- home
- Advanced Search
- Energy Research
- Closed Access
- Open Source
- GB
- European Marine Science
- Energy Research
- Closed Access
- Open Source
- GB
- European Marine Science
description Publicationkeyboard_double_arrow_right Part of book or chapter of book , Other literature type , Report , Article 2009 United Kingdom, FinlandPublisher:Springer Netherlands Publicly fundedAuthors: Arvola, Lauri; George, Glen; Livingstone, David M.;Jarvinen, Marko;
+7 AuthorsJarvinen, Marko
Jarvinen, Marko in OpenAIREArvola, Lauri; George, Glen; Livingstone, David M.;Jarvinen, Marko;
Blenckner, Thorsten; Dokulil, Martin T.; Jennings, Eleanor; Nic Aonghusa, Caitriona; Noges, Peeter; Noges, Tiina; Weyhnmeyer, Gesa A.;Jarvinen, Marko
Jarvinen, Marko in OpenAIREMeteorological forcing at the air-water interface is the main determinant of the heat balance of most lakes (Edinger et al., 1968; Sweers, 1976). Year-to-year changes in the weather therefore have a major effect on the thermal characteristics of lakes. However, lakes that differ with respect to their morphometry respond differently to these changes (Gorham, 1964), with deeper lakes integrating the effects of meteorological forcing over longer periods of time. Other important factors that can influence the thermal characteristics of lakes include hydraulic residence time, optical properties and landscape setting (e.g. Salonen et al., 1984; Fee et al., 1996; Livingstone et al., 1999). These factors modify the thermal responses of the lake to meteorological forcing (cf. Magnuson et al., 2004; Blenckner, 2005) and regulate the patterns of spatial coherence (Chapter 17) observed in the different regions (Livingstone, 1993; George et al., 2000; Livingstone and Dokulil, 2001; Jarvinen et al., 2002; Blenckner et al., 2004)
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1007/978-90...Part of book or chapter of book . 2009 . Peer-reviewedLicense: Springer TDMData sources: CrossrefNERC Open Research ArchivePart of book or chapter of book . 2010Data sources: NERC Open Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-90-481-2945-4_6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu57 citations 57 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1007/978-90...Part of book or chapter of book . 2009 . Peer-reviewedLicense: Springer TDMData sources: CrossrefNERC Open Research ArchivePart of book or chapter of book . 2010Data sources: NERC Open Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-90-481-2945-4_6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1995 United KingdomPublisher:Springer Science and Business Media LLC Authors:Appleby, P. G.;
Jones, V. J.; Ellis-Evans, J. C.;Appleby, P. G.
Appleby, P. G. in OpenAIREdoi: 10.1007/bf00678106
Sediment cores from three lakes (Moss, Sombre and Heywood) in the maritime Antarctic (Signy Island, South Orkney Islands) have been successfully dated radiometrically by210Pb and137Cs. The core inventories of both fallout radionuclides are an order of magnitude higher than that which can be supported by the direct atmospheric flux at this latitude. The elevated values may be explained by fallout onto the catchment during the winter being delivered directly to the lakes during the annual thaw. Two of the lakes (Sombre and Heywood) show marked increases in sediment accumulation afterc. 1950. This appears to be associated with a documented rise in temperature in the South Orkney Islands, which has caused extensive deglaciation at Signy Island.
Journal of Paleolimn... arrow_drop_down Journal of PaleolimnologyArticle . 1995 . Peer-reviewedLicense: Springer TDMData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 1995Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/bf00678106&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu48 citations 48 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Paleolimn... arrow_drop_down Journal of PaleolimnologyArticle . 1995 . Peer-reviewedLicense: Springer TDMData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 1995Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/bf00678106&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2006 United KingdomPublisher:Wiley Authors: Roscoe, H.K.;Marshall, G.J.;
Marshall, G.J.
Marshall, G.J. in OpenAIREKing, J.C.;
King, J.C.
King, J.C. in OpenAIREdoi: 10.1256/qj.05.81
AbstractStratospheric change associated with the Antarctic ozone hole is clearly implicated in changing surface climate near 65°S in late summer, in both measurements and models, via downward propagation of height anomalies following the final warming. But one of the largest changes in surface temperature in Antarctica has occurred in the Antarctic Peninsula at 60 to 65°S in winter, and most of the change at 65°S occurred before the ozone hole. Stratospheric change can cause tropospheric change in Antarctic winter by modifying the reflection and refraction of planetary waves, whereby a stronger stratospheric vortex moves the tropospheric jets polewards, which can modify the Southern Annular Mode (SAM) in surface pressure that forces the tropospheric circumpolar winds. We examine stratospheric influence on the SAM in winter by inter‐annual correlation of the SAM with the solar‐cycle and volcanic aerosols, which act to change forcing of the stratospheric vortex in winter. Correlations are a maximum in June (midwinter) and are significant then, but are poor averaged over winter months. Hence the potential of change in the stratosphere to change Antarctic tropospheric climate in winter by dynamical means is low. This negative result is important given the proven high potential for change in summer by dynamical means. Copyright © 2006 Royal Meteorological Society.
Quarterly Journal of... arrow_drop_down Quarterly Journal of the Royal Meteorological SocietyArticle . 2006 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2006Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1256/qj.05.81&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu8 citations 8 popularity Average influence Average impulse Average Powered by BIP!
more_vert Quarterly Journal of... arrow_drop_down Quarterly Journal of the Royal Meteorological SocietyArticle . 2006 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2006Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1256/qj.05.81&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Authors: Jon Barry;Marta Vannoni;
Dave Sheahan;Marta Vannoni
Marta Vannoni in OpenAIREVéronique Créach;
Véronique Créach
Véronique Créach in OpenAIREpmid: 30007157
Chlorination is a widely used antifouling method for freshwater and marine applications. Chlorine added to seawater reacts to form oxidants that are toxic to biofouling organisms. Further, the oxidants that result are short-lived, but may nevertheless affect non-target species in waterbodies receiving the antifouling effluent. This study evaluated the toxicity of chlorinated seawater (e.g. following sodium hypochlorite addition) on two different species of marine benthic diatoms (Achnanthes spp., and Navicula pelliculosa), which are representative of microphytobenthos communities - an important component in coastal habitats that may be exposed to chlorinated seawater. To evaluate the growth inhibition over a 72 h period, algae were immobilised in alginate beads and exposed to different levels of chlorination in a flow through system. Growth rates and physiological condition of the microalgae were evaluated using a Fast Repetition Rate fluorometer (FRRf). To determine whether alginate influenced the sensitivity of algal response, studies were also conducted in a static test system (without renewal of test solutions) using both free cells and immobilised cells with initial chlorine added to achieve a similar range of concentrations as those used in the flow-through study. Within the first hour of the exposure period there was an indication that, for both species, the free algal cells in the static system were more sensitive to exposure to chlorinated seawater than were alginate-immobilised cells in the flow through system. Immobilised cells in a static system with a single addition of chlorine were also less sensitive to chlorination than free algal cells. However, for periods of 24 h or more due to decay of TRO in the static system the exposure of immobilised algae in the flow through system had a greater impact and hence lower effect concentrations. For the flow-through studies Achnanthes spp. was the most sensitive after 72 h exposure with a potential no effect concentration EC10 value of 0.02 mg l-1 as Cl2 equivalents expressed as total residual oxidants (TRO) compared 0.04 mg l-1 TRO for N. pelliculosa. Immobilisation of algal cells in alginate was found to be an effective means of determining the impact of chlorination and is likely to be effective for other non-persistent substances. Based on the data produced, the extent and significance of ecological effects of chlorination upon algal species typical of microphytobenthos are likely to be limited providing discharges comply with a maximum allowable concentration of 0.01 mg l-1 TRO at the edge of an agreed mixing zone.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.aquatox.2018.06.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.aquatox.2018.06.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2002 United KingdomPublisher:Elsevier BV There is increasing evidence supporting rapid trajectories of environmental change in the Antarctic. This study describes preliminary data on soil faunal responses to artificial environmental amelioration obtained using a 'greenhouse' methodology, over the first year of a manipulative study of part of the soil ecosystem of Mars Oasis, Alexander Island in the southern Maritime Antarctic. The methodology, which used two types of UV-absorbing perspex cloche, influences a range of environmental variables, the most significant of which in this study are thought to be temperature and UV-radiation. The fauna of this site is dominated by Nematoda. Responses to amelioration included large increases in nematode population densities, particularly those of the microbivorous genus, Plectus, combined with changes in the relative abundance of taxa. These faunal changes are likely to be mediated via the responses of autotrophs to the environmental manipulations.
European Journal of ... arrow_drop_down European Journal of Soil BiologyArticle . 2002 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2002Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s1164-5563(02)01155-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu51 citations 51 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert European Journal of ... arrow_drop_down European Journal of Soil BiologyArticle . 2002 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2002Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s1164-5563(02)01155-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007 United KingdomPublisher:Elsevier BV Authors:Hughes, Kevin A.;
Bridge, Paul;Hughes, Kevin A.
Hughes, Kevin A. in OpenAIREClark, Melody S.;
Clark, Melody S.
Clark, Melody S. in OpenAIREpmid: 17157897
Little is known about the effects of hydrocarbons and fuel oil on Antarctic filamentous fungi in the terrestrial Antarctic environment. Growth of fungi and bacteria from soils around Rothera Research Station (Adelaide Island, Antarctic Peninsula) was assessed in the presence of ten separate aromatic and aliphatic hydrocarbons [marine gas oil (MGO), dodecane, hexadecane, benzoic acid, p-hydroxybenzoic acid, toluene, phenol, biphenyl, naphthalene and m- and p-xylenes with ethylbenzene]. Aromatic hydrocarbons inhibited soil microbial growth more than aliphatic hydrocarbons. Soil microorganisms from a moss patch, where little previous impact or hydrocarbon contamination had occurred, were less tolerant of hydrocarbons than those from high impact sites. Fungal growth rates of Mollisia sp., Penicillium commune, Mortierella sp., Trichoderma koningii, Trichoderma sp. and Phoma herbarum were assessed in the presence of hydrocarbons. Generally, aromatic hydrocarbons inhibited or stopped hyphal extension, though growth rates increased with some aliphatic hydrocarbons. Hyphal dry weight measurements suggested that Mortierella sp. may be able to use dodecane as sole carbon and energy source. Hydrocarbon-degrading Antarctic fungi may have use in future hydrocarbon spill bioremediation.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2007 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2007Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2006.09.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu60 citations 60 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2007 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2007Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2006.09.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010 United KingdomPublisher:Wiley Authors: Brian Moss;Heidrun Feuchtmayr;
Heidrun Feuchtmayr; Rebecca Moran; +5 AuthorsHeidrun Feuchtmayr
Heidrun Feuchtmayr in OpenAIREBrian Moss;Heidrun Feuchtmayr;
Heidrun Feuchtmayr; Rebecca Moran;Heidrun Feuchtmayr
Heidrun Feuchtmayr in OpenAIREDavid Atkinson;
David Atkinson; Keith Hatton; Ian F. Harvey; Tom Heyes;David Atkinson
David Atkinson in OpenAIRESummary1. Shallow lakes and their ectothermic inhabitants are particularly vulnerable to the effects of climatic warming. These impacts are likely to depend on nutrient loading, especially if the combination of warming and eutrophication leads to severe hypoxia.2. To investigate effects of realistic warming and nutrient loading on a fish species with high tolerance of warming and hypoxia, we observed population changes and timing of reproduction of three‐spined sticklebacks in 24 outdoor shallow freshwater ecosystems with combinations of temperature (ambient and ambient +4 °C) and three nutrient treatments over 16 months.3. Warming reduced stickleback population biomass by 60% (population size by 76%) and nutrient‐addition reduced biomass by about 80% (population size 95%). Nutrients and warming together resulted in extinction of the stickleback populations. These losses were mainly attributed to the increased likelihood of severe hypoxia in heated and nutrient‐addition mesocosms.4. Warming of nutrient‐rich waters can thus have dire consequences for freshwater ectotherm populations. The loss even of a hardy fish suggests a precarious future for many less tolerant species in such eutrophic systems under current climate change predictions.
Freshwater Biology arrow_drop_down Freshwater BiologyArticle . 2010 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-2427.2009.02276.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu52 citations 52 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Freshwater Biology arrow_drop_down Freshwater BiologyArticle . 2010 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-2427.2009.02276.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Springer Science and Business Media LLC Funded by:EC | EPOCAEC| EPOCAAuthors:Piero Calosi;
Nadja Christen; Nadja Christen; C. L. McNeill; +1 AuthorsPiero Calosi
Piero Calosi in OpenAIREPiero Calosi;
Nadja Christen; Nadja Christen; C. L. McNeill; Stephen Widdicombe;Piero Calosi
Piero Calosi in OpenAIREThe effect of elevated pCO2/low pH on marine invertebrate benthic biodiversity, community structure and selected functional responses which underpin ecosystem services (such as community production and calcification) was tested in a medium-term (30 days) mesocosm experiment in June 2010. Standardised intertidal macrobenthic communities, collected (50.3567°N, 4.1277°W) using artificial substrate units (ASUs), were exposed to one of seven pH treatments (8.05, 7.8. 7.6, 7.4, 7.2, 6.8 and 6.0). Community net calcification/dissolution rates, as well as changes in biomass, community structure and diversity, were measured at the end of the experimental period. Communities showed significant changes in structure and reduced diversity in response to reduced pH: shifting from a community dominated by calcareous organisms to one dominated by non-calcareous organisms around either pH 7.2 (number of individuals and species) or pH 7.8 (biomass). These results were supported by a reduced total weight of CaCO3 structures in all major taxa at lowered pH and a switch from net calcification to net dissolution around pH 7.4 (Ωcalc = 0.78, Ωara = 0.5). Overall community soft tissue biomass did not change with pH and high mortality was observed only at pH 6.0, although molluscs and arthropods showed significant decreases in soft tissue. This study supports and refines previous findings on how elevated pCO2 can induce changes in marine biodiversity, underlined by differential vulnerability of different phyla. In addition, it shows significant elevated pCO2-/low pH-dependent changes in fundamental community functional responses underpinning changes in ecosystem services.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00227-012-2097-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu50 citations 50 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00227-012-2097-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type , Part of book or chapter of book 2012 United KingdomPublisher:John Wiley & Sons, Ltd Authors:Trathan, Phil N.;
Trathan, Phil N.
Trathan, Phil N. in OpenAIREForcada, Jaume;
Forcada, Jaume
Forcada, Jaume in OpenAIREMurphy, Eugene J.;
Murphy, Eugene J.
Murphy, Eugene J. in OpenAIREThe Southern Ocean (Figure 11.1) is a major component within the global ocean and climate system. It not only unites the Atlantic Ocean with the Indian and Pacific Oceans, but also connects low tropical latitudes with high polar latitudes. In addition, the Southern Ocean is also the origin of important teleconnections that link around the globe and across the equator into the northern hemisphere. Consequently, and given this unique global situation, there is now considerable concern that significant changes to the Southern Ocean (resulting from recent, rapid, regional warming) have occurred over the past 50 years (King, 1994; Smith et al., 1999; Levitus et al., 2000; Gille, 2002).
NERC Open Research A... arrow_drop_down NERC Open Research ArchivePart of book or chapter of book . 2012Data sources: NERC Open Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/9781444347241.ch11&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down NERC Open Research ArchivePart of book or chapter of book . 2012Data sources: NERC Open Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/9781444347241.ch11&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 United KingdomPublisher:Wiley Authors: Lynch, Heather J.; Naveen, Ron;Trathan, Philip N.;
Fagan, William F.;Trathan, Philip N.
Trathan, Philip N. in OpenAIREdoi: 10.1890/11-1588.1
pmid: 22834377
As important marine mesopredators and sensitive indicators of Antarctic ecosystem change, penguins have been a major focus of long‐term biological research in the Antarctic. However, the vast majority of such studies have been constrained by logistics and relate mostly to the temporal dynamics of individual breeding populations from which regional trends have been inferred, often without regard for the complex spatial heterogeneity of population processes and the underlying environmental conditions. Integrating diverse census data from 70 breeding sites across 31 years in a robust, hierarchical analysis, we find that trends from intensely studied populations may poorly reflect regional dynamics and confuse interpretation of environmental drivers. Results from integrated analyses confirm that Pygoscelis adeliae (Adélie Penguins) are decreasing at almost all locations on the Antarctic Peninsula. Results also resolve previously contradictory studies and unambiguously establish that P. antarctica (Chinstrap Penguins), thought to benefit from decreasing sea ice, are instead declining regionally. In contrast, another open‐water species, P. papua (Gentoo Penguin), is increasing in abundance and expanding southward. These disparate population trends accord with recent mechanistic hypotheses of biological change in the Southern Ocean and highlight limitations of the influential but oversimplified “sea ice” hypothesis. Aggregating population data at the regional scale also allows us to quantify rates of regional population change in a way not previously possible.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/11-1588.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu207 citations 207 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/11-1588.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu