016/j.wa...Other literature typeData sources: European Union Open Data PortalThe University of Adelaide: Digital LibraryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2017.04.035&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1987 GermanyPublisher:Elsevier BV Authors: Kim, H.C.; Bishnoi, P.R.; Heidemann, R.A.; Rizvi, S.S.H.;Abstract The kinetics of methane hydrate decomposition was studied using a semibatch stirred-tank reactor. The decomposition was accomplished by reducing the pressure on a hydrate slurry in water to a value below the three-phase equilibrium pressure at the reactor temperature. The data were obtained at temperatures from 274 to 283 K and pressures from 0.17 to 6.97 MPa. The stirring rates were high enough to eliminate mass-transfer effects. Analysis of the data indicated that the decomposition rate was proportional to the particle surface area and to the difference in the fugacity of methane at the equilibrium pressure and the decomposition pressure. The proportionality constant showed an Arrhenius temperature dependence. An estimate of the hydrate particle diameters in the experiments permitted the development of an intrinsic model for the kinetics of hydrate decomposition.
OceanRep arrow_drop_down OceanRepArticle . 1987 . Peer-reviewedFull-Text: http://oceanrep.geomar.de/54292/1/Kim.pdfData sources: OceanRepChemical Engineering ScienceArticle . 1987 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0009-2509(87)80169-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu868 citations 868 popularity Top 0.1% influence Top 0.1% impulse Top 1% Powered by BIP!
more_vert OceanRep arrow_drop_down OceanRepArticle . 1987 . Peer-reviewedFull-Text: http://oceanrep.geomar.de/54292/1/Kim.pdfData sources: OceanRepChemical Engineering ScienceArticle . 1987 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0009-2509(87)80169-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1987 GermanyPublisher:Elsevier BV Authors: Kim, H.C.; Bishnoi, P.R.; Heidemann, R.A.; Rizvi, S.S.H.;Abstract The kinetics of methane hydrate decomposition was studied using a semibatch stirred-tank reactor. The decomposition was accomplished by reducing the pressure on a hydrate slurry in water to a value below the three-phase equilibrium pressure at the reactor temperature. The data were obtained at temperatures from 274 to 283 K and pressures from 0.17 to 6.97 MPa. The stirring rates were high enough to eliminate mass-transfer effects. Analysis of the data indicated that the decomposition rate was proportional to the particle surface area and to the difference in the fugacity of methane at the equilibrium pressure and the decomposition pressure. The proportionality constant showed an Arrhenius temperature dependence. An estimate of the hydrate particle diameters in the experiments permitted the development of an intrinsic model for the kinetics of hydrate decomposition.
OceanRep arrow_drop_down OceanRepArticle . 1987 . Peer-reviewedFull-Text: http://oceanrep.geomar.de/54292/1/Kim.pdfData sources: OceanRepChemical Engineering ScienceArticle . 1987 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0009-2509(87)80169-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu868 citations 868 popularity Top 0.1% influence Top 0.1% impulse Top 1% Powered by BIP!
more_vert OceanRep arrow_drop_down OceanRepArticle . 1987 . Peer-reviewedFull-Text: http://oceanrep.geomar.de/54292/1/Kim.pdfData sources: OceanRepChemical Engineering ScienceArticle . 1987 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0009-2509(87)80169-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2025Embargo end date: 06 Jan 2025 United KingdomPublisher:Springer Science and Business Media LLC Funded by:NSF | Tracing Past Methane Vari...NSF| Tracing Past Methane Variations with Stable Isotopes in Antarctic Ice CoresBen Riddell-Young; James Edward Lee; Edward J. Brook; Jochen Schmitt; Hubertus Fischer; Thomas K. Bauska; James A. Menking; René Iseli; Justin Reid Clark;pmid: 39743610
Understanding the causes of past atmospheric methane (CH4) variability is important for characterizing the relationship between CH4, global climate and terrestrial biogeochemical cycling. Ice core records of atmospheric CH4 contain rapid variations linked to abrupt climate changes of the last glacial period known as Dansgaard-Oeschger (DO) events and Heinrich events (HE)1,2. The drivers of these CH4 variations remain unknown but can be constrained with ice core measurements of the stable isotopic composition of atmospheric CH4, which is sensitive to the strength of different isotopically distinguishable emission categories (microbial, pyrogenic and geologic)3-5. Here we present multi-decadal-scale measurements of δ13C-CH4 and δD-CH4 from the WAIS Divide and Talos Dome ice cores and identify abrupt 1‰ enrichments in δ13C-CH4 synchronous with HE CH4 pulses and 0.5‰ δ13C-CH4 enrichments synchronous with DO CH4 increases. δD-CH4 varied little across the abrupt CH4 changes. Using box models to interpret these isotopic shifts6 and assuming a constant δ13C-CH4 of microbial emissions, we propose that abrupt shifts in tropical rainfall associated with HEs and DO events enhanced 13C-enriched pyrogenic CH4 emissions, and by extension global wildfire extent, by 90-150%. Carbon cycle box modelling experiments7 suggest that the resulting released terrestrial carbon could have caused from one-third to all of the abrupt CO2 increases associated with HEs. These findings suggest that fire regimes and the terrestrial carbon cycle varied contemporaneously and substantially with past abrupt climate changes of the last glacial period.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-024-08363-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-024-08363-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2025Embargo end date: 06 Jan 2025 United KingdomPublisher:Springer Science and Business Media LLC Funded by:NSF | Tracing Past Methane Vari...NSF| Tracing Past Methane Variations with Stable Isotopes in Antarctic Ice CoresBen Riddell-Young; James Edward Lee; Edward J. Brook; Jochen Schmitt; Hubertus Fischer; Thomas K. Bauska; James A. Menking; René Iseli; Justin Reid Clark;pmid: 39743610
Understanding the causes of past atmospheric methane (CH4) variability is important for characterizing the relationship between CH4, global climate and terrestrial biogeochemical cycling. Ice core records of atmospheric CH4 contain rapid variations linked to abrupt climate changes of the last glacial period known as Dansgaard-Oeschger (DO) events and Heinrich events (HE)1,2. The drivers of these CH4 variations remain unknown but can be constrained with ice core measurements of the stable isotopic composition of atmospheric CH4, which is sensitive to the strength of different isotopically distinguishable emission categories (microbial, pyrogenic and geologic)3-5. Here we present multi-decadal-scale measurements of δ13C-CH4 and δD-CH4 from the WAIS Divide and Talos Dome ice cores and identify abrupt 1‰ enrichments in δ13C-CH4 synchronous with HE CH4 pulses and 0.5‰ δ13C-CH4 enrichments synchronous with DO CH4 increases. δD-CH4 varied little across the abrupt CH4 changes. Using box models to interpret these isotopic shifts6 and assuming a constant δ13C-CH4 of microbial emissions, we propose that abrupt shifts in tropical rainfall associated with HEs and DO events enhanced 13C-enriched pyrogenic CH4 emissions, and by extension global wildfire extent, by 90-150%. Carbon cycle box modelling experiments7 suggest that the resulting released terrestrial carbon could have caused from one-third to all of the abrupt CO2 increases associated with HEs. These findings suggest that fire regimes and the terrestrial carbon cycle varied contemporaneously and substantially with past abrupt climate changes of the last glacial period.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-024-08363-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-024-08363-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 France, GermanyPublisher:Elsevier BV C. Bommarito; S. Noè; D.M. Díaz-Morales; I. Lukić; C. Hiebenthal; G. Rilov; T. Guy-Haim; M. Wahl;pmid: 38056641
Climate change is driving compositional shifts in ecological communities directly by affecting species and indirectly through changes in species interactions. For example, competitive hierarchies can be inversed when competitive dominants are more susceptible to climate change. The brown seaweed Fucus vesiculosus is a foundation species in the Baltic Sea, experiencing novel interactions with the invasive red seaweed Gracilaria vermiculophylla, which is known for its high tolerance to environmental stress. We investigated the direct and interactive effects of warming and co-occurrence of the two algal species on their performance, by applying four climate change-relevant temperature scenarios: 1) cooling ) 2 °C below ambient - representing past conditions), 2) ambient summer temperature (18 °C), 3) IPCC RCP2.6 warming scenario (1 °C above ambient), and 4) RCP8.5 warming (3 °C above ambient) for 30 days and two compositional levels (mono and co-cultured algae) in a fully-crossed design. The RCP8.5 warming scenario increased photosynthesis, respiration, and nutrients' uptake rates of mono- and co-cultured G. vermiculophylla while growth was reduced. An increase in photosynthesis and essential nutrients' uptake and, at the same time, a growth reduction might result from increasing stress and energy demand of G. vermiculophylla under warming. In contrast, the growth of mono-cultured F. vesiculosus significantly increased in the highest warming treatment (+3 °C). The cooling treatment (-2 °C) exerted a slight negative effect only on co-cultured F. vesiculosus photosynthesis, compared to the ambient treatment. Interestingly, at ambient and warming (RCP2.6 and RCP8.5 scenarios) treatments, both F. vesiculosus and G. vermiculophylla appear to benefit from the presence of each other. Our results suggest that short exposure of F. vesiculosus to moderate or severe global warming scenarios may not directly affect or even slightly enhance its performance, while G. vermiculophylla net performance (growth) could be directly hampered by warming.
OceanRep arrow_drop_down The Science of The Total EnvironmentArticle . 2024 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2024Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2023.169087&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert OceanRep arrow_drop_down The Science of The Total EnvironmentArticle . 2024 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2024Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2023.169087&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 France, GermanyPublisher:Elsevier BV C. Bommarito; S. Noè; D.M. Díaz-Morales; I. Lukić; C. Hiebenthal; G. Rilov; T. Guy-Haim; M. Wahl;pmid: 38056641
Climate change is driving compositional shifts in ecological communities directly by affecting species and indirectly through changes in species interactions. For example, competitive hierarchies can be inversed when competitive dominants are more susceptible to climate change. The brown seaweed Fucus vesiculosus is a foundation species in the Baltic Sea, experiencing novel interactions with the invasive red seaweed Gracilaria vermiculophylla, which is known for its high tolerance to environmental stress. We investigated the direct and interactive effects of warming and co-occurrence of the two algal species on their performance, by applying four climate change-relevant temperature scenarios: 1) cooling ) 2 °C below ambient - representing past conditions), 2) ambient summer temperature (18 °C), 3) IPCC RCP2.6 warming scenario (1 °C above ambient), and 4) RCP8.5 warming (3 °C above ambient) for 30 days and two compositional levels (mono and co-cultured algae) in a fully-crossed design. The RCP8.5 warming scenario increased photosynthesis, respiration, and nutrients' uptake rates of mono- and co-cultured G. vermiculophylla while growth was reduced. An increase in photosynthesis and essential nutrients' uptake and, at the same time, a growth reduction might result from increasing stress and energy demand of G. vermiculophylla under warming. In contrast, the growth of mono-cultured F. vesiculosus significantly increased in the highest warming treatment (+3 °C). The cooling treatment (-2 °C) exerted a slight negative effect only on co-cultured F. vesiculosus photosynthesis, compared to the ambient treatment. Interestingly, at ambient and warming (RCP2.6 and RCP8.5 scenarios) treatments, both F. vesiculosus and G. vermiculophylla appear to benefit from the presence of each other. Our results suggest that short exposure of F. vesiculosus to moderate or severe global warming scenarios may not directly affect or even slightly enhance its performance, while G. vermiculophylla net performance (growth) could be directly hampered by warming.
OceanRep arrow_drop_down The Science of The Total EnvironmentArticle . 2024 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2024Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2023.169087&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert OceanRep arrow_drop_down The Science of The Total EnvironmentArticle . 2024 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2024Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2023.169087&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 ItalyPublisher:Wiley Funded by:NSERCNSERCAmanda Xuereb; Cassidy C. D'Aloia; Marco Andrello; Louis Bernatchez; Marie‐Josée Fortin;AbstractThe availability of genomic data for an increasing number of species makes it possible to incorporate evolutionary processes into conservation plans. Recent studies show how genetic data can inform spatial conservation prioritization (SCP), but they focus on metrics of diversity and distinctness derived primarily from neutral genetic data sets. Identifying adaptive genetic markers can provide important information regarding the capacity for populations to adapt to environmental change. Yet, the effect of including metrics based on adaptive genomic data into SCP in comparison to more widely used neutral genetic metrics has not been explored. We used existing genomic data on a commercially exploited species, the giant California sea cucumber (Parastichopus californicus), to perform SCP for the coastal region of British Columbia (BC), Canada. Using a RAD‐seq data set for 717P. californicusindividuals across 24 sampling locations, we identified putatively adaptive (i.e., candidate) single nucleotide polymorphisms (SNPs) based on genotype–environment associations with seafloor temperature. We calculated various metrics for both neutral and candidate SNPs and compared SCP outcomes with independent metrics and combinations of metrics. Priority areas varied depending on whether neutral or candidate SNPs were used and on the specific metric used. For example, targeting sites with a high frequency of warm‐temperature‐associated alleles to support persistence under future warming prioritized areas in the southern coastal region. In contrast, targeting sites with high expected heterozygosity at candidate loci to support persistence under future environmental uncertainty prioritized areas in the north. When combining metrics, all scenarios generated intermediate solutions, protecting sites that span latitudinal and thermal gradients. Our results demonstrate that distinguishing between neutral and adaptive markers can affect conservation solutions and emphasize the importance of defining objectives when choosing among various genomic metrics for SCP.
IRIS Cnr arrow_drop_down Conservation BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/cobi.13609&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu46 citations 46 popularity Top 1% influence Average impulse Top 1% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down Conservation BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/cobi.13609&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 ItalyPublisher:Wiley Funded by:NSERCNSERCAmanda Xuereb; Cassidy C. D'Aloia; Marco Andrello; Louis Bernatchez; Marie‐Josée Fortin;AbstractThe availability of genomic data for an increasing number of species makes it possible to incorporate evolutionary processes into conservation plans. Recent studies show how genetic data can inform spatial conservation prioritization (SCP), but they focus on metrics of diversity and distinctness derived primarily from neutral genetic data sets. Identifying adaptive genetic markers can provide important information regarding the capacity for populations to adapt to environmental change. Yet, the effect of including metrics based on adaptive genomic data into SCP in comparison to more widely used neutral genetic metrics has not been explored. We used existing genomic data on a commercially exploited species, the giant California sea cucumber (Parastichopus californicus), to perform SCP for the coastal region of British Columbia (BC), Canada. Using a RAD‐seq data set for 717P. californicusindividuals across 24 sampling locations, we identified putatively adaptive (i.e., candidate) single nucleotide polymorphisms (SNPs) based on genotype–environment associations with seafloor temperature. We calculated various metrics for both neutral and candidate SNPs and compared SCP outcomes with independent metrics and combinations of metrics. Priority areas varied depending on whether neutral or candidate SNPs were used and on the specific metric used. For example, targeting sites with a high frequency of warm‐temperature‐associated alleles to support persistence under future warming prioritized areas in the southern coastal region. In contrast, targeting sites with high expected heterozygosity at candidate loci to support persistence under future environmental uncertainty prioritized areas in the north. When combining metrics, all scenarios generated intermediate solutions, protecting sites that span latitudinal and thermal gradients. Our results demonstrate that distinguishing between neutral and adaptive markers can affect conservation solutions and emphasize the importance of defining objectives when choosing among various genomic metrics for SCP.
IRIS Cnr arrow_drop_down Conservation BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/cobi.13609&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu46 citations 46 popularity Top 1% influence Average impulse Top 1% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down Conservation BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/cobi.13609&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2011 NetherlandsPublisher:Springer Science and Business Media LLC McQuatters-Gollop, A.; Reid, P.C.; Edwards, M.; Burkill, P.H.; Castellani, C.; Batten, S.; Gieskes, W.; Beare, D.J.; Bidigare, R.R.; Head, E.; Johnson, R.; Kahru, M.; Koslow, J.A.; Pena, A.;Phytoplankton account for approximately 50% of global primary production, form the trophic base of nearly all marine ecosystems, are fundamental in trophic energy transfer and have key roles in climate regulation, carbon sequestration and oxygen production. Boyce et al.1 compiled a chlorophyll index by combining in situ chlorophyll and Secchi disk depth measurements that spanned a more than 100-year time period and showed a decrease in marine phytoplankton biomass of approximately 1% of the global median per year over the past century. Eight decades of data on phytoplankton biomass collected in the North Atlantic by the Continuous Plankton Recorder (CPR) survey2, however, show an increase in an index of chlorophyll (Phytoplankton Colour Index) in both the Northeast and Northwest Atlantic basins3,4,5,6,7 (Fig. 1), and other long-term time series, including the Hawaii Ocean Time-series (HOT)8, the Bermuda Atlantic Time Series (BATS)8 and the California Cooperative Oceanic Fisheries Investigations (CalCOFI)9 also indicate increased phytoplankton biomass over the last 20–50 years. These findings, which were not discussed by Boyce et al.1, are not in accordance with their conclusions and illustrate the importance of using consistent observations when estimating long-term trends.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature09950&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu103 citations 103 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature09950&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2011 NetherlandsPublisher:Springer Science and Business Media LLC McQuatters-Gollop, A.; Reid, P.C.; Edwards, M.; Burkill, P.H.; Castellani, C.; Batten, S.; Gieskes, W.; Beare, D.J.; Bidigare, R.R.; Head, E.; Johnson, R.; Kahru, M.; Koslow, J.A.; Pena, A.;Phytoplankton account for approximately 50% of global primary production, form the trophic base of nearly all marine ecosystems, are fundamental in trophic energy transfer and have key roles in climate regulation, carbon sequestration and oxygen production. Boyce et al.1 compiled a chlorophyll index by combining in situ chlorophyll and Secchi disk depth measurements that spanned a more than 100-year time period and showed a decrease in marine phytoplankton biomass of approximately 1% of the global median per year over the past century. Eight decades of data on phytoplankton biomass collected in the North Atlantic by the Continuous Plankton Recorder (CPR) survey2, however, show an increase in an index of chlorophyll (Phytoplankton Colour Index) in both the Northeast and Northwest Atlantic basins3,4,5,6,7 (Fig. 1), and other long-term time series, including the Hawaii Ocean Time-series (HOT)8, the Bermuda Atlantic Time Series (BATS)8 and the California Cooperative Oceanic Fisheries Investigations (CalCOFI)9 also indicate increased phytoplankton biomass over the last 20–50 years. These findings, which were not discussed by Boyce et al.1, are not in accordance with their conclusions and illustrate the importance of using consistent observations when estimating long-term trends.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature09950&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu103 citations 103 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature09950&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 ItalyPublisher:Elsevier BV Funded by:EC | MUSESEC| MUSESDepellegrin D; Venier C; Kyriazi Z; Vassilopoulou V; Castellani C; Ramieri E; Bocci M; Fernandez J; Barbanti A;European seas are experiencing rapid development. The anthropogenic demand for marine resources and space exerts the need for novel concepts for sustainable resource exploitation and smart space allocation. Multi-Use (MU) is an emerging concept to overcome spatial claims and support Blue Growth, however its actual potentials and current status of implementation in different sea basins is to a large extent unexplored. An analytical framework using a mixed method approach is proposed for the identification and analysis of MU potentialities in eight EU countries of the Euro-Mediterranean sea basin. The paper addresses opportunities and challenges of ten existing and potential MU combinations driven by three maritime sectors: tourism, renewable energy and Oil & Gas industry. Opportunities and challenges for MU development were presented in terms of drivers, added values, barriers and impacts. Results show that highest potential for MU development are related to tourism-driven MU combinations (e.g. pescatourism), but also emerging MU potentials exist related to Floating Offshore Wind energy and aquaculture (Gulf of Lion) and the re-use of Oil & Gas decommissioned platforms (Northern-Central Adriatic Sea). Findings were discussed for their geospatial distribution and their policy, socio-economic, technical and environmental boundary conditions. Recommendations on actions to foster MU development in the Euro-Mediterranean sea space are provided.
CNR ExploRA arrow_drop_down The Science of The Total EnvironmentArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2018.10.308&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu58 citations 58 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CNR ExploRA arrow_drop_down The Science of The Total EnvironmentArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2018.10.308&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 ItalyPublisher:Elsevier BV Funded by:EC | MUSESEC| MUSESDepellegrin D; Venier C; Kyriazi Z; Vassilopoulou V; Castellani C; Ramieri E; Bocci M; Fernandez J; Barbanti A;European seas are experiencing rapid development. The anthropogenic demand for marine resources and space exerts the need for novel concepts for sustainable resource exploitation and smart space allocation. Multi-Use (MU) is an emerging concept to overcome spatial claims and support Blue Growth, however its actual potentials and current status of implementation in different sea basins is to a large extent unexplored. An analytical framework using a mixed method approach is proposed for the identification and analysis of MU potentialities in eight EU countries of the Euro-Mediterranean sea basin. The paper addresses opportunities and challenges of ten existing and potential MU combinations driven by three maritime sectors: tourism, renewable energy and Oil & Gas industry. Opportunities and challenges for MU development were presented in terms of drivers, added values, barriers and impacts. Results show that highest potential for MU development are related to tourism-driven MU combinations (e.g. pescatourism), but also emerging MU potentials exist related to Floating Offshore Wind energy and aquaculture (Gulf of Lion) and the re-use of Oil & Gas decommissioned platforms (Northern-Central Adriatic Sea). Findings were discussed for their geospatial distribution and their policy, socio-economic, technical and environmental boundary conditions. Recommendations on actions to foster MU development in the Euro-Mediterranean sea space are provided.
CNR ExploRA arrow_drop_down The Science of The Total EnvironmentArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2018.10.308&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu58 citations 58 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CNR ExploRA arrow_drop_down The Science of The Total EnvironmentArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2018.10.308&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 ItalyPublisher:Elsevier BV Xue, K; van Nostrand, J. D.; Vangronsveld, J.; Witters, N.; Janssen, J. O.; Kumpiene, J.; Siebielec, G.; Galazka, R.; GIAGNONI, LAURA; ARENELLA, MARIARITA; Zhou, J. Z.; RENELLA, GIANCARLO;pmid: 26183942
handle: 11577/3313856 , 11379/538229 , 2158/1007769
We studied the microbial functional diversity, biochemical activity, heavy metals (HM) availability and soil toxicity of Cd, Pb and Zn contaminated soils, kept under grassland or short rotation coppice (SRC) to attenuate the risks associated with HM contamination and restore the soil ecological functions. Soil microbial functional diversity was analyzed by the GeoChip, a functional gene microarray containing probes for genes involved in nutrient cycling, metal resistance and stress response. Soil under SRC showed a higher abundance of microbial genes involved in C, N, P and S cycles and resistance to various HM, higher microbial biomass, respiration and enzyme activity rates, and lower HM availability than the grassland soil. The linkages between functional genes of soil microbial communities and soil chemical properties, HM availability and biochemical activity were also investigated. Soil toxicity and N, P and Pb availability were important factors in shaping the microbial functional diversity, as determined by CCA. We concluded that in HM contaminated soils the microbial functional diversity was positively influenced by SRC management through the reduction of HM availability and soil toxicity increase of nutrient cycling. The presented results can be important in predicting the long term environmental sustainability of plant-based soil remediation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2015.06.062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2015.06.062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 ItalyPublisher:Elsevier BV Xue, K; van Nostrand, J. D.; Vangronsveld, J.; Witters, N.; Janssen, J. O.; Kumpiene, J.; Siebielec, G.; Galazka, R.; GIAGNONI, LAURA; ARENELLA, MARIARITA; Zhou, J. Z.; RENELLA, GIANCARLO;pmid: 26183942
handle: 11577/3313856 , 11379/538229 , 2158/1007769
We studied the microbial functional diversity, biochemical activity, heavy metals (HM) availability and soil toxicity of Cd, Pb and Zn contaminated soils, kept under grassland or short rotation coppice (SRC) to attenuate the risks associated with HM contamination and restore the soil ecological functions. Soil microbial functional diversity was analyzed by the GeoChip, a functional gene microarray containing probes for genes involved in nutrient cycling, metal resistance and stress response. Soil under SRC showed a higher abundance of microbial genes involved in C, N, P and S cycles and resistance to various HM, higher microbial biomass, respiration and enzyme activity rates, and lower HM availability than the grassland soil. The linkages between functional genes of soil microbial communities and soil chemical properties, HM availability and biochemical activity were also investigated. Soil toxicity and N, P and Pb availability were important factors in shaping the microbial functional diversity, as determined by CCA. We concluded that in HM contaminated soils the microbial functional diversity was positively influenced by SRC management through the reduction of HM availability and soil toxicity increase of nutrient cycling. The presented results can be important in predicting the long term environmental sustainability of plant-based soil remediation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2015.06.062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2015.06.062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 GermanyPublisher:Elsevier BV Duong, Celina; Bower, Charles; Hume, Ken; Rock, Luc; Tessarolo, Stephen;Abstract Quest is a fully integrated Carbon Capture and Storage (CCS) project that started CO2 injection in August of 2015. The Quest CCS Project is located near Fort Saskatchewan, Alberta, Canada. It includes a capture facility which uses a Shell amine technology, a pipeline of about 65 km length, and three injection well pads. Each injection well pad has an injection well, a deep monitoring well, and shallow groundwater wells. The storage complex is geologically defined by the injection reservoir, a deep saline aquifer called the Basal Cambrian Sand (BCS) (about 45 m thick) and several seals, including the Middle Cambrian Shale (about 50 m thick) and Lotsberg Salts (about 120 m thick). As of August 2018, over three million tonnes of CO2 have been safely injected and permanently stored in the BCS. The Alberta Carbon Competitiveness Incentive Regulation (CCIR) requires the use of standard methods of quantification for reporting greenhouse gas (GHG) emissions for facilities with over 100,000 tonnes of carbon dioxide equivalent (CO2e) per year. An emission offset project is required to comply with CCIR, associated standards and protocols, to demonstrate a reduction in the specified gas emissions and, in the case of Quest, geological sequestration. Quest is the first CCS project to implement an offset project in the context of commercial scale on-shore CO2 geological sequestration within a saline aquifer. Quest uses the Quantification Protocol for CO2 Capture and Permanent Storage in Deep Saline Aquifers, from Alberta Environment and Parks. An offset project must develop an offset project plan (OPP) which demonstrates how the project meets the requirement of the protocol, describes how GHG emissions reductions are achieved, identifies risks associated with the quantification of emission reduction benefits, and describes methodologies used to quantify sources and sinks. Subsequent to completing the OPP, an offset project will put together offset project reports (OPR) to report on the net reductions of GHG emissions for a specific period. The intent of this paper is a) to provide an overview of the OPP and OPR for the Quest CCS project, and b) to discuss learnings from the initial compilation and submission of offset project reports. The key learning at this time is associated to the equipment improvements to the injection gas online analyzer.
OceanRep arrow_drop_down OceanRepArticle . 2019 . Peer-reviewedFull-Text: http://oceanrep.geomar.de/48332/1/Duong.pdfData sources: OceanRepInternational Journal of Greenhouse Gas ControlArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2019.06.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert OceanRep arrow_drop_down OceanRepArticle . 2019 . Peer-reviewedFull-Text: http://oceanrep.geomar.de/48332/1/Duong.pdfData sources: OceanRepInternational Journal of Greenhouse Gas ControlArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2019.06.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 GermanyPublisher:Elsevier BV Duong, Celina; Bower, Charles; Hume, Ken; Rock, Luc; Tessarolo, Stephen;Abstract Quest is a fully integrated Carbon Capture and Storage (CCS) project that started CO2 injection in August of 2015. The Quest CCS Project is located near Fort Saskatchewan, Alberta, Canada. It includes a capture facility which uses a Shell amine technology, a pipeline of about 65 km length, and three injection well pads. Each injection well pad has an injection well, a deep monitoring well, and shallow groundwater wells. The storage complex is geologically defined by the injection reservoir, a deep saline aquifer called the Basal Cambrian Sand (BCS) (about 45 m thick) and several seals, including the Middle Cambrian Shale (about 50 m thick) and Lotsberg Salts (about 120 m thick). As of August 2018, over three million tonnes of CO2 have been safely injected and permanently stored in the BCS. The Alberta Carbon Competitiveness Incentive Regulation (CCIR) requires the use of standard methods of quantification for reporting greenhouse gas (GHG) emissions for facilities with over 100,000 tonnes of carbon dioxide equivalent (CO2e) per year. An emission offset project is required to comply with CCIR, associated standards and protocols, to demonstrate a reduction in the specified gas emissions and, in the case of Quest, geological sequestration. Quest is the first CCS project to implement an offset project in the context of commercial scale on-shore CO2 geological sequestration within a saline aquifer. Quest uses the Quantification Protocol for CO2 Capture and Permanent Storage in Deep Saline Aquifers, from Alberta Environment and Parks. An offset project must develop an offset project plan (OPP) which demonstrates how the project meets the requirement of the protocol, describes how GHG emissions reductions are achieved, identifies risks associated with the quantification of emission reduction benefits, and describes methodologies used to quantify sources and sinks. Subsequent to completing the OPP, an offset project will put together offset project reports (OPR) to report on the net reductions of GHG emissions for a specific period. The intent of this paper is a) to provide an overview of the OPP and OPR for the Quest CCS project, and b) to discuss learnings from the initial compilation and submission of offset project reports. The key learning at this time is associated to the equipment improvements to the injection gas online analyzer.
OceanRep arrow_drop_down OceanRepArticle . 2019 . Peer-reviewedFull-Text: http://oceanrep.geomar.de/48332/1/Duong.pdfData sources: OceanRepInternational Journal of Greenhouse Gas ControlArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2019.06.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert OceanRep arrow_drop_down OceanRepArticle . 2019 . Peer-reviewedFull-Text: http://oceanrep.geomar.de/48332/1/Duong.pdfData sources: OceanRepInternational Journal of Greenhouse Gas ControlArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2019.06.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 GermanyPublisher:Elsevier BV Guangqing Zhang; Pu Wang; Meirong Tang; Kuangsheng Zhang; Dawei Zhou; Dawei Zhou;Abstract The effects of CO2-brine-rock interaction on the physical and macro-mechanical properties of rock have been extensively studied in CO2 sequestration-related research. However, there are few studies focus on mechanochemical effects of the interaction of supercritical CO2 (SC−CO2), water, and rock and its effects on micromechanical properties of sandstone. In this work, we studied the micromechanical mechanism of crack initiation induced by SC−CO2-water saturated sandstone. A micromechanical model including parameters of fracture cohesive strength, friction coefficient, and fracture energy was proposed, which extended the “sliding surface” to include not only the friction, but also the cohesions on the surfaces and the tensile resistance at the crack-tips. To this end, tests of two saturation conditions, water and SC−CO2-water, were conducted on 25 mm diameter by 50 mm length Sichuan sandstone with a porosity of ∼15.57 % for 15 days and 30 days under temperature of 80 ℃ and pressure of 30 MPa. Afterward, samples were subjected to triaxial compression tests with confining pressure up to 24 MPa. The mineralogical alteration and induced crack morphology were examined to better understand the mechanism of mechanochemical coupling on compression failure induced by SC−CO2-water-rock interaction. Experimentally, mineralogical and microstructural changes induced by illite and kaolinite dissolution, weaken the quartz grain contacts in SC−CO2-water saturated sandstone. Compared to water-saturated sandstone, the SC−CO2-water saturated sandstone exhibits a maximum reduction by 18.82 % and 21.21 % in compressive strength and crack initiation stress respectively under unconfined condition. Additionally, reductions of 5%, 50 %, and 37.3 % were observed in friction coefficient, fracture energy, and cohesive strength respectively for SC−CO2-water saturated sandstone. The reductions of these three parameters, especially the fracture energy and cohesive strength, significantly weaken SC−CO2-water saturated sandstone. The results are representative for the partly saturated zone where SC−CO2 is displacing the in-situ pore fluid and could be used to analyze effects of CO2 injection on stability and integrity of storage formation under mechanochemical coupling effects of SC−CO2-water on sandstone.
OceanRep arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2020.103040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu30 citations 30 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert OceanRep arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2020.103040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 GermanyPublisher:Elsevier BV Guangqing Zhang; Pu Wang; Meirong Tang; Kuangsheng Zhang; Dawei Zhou; Dawei Zhou;Abstract The effects of CO2-brine-rock interaction on the physical and macro-mechanical properties of rock have been extensively studied in CO2 sequestration-related research. However, there are few studies focus on mechanochemical effects of the interaction of supercritical CO2 (SC−CO2), water, and rock and its effects on micromechanical properties of sandstone. In this work, we studied the micromechanical mechanism of crack initiation induced by SC−CO2-water saturated sandstone. A micromechanical model including parameters of fracture cohesive strength, friction coefficient, and fracture energy was proposed, which extended the “sliding surface” to include not only the friction, but also the cohesions on the surfaces and the tensile resistance at the crack-tips. To this end, tests of two saturation conditions, water and SC−CO2-water, were conducted on 25 mm diameter by 50 mm length Sichuan sandstone with a porosity of ∼15.57 % for 15 days and 30 days under temperature of 80 ℃ and pressure of 30 MPa. Afterward, samples were subjected to triaxial compression tests with confining pressure up to 24 MPa. The mineralogical alteration and induced crack morphology were examined to better understand the mechanism of mechanochemical coupling on compression failure induced by SC−CO2-water-rock interaction. Experimentally, mineralogical and microstructural changes induced by illite and kaolinite dissolution, weaken the quartz grain contacts in SC−CO2-water saturated sandstone. Compared to water-saturated sandstone, the SC−CO2-water saturated sandstone exhibits a maximum reduction by 18.82 % and 21.21 % in compressive strength and crack initiation stress respectively under unconfined condition. Additionally, reductions of 5%, 50 %, and 37.3 % were observed in friction coefficient, fracture energy, and cohesive strength respectively for SC−CO2-water saturated sandstone. The reductions of these three parameters, especially the fracture energy and cohesive strength, significantly weaken SC−CO2-water saturated sandstone. The results are representative for the partly saturated zone where SC−CO2 is displacing the in-situ pore fluid and could be used to analyze effects of CO2 injection on stability and integrity of storage formation under mechanochemical coupling effects of SC−CO2-water on sandstone.
OceanRep arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2020.103040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu30 citations 30 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert OceanRep arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2020.103040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu