- home
- Advanced Search
Filters
Clear All- Energy Research
- US
- European Marine Science
- Energy Research
- US
- European Marine Science
description Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:American Association for the Advancement of Science (AAAS) Carine F. Bourgeois; Richard A. MacKenzie; Sahadev Sharma; Rupesh K. Bhomia; Nels G. Johnson; Andre S. Rovai; Thomas A. Worthington; Ken W. Krauss; Kangkuso Analuddin; Jacob J. Bukoski; Jose Alan Castillo; Angie Elwin; Leah Glass; Tim C. Jennerjahn; Mwita M. Mangora; Cyril Marchand; Michael J. Osland; Ismaël A. Ratefinjanahary; Raghab Ray; null Severino G. Salmo III; Sigit D. Sasmito; Rempei Suwa; Pham Hong Tinh; Carl C. Trettin;pmid: 38968357
Mangroves’ ability to store carbon (C) has long been recognized, but little is known about whether planted mangroves can store C as efficiently as naturally established (i.e., intact) stands and in which time frame. Through Bayesian logistic models compiled from 40 years of data and built from 684 planted mangrove stands worldwide, we found that biomass C stock culminated at 71 to 73% to that of intact stands ~20 years after planting. Furthermore, prioritizing mixed-species planting including Rhizophora spp. would maximize C accumulation within the biomass compared to monospecific planting. Despite a 25% increase in the first 5 years following planting, no notable change was observed in the soil C stocks thereafter, which remains at a constant value of 75% to that of intact soil C stock, suggesting that planting effectively prevents further C losses due to land use change. These results have strong implications for mangrove restoration planning and serve as a baseline for future C buildup assessments.
James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2024Full-Text: https://doi.org/10.1126/sciadv.adk5430Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2024Full-Text: https://doi.org/10.1126/sciadv.adk5430Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Conference object , Review 2018Publisher:Wiley Gordon, T. A. C.; Harding, H. R.; Clever, F. K.; Davidson, I. K.; Davison, W.; Montgomery, D. W.; Weatherhead, R. C.; Windsor, F. M.; Armstrong, J. D.; Bardonnet, Agnes; Bergman, E.; Britton, J. R.; Côté, I. M.; d'Agostino, D.; Greenberg, L. A.; Harborne, A. R.; Kahilainen, K. K.; Metcalfe, N. B.; Mills, S. C.; Milner, N. J.; Mittermayer, F. H.; Montorio, Lucie; Nedelec, S. L.; Prokkola, J. M.; Rutterford, L. A.; Salvanes, A. G. V.; Simpson, S. D.; Vainikka, A.; Pinnegar, J. K.; Santos, E. M.;doi: 10.1111/jfb.13546
pmid: 29537086
Populations of fishes provide valuable services for billions of people, but face diverse and interacting threats that jeopardize their sustainability. Human population growth and intensifying resource use for food, water, energy and goods are compromising fish populations through a variety of mechanisms, including overfishing, habitat degradation and declines in water quality. The important challenges raised by these issues have been recognized and have led to considerable advances over past decades in managing and mitigating threats to fishes worldwide. In this review, we identify the major threats faced by fish populations alongside recent advances that are helping to address these issues. There are very significant efforts worldwide directed towards ensuring a sustainable future for the world's fishes and fisheries and those who rely on them. Although considerable challenges remain, by drawing attention to successful mitigation of threats to fish and fisheries we hope to provide the encouragement and direction that will allow these challenges to be overcome in the future.
CORE (RIOXX-UK Aggre... arrow_drop_down University of East Anglia digital repositoryArticle . 2018 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Newcastle University Library ePrints ServiceArticleLicense: CC BYFull-Text: https://eprints.ncl.ac.uk/261766Data sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2018License: CC BYFull-Text: https://www.ncbi.nlm.nih.gov/pubmed/29537086Data sources: Bielefeld Academic Search Engine (BASE)UEF eRepository (University of Eastern Finland)Article . 2018License: CC BYFull-Text: http://dx.doi.org/10.1111/jfb.13546Data sources: Bielefeld Academic Search Engine (BASE)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2018License: CC BYFull-Text: https://hdl.handle.net/11250/2993180Data sources: Bielefeld Academic Search Engine (BASE)Publikationer från Karlstads UniversitetArticle . 2018 . Peer-reviewedData sources: Publikationer från Karlstads UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2018 . Peer-reviewedBergen Open Research Archive - UiBArticle . 2018 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBUniversity of Bristol: Bristol ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen hybrid 57 citations 57 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE (RIOXX-UK Aggre... arrow_drop_down University of East Anglia digital repositoryArticle . 2018 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Newcastle University Library ePrints ServiceArticleLicense: CC BYFull-Text: https://eprints.ncl.ac.uk/261766Data sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2018License: CC BYFull-Text: https://www.ncbi.nlm.nih.gov/pubmed/29537086Data sources: Bielefeld Academic Search Engine (BASE)UEF eRepository (University of Eastern Finland)Article . 2018License: CC BYFull-Text: http://dx.doi.org/10.1111/jfb.13546Data sources: Bielefeld Academic Search Engine (BASE)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2018License: CC BYFull-Text: https://hdl.handle.net/11250/2993180Data sources: Bielefeld Academic Search Engine (BASE)Publikationer från Karlstads UniversitetArticle . 2018 . Peer-reviewedData sources: Publikationer från Karlstads UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2018 . Peer-reviewedBergen Open Research Archive - UiBArticle . 2018 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBUniversity of Bristol: Bristol ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2012Embargo end date: 01 Jan 2013Publisher:Springer Science and Business Media LLC Wild, Martin; Folini, Doris; Schär, Christoph; Loeb, Norman; Dutton, Ellsworth; König-Langlo, Gert;handle: 20.500.11850/58556
Climate Dynamics, 40 ISSN:0930-7575 ISSN:1432-0894
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen bronze 411 citations 411 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Book , Other literature type , Research , Report 2010Publisher:World Bank, Washington, DC Sheehy, Dennis; Sheehy, Cody; Johnson, Doug; Damiran, Daalkhaijav; Fiamengo, Marci;doi: 10.1596/27576
handle: 10986/27576
The purpose of this report is to examine development trends in the Southern Gobi Region (SGR) as they affect livestock and wildlife. It provides an overview of the environment and natural resources of the region, discusses existing relationships and interactions among humans, livestock, large herbivore wildlife, and the natural resources on which they are dependent. It then explores the impact that economic development of the region is likely to have if that development does not consider the needs of the current users. The importance of rangeland and water resources in this region is illustrated by the case study of herder interactions with the Wild Ass or Khulan. This study found that Mongolians in the SGR, especially pastoralists, are interested in wildlife and can be willing cooperators in conservation, especially if they receive some compensation for their efforts. The general conclusion reached by this report is that direct competition for resources is not now the primary issue affecting the relationship between humans, pastoral livestock and large herbivore wildlife; rather it is the lack or loss of a conservation ethic that provides protection for traditional users of natural resources, enforcement of hunting regulations, and prevents illegal sport hunting that is rapidly reducing populations of large wild herbivores in the region. Although economic development of the region will undoubtedly proceed, having in place an effective and functional natural resource management program is critical.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Conference object , Review , Other literature type 2017Publisher:Copernicus GmbH Funded by:FCT | Center for Environmental ..., EC | GEOCARBON, ANR | L-IPSL +1 projectsFCT| Center for Environmental and Sustainability Research ,EC| GEOCARBON ,ANR| L-IPSL ,EC| BACIJ. Zscheischler; J. Zscheischler; M. D. Mahecha; M. D. Mahecha; M. D. Mahecha; V. Avitabile; L. Calle; N. Carvalhais; N. Carvalhais; P. Ciais; F. Gans; N. Gruber; J. Hartmann; M. Herold; K. Ichii; K. Ichii; M. Jung; P. Landschützer; P. Landschützer; G. G. Laruelle; R. Lauerwald; R. Lauerwald; D. Papale; P. Peylin; B. Poulter; B. Poulter; D. Ray; P. Regnier; C. Rödenbeck; R. M. Roman-Cuesta; C. Schwalm; G. Tramontana; A. Tyukavina; R. Valentini; G. van der Werf; T. O. West; J. E. Wolf; M. Reichstein; M. Reichstein; M. Reichstein;handle: 1871.1/af4d36c7-47f0-4531-a7df-273cbabdea1b , 11858/00-001M-0000-002D-C008-E , 11858/00-001M-0000-002B-B08F-D , 11858/00-001M-0000-002B-B08E-F , 11858/00-001M-0000-002B-B08C-4 , 11858/00-001M-0000-002C-DE88-9 , 11858/00-001M-0000-002D-CC7C-6 , 11858/00-001M-0000-002D-CC7B-8 , 2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/259182 , 10568/111821
handle: 1871.1/af4d36c7-47f0-4531-a7df-273cbabdea1b , 11858/00-001M-0000-002D-C008-E , 11858/00-001M-0000-002B-B08F-D , 11858/00-001M-0000-002B-B08E-F , 11858/00-001M-0000-002B-B08C-4 , 11858/00-001M-0000-002C-DE88-9 , 11858/00-001M-0000-002D-CC7C-6 , 11858/00-001M-0000-002D-CC7B-8 , 2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/259182 , 10568/111821
Abstract. Understanding the global carbon (C) cycle is of crucial importance to map current and future climate dynamics relative to global environmental change. A full characterization of C cycling requires detailed information on spatiotemporal patterns of surface–atmosphere fluxes. However, relevant C cycle observations are highly variable in their coverage and reporting standards. Especially problematic is the lack of integration of the carbon dioxide (CO2) exchange of the ocean, inland freshwaters and the land surface with the atmosphere. Here we adopt a data-driven approach to synthesize a wide range of observation-based spatially explicit surface–atmosphere CO2 fluxes from 2001 to 2010, to identify the state of today's observational opportunities and data limitations. The considered fluxes include net exchange of open oceans, continental shelves, estuaries, rivers, and lakes, as well as CO2 fluxes related to net ecosystem productivity, fire emissions, loss of tropical aboveground C, harvested wood and crops, as well as fossil fuel and cement emissions. Spatially explicit CO2 fluxes are obtained through geostatistical and/or remote-sensing-based upscaling, thereby minimizing biophysical or biogeochemical assumptions encoded in process-based models. We estimate a bottom-up net C exchange (NCE) between the surface (land, ocean, and coastal areas) and the atmosphere. Though we provide also global estimates, the primary goal of this study is to identify key uncertainties and observational shortcomings that need to be prioritized in the expansion of in situ observatories. Uncertainties for NCE and its components are derived using resampling. In many regions, our NCE estimates agree well with independent estimates from other sources such as process-based models and atmospheric inversions. This holds for Europe (mean ± 1 SD: 0.8 ± 0.1 PgC yr−1, positive numbers are sources to the atmosphere), Russia (0.1 ± 0.4 PgC yr−1), East Asia (1.6 ± 0.3 PgC yr−1), South Asia (0.3 ± 0.1 PgC yr−1), Australia (0.2 ± 0.3 PgC yr−1), and most of the Ocean regions. Our NCE estimates give a likely too large CO2 sink in tropical areas such as the Amazon, Congo, and Indonesia. Overall, and because of the overestimated CO2 uptake in tropical lands, our global bottom-up NCE amounts to a net sink of −5.4 ± 2.0 PgC yr−1. By contrast, the accurately measured mean atmospheric growth rate of CO2 over 2001–2010 indicates that the true value of NCE is a net CO2 source of 4.3 ± 0.1 PgC yr−1. This mismatch of nearly 10 PgC yr−1 highlights observational gaps and limitations of data-driven models in tropical lands, but also in North America. Our uncertainty assessment provides the basis for setting priority regions where to increase carbon observations in the future. High on the priority list are tropical land regions, which suffer from a lack of in situ observations. Second, extensive pCO2 data are missing in the Southern Ocean. Third, we lack observations that could enable seasonal estimates of shelf, estuary, and inland water–atmosphere C exchange. Our consistent derivation of data uncertainties could serve as prior knowledge in multicriteria optimization such as the Carbon Cycle Data Assimilation System (CCDAS) and atmospheric inversions, without over- or under-stating bottom-up data credibility. In the future, NCE estimates of carbon sinks could be aggregated at national scale to compare with the official national inventories of CO2 fluxes in the land use, land use change, and forestry sector, upon which future emission reductions are proposed.
Research@WUR arrow_drop_down Research@WURArticle . 2017License: CC BYFull-Text: https://edepot.wur.nl/421467Data sources: Research@WURCGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/10568/111821Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/bg-14-...Article . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefGFZ German Research Centre for GeosciencesArticle . 2017Data sources: GFZ German Research Centre for GeosciencesArchiMer - Institutional Archive of IfremerOther literature type . 2017Data sources: ArchiMer - Institutional Archive of IfremerUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Université Jean Monnet – Saint-Etienne: HALArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)https://hdl.handle.net/1871.1/...Review . 2017http://dx.doi.org/10.5194/bg-1...Article . 2017 . Peer-reviewedData sources: European Union Open Data PortalGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 63 citations 63 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Research@WUR arrow_drop_down Research@WURArticle . 2017License: CC BYFull-Text: https://edepot.wur.nl/421467Data sources: Research@WURCGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/10568/111821Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/bg-14-...Article . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefGFZ German Research Centre for GeosciencesArticle . 2017Data sources: GFZ German Research Centre for GeosciencesArchiMer - Institutional Archive of IfremerOther literature type . 2017Data sources: ArchiMer - Institutional Archive of IfremerUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Université Jean Monnet – Saint-Etienne: HALArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)https://hdl.handle.net/1871.1/...Review . 2017http://dx.doi.org/10.5194/bg-1...Article . 2017 . Peer-reviewedData sources: European Union Open Data PortalGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2022Publisher:American Association for the Advancement of Science (AAAS) Luisa Fontoura; Stephanie D’Agata; Majambo Gamoyo; Diego R. Barneche; Osmar J. Luiz; Elizabeth M. P. Madin; Linda Eggertsen; Joseph M. Maina;pmid: 35050678
The global decline of coral reefs has led to calls for strategies that reconcile biodiversity conservation and fisheries benefits. Still, considerable gaps in our understanding of the spatial ecology of ecosystem services remain. We combined spatial information on larval dispersal networks and estimates of human pressure to test the importance of connectivity for ecosystem service provision. We found that reefs receiving larvae from highly connected dispersal corridors were associated with high fish species richness. Generally, larval “sinks” contained twice as much fish biomass as “sources” and exhibited greater resilience to human pressure when protected. Despite their potential to support biodiversity persistence and sustainable fisheries, up to 70% of important dispersal corridors, sinks, and source reefs remain unprotected, emphasizing the need for increased protection of networks of well-connected reefs.
HAL-IRD arrow_drop_down Université de Bretagne Occidentale: HALArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.69 citations 69 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert HAL-IRD arrow_drop_down Université de Bretagne Occidentale: HALArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2020Publisher:Elsevier BV Authors: Lion S.; Vlaskos I.; Taccani R.;handle: 11368/2959317
Reducing emissions from internal combustion engines is becoming one of the most important tasks for engine manufactures and transport regulatory organizations. In particular, the marine transportation sector is one of the most polluting, due to the intense maritime activity and the use of low-quality fuels, burned in Heavy Duty Diesel Engines, for ship propulsion and auxiliary power generation. In order to reduce the global shipping environmental impact, the IMO (International Maritime Organization) is restricting NOx and SOx ships’ emissions through the introduction of the IMO Tier III legislation, which requires to consider a wide spectrum of emissions reduction technologies and strategies, which are going to have an impact on the engine performance and fuel consumption. In this work, the main solutions being currently developed or adopted for low and medium speed Diesel engines have been reviewed from a qualitative, and sometimes quantitative, point of view, but, in comparison to previous literature, focusing more on their potential with respect to possible waste heat recovery systems utilization, such as, in particular, steam Rankine cycles and Organic Rankine Cycles (ORC). Indeed, even though many of the considered emissions mitigation technologies lead to a certain amount of penalty in fuel economy, the use of waste heat recovery systems to recover wasted engines energy could become interesting in order to develop more efficient but, at the same time, cleaner engines.
Archivio istituziona... arrow_drop_down Energy Conversion and ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen 184 citations 184 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down Energy Conversion and ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type , Preprint 2020Publisher:Cold Spring Harbor Laboratory Funded by:NSF | NSF-BSF: Live Cellular Im...NSF| NSF-BSF: Live Cellular Immune Mechanisms In Corals Under Heat StressAuthors: Margaret W. Miller; Nikki Traylor-Knowles; Xaymara M. Serrano; Xaymara M. Serrano; +4 AuthorsMargaret W. Miller; Nikki Traylor-Knowles; Xaymara M. Serrano; Xaymara M. Serrano; Benjamin Young; Dana E. Williams; Dana E. Williams; Stephanie M. Rosales;AbstractCoral disease outbreaks are expected to increase in prevalence, frequency and severity due to climate change and other anthropogenic stressors. This is especially worrying for the Caribbean branchingAcropora palmatawhich has already seen an 80% decrease in its coral cover, with this primarily due to disease. Despite the importance of this species, there has yet to be a characterization of its transcriptomic response to disease exposure. In this study we provide the first transcriptomic analysis of 12A. palmatagenotypes, and their symbiont Symbiodiniaceae, exposed to disease in 2016 and 2017. Year was the primary driver of sample variance forA. palmataand the Symbiodiniaceae. Lower expression of ribosomal genes in the coral, and higher expression of transmembrane ion transport genes in the Symbiodiniaceae indicate that the increased virulence in 2017 may have been due to a dysbiosis between the coral and Symbiodiniaceae. We also identified a conserved suite of innate immune genes responding to the disease challenge that was activated in both years. This included genes from the Toll-like receptor and lectin pathways, and antimicrobial peptides. Co-expression analysis identified a module positively correlated to disease exposure rich in innate immune genes, with D-amino acid oxidase, a gene implicated in phagocytosis and microbiome homeostasis, as the hub gene. The role of D-amino acid oxidase in coral immunity has not been characterized but holds potential as an important enzyme for responding to disease. Our results indicate thatA. palmatamounts a similar immune response to disease exposure as other coral species previously studied, but with unique features that may be critical to the survival of this keystone Caribbean species.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Part of book or chapter of book 2008Publisher:IEEE Michael P. Meredith; C. Le Quéré; C. Turley; R. Pingree; Richard Washington; Nathaniel L. Bindoff; R. Arthurton; J. Flueckiger; D. Iglesias-Rodriguez; John A. Church; David P. Stevens; W. Berger; F. MacKenzie; Reto Knutti; Meike Vogt; Gill Malin; U. Bathmann; M. Kendall; Douglas G. Martinson; A. Tudhope; M. Le Tissier; Helge Drange; I. Salter; R. Wood; D. de Gusmao; M. Barange; W. Maslowski; R. Hopcroft; G. Beaugrand; E. Lewis-Brown; Steve Rintoul; A. Andersson; C. Mauritzen; J. Raven; J.C. Gascard; C. Wallace; Michael Sparrow; M. Edwards; P. Treguer; A.C. Fischer; Zhaomin Wang; Stephen Dye; Richard J. Matear; N. Bates; Sabine Kasten; T. Furevik; Gavin A. Schmidt; M. Visbeck; H. Cattle; C. Paull; K. Shimada; P. Chisholm; P.C. Reid;The oceans play a key role in climate regulation especially in part buffering (neutralising) the effects of increasing levels of greenhouse gases in the atmosphere and rising global temperatures. This chapter examines how the regulatory processes performed by the oceans alter as a response to climate change and assesses the extent to which positive feedbacks from the ocean may exacerbate climate change. There is clear evidence for rapid change in the oceans. As the main heat store for the world there has been an accelerating change in sea temperatures over the last few decades, which has contributed to rising sea-level. The oceans are also the main store of carbon dioxide (CO2), and are estimated to have taken up approximately 40% of anthropogenic-sourced CO2 from the atmosphere since the beginning of the industrial revolution. A proportion of the carbon uptake is exported via the four ocean 'carbon pumps' (Solubility, Biological, Continental Shelf and Carbonate Counter) to the deep ocean reservoir. Increases in sea temperature and changing planktonic systems and ocean currents may lead to a reduction in the uptake of CO2 by the ocean; some evidence suggests a suppression of parts of the marine carbon sink is already underway. While the oceans have buffered climate change through the uptake of CO2 produced by fossil fuel burning this has already had an impact on ocean chemistry through ocean acidification and will continue to do so. Feedbacks to climate change from acidification may result from expected impacts on marine organisms (especially corals and calcareous plankton), ecosystems and biogeochemical cycles. The polar regions of the world are showing the most rapid responses to climate change. As a result of a strong ice-ocean influence, small changes in temperature, salinity and ice cover may trigger large and sudden changes in regional climate with potential downstream feedbacks to the climate of the rest of the world. A warming Arctic Ocean may lead to further releases of the potent greenhouse gas methane from hydrates and permafrost. The Southern Ocean plays a critical role in driving, modifying and regulating global climate change via the carbon cycle and through its impact on adjacent Antarctica. The Antarctic Peninsula has shown some of the most rapid rises in atmospheric and oceanic temperature in the world, with an associated retreat of the majority of glaciers. Parts of the West Antarctic ice sheet are deflating rapidly, very likely due to a change in the flux of oceanic heat to the undersides of the floating ice shelves. The final section on modelling feedbacks from the ocean to climate change identifies limitations and priorities for model development and associated observations. Considering the importance of the oceans to climate change and our limited understanding of climate-related ocean processes, our ability to measure the changes that are taking place are conspicuously inadequate. The chapter highlights the need for a comprehensive, adequately funded and globally extensive ocean observing system to be implemented and sustained as a high priority. Unless feedbacks from the oceans to climate change are adequately included in climate change models, it is possible that the mitigation actions needed to stabilise CO2 and limit temperature rise over the next century will be underestimated.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2009License: CC BYFull-Text: https://escholarship.org/uc/item/0066b5zhData sources: Bielefeld Academic Search Engine (BASE)https://escholarship.org/conte...Part of book or chapter of bookLicense: CC BYData sources: UnpayWalleScholarship - University of CaliforniaArticle . 2009Data sources: eScholarship - University of CaliforniaElectronic Publication Information CenterArticle . 2009Data sources: Electronic Publication Information CenterNERC Open Research ArchivePart of book or chapter of book . 2009Data sources: NERC Open Research Archivehttps://doi.org/10.1016/s0065-...Part of book or chapter of book . 2009 . Peer-reviewedData sources: CrossrefUniversity of Southampton: e-Prints SotonPart of book or chapter of book . 2009Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen 113 citations 113 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2009License: CC BYFull-Text: https://escholarship.org/uc/item/0066b5zhData sources: Bielefeld Academic Search Engine (BASE)https://escholarship.org/conte...Part of book or chapter of bookLicense: CC BYData sources: UnpayWalleScholarship - University of CaliforniaArticle . 2009Data sources: eScholarship - University of CaliforniaElectronic Publication Information CenterArticle . 2009Data sources: Electronic Publication Information CenterNERC Open Research ArchivePart of book or chapter of book . 2009Data sources: NERC Open Research Archivehttps://doi.org/10.1016/s0065-...Part of book or chapter of book . 2009 . Peer-reviewedData sources: CrossrefUniversity of Southampton: e-Prints SotonPart of book or chapter of book . 2009Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2018Publisher:The Royal Society Funded by:NSF | COLLABORATIVE RESEARCH: E..., EC | PALEOGENIE, UKRI | SCORE: Supply Chain Optim...NSF| COLLABORATIVE RESEARCH: EVALUATING DEEP-SEA VENTILATION AND THE GLOBAL CARBON CYCLE DURING EARLY PALEOGENE HYPERTHERMALS ,EC| PALEOGENIE ,UKRI| SCORE: Supply Chain Optimisation for demand Response EfficiencyDaniela N. Schmidt; Ellen Thomas; Elisabeth Authier; David Saunders; Andy Ridgwell;pmid: 30177568
pmc: PMC6127389
Climate change is predicted to alter temperature, carbonate chemistry and oxygen availability in the oceans, which will affect individuals, populations and ecosystems. We use the fossil record of benthic foraminifers to assess developmental impacts in response to environmental changes during the Palaeocene–Eocene Thermal Maximum (PETM). Using an unprecedented number of µ-computed tomography scans, we determine the size of the proloculus (first chamber), the number of chambers and the final size of two benthic foraminiferal species which survived the extinction at sites 690 (Atlantic sector, Southern Ocean, palaeodepth 1900 m), 1210 (central equatorial Pacific, palaeodepth 2100 m) and 1135 (Indian Ocean sector, Southern Ocean, palaeodepth 600–1000 m). The population at the shallowest site, 1135, does not show a clear response to the PETM, whereas those at the other sites record reductions in diameter or proloculus size. Temperature was similar at all sites, thus it is not likely to be the reason for differences between sites. At site 1210, small size coincided with higher chamber numbers during the peak event, and may have been caused by a combination of low carbonate ion concentrations and low food supply. Dwarfing at site 690 occurred at lower chamber numbers, and may have been caused by decreasing carbonate saturation at sufficient food levels to reproduce. Proloculus size varied strongly between sites and through time, suggesting a large influence of environment on both microspheric and megalospheric forms without clear bimodality. The effect of the environmental changes during the PETM was more pronounced at deeper sites, possibly implicating carbonate saturation. This article is part of a discussion meeting issue ‘Hyperthermals: rapid and extreme global warming in our geological past’.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2018License: CC BYFull-Text: https://escholarship.org/uc/item/6zn9r227Data sources: Bielefeld Academic Search Engine (BASE)Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering SciencesArticleLicense: CC BYData sources: UnpayWalleScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of CaliforniaUniversity of Bristol: Bristol ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering SciencesArticle . 2018 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: Crossrefhttp://dx.doi.org/10.1098/rsta...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen hybrid 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2018License: CC BYFull-Text: https://escholarship.org/uc/item/6zn9r227Data sources: Bielefeld Academic Search Engine (BASE)Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering SciencesArticleLicense: CC BYData sources: UnpayWalleScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of CaliforniaUniversity of Bristol: Bristol ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering SciencesArticle . 2018 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: Crossrefhttp://dx.doi.org/10.1098/rsta...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
description Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:American Association for the Advancement of Science (AAAS) Carine F. Bourgeois; Richard A. MacKenzie; Sahadev Sharma; Rupesh K. Bhomia; Nels G. Johnson; Andre S. Rovai; Thomas A. Worthington; Ken W. Krauss; Kangkuso Analuddin; Jacob J. Bukoski; Jose Alan Castillo; Angie Elwin; Leah Glass; Tim C. Jennerjahn; Mwita M. Mangora; Cyril Marchand; Michael J. Osland; Ismaël A. Ratefinjanahary; Raghab Ray; null Severino G. Salmo III; Sigit D. Sasmito; Rempei Suwa; Pham Hong Tinh; Carl C. Trettin;pmid: 38968357
Mangroves’ ability to store carbon (C) has long been recognized, but little is known about whether planted mangroves can store C as efficiently as naturally established (i.e., intact) stands and in which time frame. Through Bayesian logistic models compiled from 40 years of data and built from 684 planted mangrove stands worldwide, we found that biomass C stock culminated at 71 to 73% to that of intact stands ~20 years after planting. Furthermore, prioritizing mixed-species planting including Rhizophora spp. would maximize C accumulation within the biomass compared to monospecific planting. Despite a 25% increase in the first 5 years following planting, no notable change was observed in the soil C stocks thereafter, which remains at a constant value of 75% to that of intact soil C stock, suggesting that planting effectively prevents further C losses due to land use change. These results have strong implications for mangrove restoration planning and serve as a baseline for future C buildup assessments.
James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2024Full-Text: https://doi.org/10.1126/sciadv.adk5430Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2024Full-Text: https://doi.org/10.1126/sciadv.adk5430Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Conference object , Review 2018Publisher:Wiley Gordon, T. A. C.; Harding, H. R.; Clever, F. K.; Davidson, I. K.; Davison, W.; Montgomery, D. W.; Weatherhead, R. C.; Windsor, F. M.; Armstrong, J. D.; Bardonnet, Agnes; Bergman, E.; Britton, J. R.; Côté, I. M.; d'Agostino, D.; Greenberg, L. A.; Harborne, A. R.; Kahilainen, K. K.; Metcalfe, N. B.; Mills, S. C.; Milner, N. J.; Mittermayer, F. H.; Montorio, Lucie; Nedelec, S. L.; Prokkola, J. M.; Rutterford, L. A.; Salvanes, A. G. V.; Simpson, S. D.; Vainikka, A.; Pinnegar, J. K.; Santos, E. M.;doi: 10.1111/jfb.13546
pmid: 29537086
Populations of fishes provide valuable services for billions of people, but face diverse and interacting threats that jeopardize their sustainability. Human population growth and intensifying resource use for food, water, energy and goods are compromising fish populations through a variety of mechanisms, including overfishing, habitat degradation and declines in water quality. The important challenges raised by these issues have been recognized and have led to considerable advances over past decades in managing and mitigating threats to fishes worldwide. In this review, we identify the major threats faced by fish populations alongside recent advances that are helping to address these issues. There are very significant efforts worldwide directed towards ensuring a sustainable future for the world's fishes and fisheries and those who rely on them. Although considerable challenges remain, by drawing attention to successful mitigation of threats to fish and fisheries we hope to provide the encouragement and direction that will allow these challenges to be overcome in the future.
CORE (RIOXX-UK Aggre... arrow_drop_down University of East Anglia digital repositoryArticle . 2018 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Newcastle University Library ePrints ServiceArticleLicense: CC BYFull-Text: https://eprints.ncl.ac.uk/261766Data sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2018License: CC BYFull-Text: https://www.ncbi.nlm.nih.gov/pubmed/29537086Data sources: Bielefeld Academic Search Engine (BASE)UEF eRepository (University of Eastern Finland)Article . 2018License: CC BYFull-Text: http://dx.doi.org/10.1111/jfb.13546Data sources: Bielefeld Academic Search Engine (BASE)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2018License: CC BYFull-Text: https://hdl.handle.net/11250/2993180Data sources: Bielefeld Academic Search Engine (BASE)Publikationer från Karlstads UniversitetArticle . 2018 . Peer-reviewedData sources: Publikationer från Karlstads UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2018 . Peer-reviewedBergen Open Research Archive - UiBArticle . 2018 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBUniversity of Bristol: Bristol ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen hybrid 57 citations 57 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE (RIOXX-UK Aggre... arrow_drop_down University of East Anglia digital repositoryArticle . 2018 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Newcastle University Library ePrints ServiceArticleLicense: CC BYFull-Text: https://eprints.ncl.ac.uk/261766Data sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2018License: CC BYFull-Text: https://www.ncbi.nlm.nih.gov/pubmed/29537086Data sources: Bielefeld Academic Search Engine (BASE)UEF eRepository (University of Eastern Finland)Article . 2018License: CC BYFull-Text: http://dx.doi.org/10.1111/jfb.13546Data sources: Bielefeld Academic Search Engine (BASE)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2018License: CC BYFull-Text: https://hdl.handle.net/11250/2993180Data sources: Bielefeld Academic Search Engine (BASE)Publikationer från Karlstads UniversitetArticle . 2018 . Peer-reviewedData sources: Publikationer från Karlstads UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2018 . Peer-reviewedBergen Open Research Archive - UiBArticle . 2018 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBUniversity of Bristol: Bristol ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2012Embargo end date: 01 Jan 2013Publisher:Springer Science and Business Media LLC Wild, Martin; Folini, Doris; Schär, Christoph; Loeb, Norman; Dutton, Ellsworth; König-Langlo, Gert;handle: 20.500.11850/58556
Climate Dynamics, 40 ISSN:0930-7575 ISSN:1432-0894
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen bronze 411 citations 411 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Book , Other literature type , Research , Report 2010Publisher:World Bank, Washington, DC Sheehy, Dennis; Sheehy, Cody; Johnson, Doug; Damiran, Daalkhaijav; Fiamengo, Marci;doi: 10.1596/27576
handle: 10986/27576
The purpose of this report is to examine development trends in the Southern Gobi Region (SGR) as they affect livestock and wildlife. It provides an overview of the environment and natural resources of the region, discusses existing relationships and interactions among humans, livestock, large herbivore wildlife, and the natural resources on which they are dependent. It then explores the impact that economic development of the region is likely to have if that development does not consider the needs of the current users. The importance of rangeland and water resources in this region is illustrated by the case study of herder interactions with the Wild Ass or Khulan. This study found that Mongolians in the SGR, especially pastoralists, are interested in wildlife and can be willing cooperators in conservation, especially if they receive some compensation for their efforts. The general conclusion reached by this report is that direct competition for resources is not now the primary issue affecting the relationship between humans, pastoral livestock and large herbivore wildlife; rather it is the lack or loss of a conservation ethic that provides protection for traditional users of natural resources, enforcement of hunting regulations, and prevents illegal sport hunting that is rapidly reducing populations of large wild herbivores in the region. Although economic development of the region will undoubtedly proceed, having in place an effective and functional natural resource management program is critical.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Conference object , Review , Other literature type 2017Publisher:Copernicus GmbH Funded by:FCT | Center for Environmental ..., EC | GEOCARBON, ANR | L-IPSL +1 projectsFCT| Center for Environmental and Sustainability Research ,EC| GEOCARBON ,ANR| L-IPSL ,EC| BACIJ. Zscheischler; J. Zscheischler; M. D. Mahecha; M. D. Mahecha; M. D. Mahecha; V. Avitabile; L. Calle; N. Carvalhais; N. Carvalhais; P. Ciais; F. Gans; N. Gruber; J. Hartmann; M. Herold; K. Ichii; K. Ichii; M. Jung; P. Landschützer; P. Landschützer; G. G. Laruelle; R. Lauerwald; R. Lauerwald; D. Papale; P. Peylin; B. Poulter; B. Poulter; D. Ray; P. Regnier; C. Rödenbeck; R. M. Roman-Cuesta; C. Schwalm; G. Tramontana; A. Tyukavina; R. Valentini; G. van der Werf; T. O. West; J. E. Wolf; M. Reichstein; M. Reichstein; M. Reichstein;handle: 1871.1/af4d36c7-47f0-4531-a7df-273cbabdea1b , 11858/00-001M-0000-002D-C008-E , 11858/00-001M-0000-002B-B08F-D , 11858/00-001M-0000-002B-B08E-F , 11858/00-001M-0000-002B-B08C-4 , 11858/00-001M-0000-002C-DE88-9 , 11858/00-001M-0000-002D-CC7C-6 , 11858/00-001M-0000-002D-CC7B-8 , 2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/259182 , 10568/111821
handle: 1871.1/af4d36c7-47f0-4531-a7df-273cbabdea1b , 11858/00-001M-0000-002D-C008-E , 11858/00-001M-0000-002B-B08F-D , 11858/00-001M-0000-002B-B08E-F , 11858/00-001M-0000-002B-B08C-4 , 11858/00-001M-0000-002C-DE88-9 , 11858/00-001M-0000-002D-CC7C-6 , 11858/00-001M-0000-002D-CC7B-8 , 2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/259182 , 10568/111821
Abstract. Understanding the global carbon (C) cycle is of crucial importance to map current and future climate dynamics relative to global environmental change. A full characterization of C cycling requires detailed information on spatiotemporal patterns of surface–atmosphere fluxes. However, relevant C cycle observations are highly variable in their coverage and reporting standards. Especially problematic is the lack of integration of the carbon dioxide (CO2) exchange of the ocean, inland freshwaters and the land surface with the atmosphere. Here we adopt a data-driven approach to synthesize a wide range of observation-based spatially explicit surface–atmosphere CO2 fluxes from 2001 to 2010, to identify the state of today's observational opportunities and data limitations. The considered fluxes include net exchange of open oceans, continental shelves, estuaries, rivers, and lakes, as well as CO2 fluxes related to net ecosystem productivity, fire emissions, loss of tropical aboveground C, harvested wood and crops, as well as fossil fuel and cement emissions. Spatially explicit CO2 fluxes are obtained through geostatistical and/or remote-sensing-based upscaling, thereby minimizing biophysical or biogeochemical assumptions encoded in process-based models. We estimate a bottom-up net C exchange (NCE) between the surface (land, ocean, and coastal areas) and the atmosphere. Though we provide also global estimates, the primary goal of this study is to identify key uncertainties and observational shortcomings that need to be prioritized in the expansion of in situ observatories. Uncertainties for NCE and its components are derived using resampling. In many regions, our NCE estimates agree well with independent estimates from other sources such as process-based models and atmospheric inversions. This holds for Europe (mean ± 1 SD: 0.8 ± 0.1 PgC yr−1, positive numbers are sources to the atmosphere), Russia (0.1 ± 0.4 PgC yr−1), East Asia (1.6 ± 0.3 PgC yr−1), South Asia (0.3 ± 0.1 PgC yr−1), Australia (0.2 ± 0.3 PgC yr−1), and most of the Ocean regions. Our NCE estimates give a likely too large CO2 sink in tropical areas such as the Amazon, Congo, and Indonesia. Overall, and because of the overestimated CO2 uptake in tropical lands, our global bottom-up NCE amounts to a net sink of −5.4 ± 2.0 PgC yr−1. By contrast, the accurately measured mean atmospheric growth rate of CO2 over 2001–2010 indicates that the true value of NCE is a net CO2 source of 4.3 ± 0.1 PgC yr−1. This mismatch of nearly 10 PgC yr−1 highlights observational gaps and limitations of data-driven models in tropical lands, but also in North America. Our uncertainty assessment provides the basis for setting priority regions where to increase carbon observations in the future. High on the priority list are tropical land regions, which suffer from a lack of in situ observations. Second, extensive pCO2 data are missing in the Southern Ocean. Third, we lack observations that could enable seasonal estimates of shelf, estuary, and inland water–atmosphere C exchange. Our consistent derivation of data uncertainties could serve as prior knowledge in multicriteria optimization such as the Carbon Cycle Data Assimilation System (CCDAS) and atmospheric inversions, without over- or under-stating bottom-up data credibility. In the future, NCE estimates of carbon sinks could be aggregated at national scale to compare with the official national inventories of CO2 fluxes in the land use, land use change, and forestry sector, upon which future emission reductions are proposed.
Research@WUR arrow_drop_down Research@WURArticle . 2017License: CC BYFull-Text: https://edepot.wur.nl/421467Data sources: Research@WURCGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/10568/111821Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/bg-14-...Article . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefGFZ German Research Centre for GeosciencesArticle . 2017Data sources: GFZ German Research Centre for GeosciencesArchiMer - Institutional Archive of IfremerOther literature type . 2017Data sources: ArchiMer - Institutional Archive of IfremerUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Université Jean Monnet – Saint-Etienne: HALArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)https://hdl.handle.net/1871.1/...Review . 2017http://dx.doi.org/10.5194/bg-1...Article . 2017 . Peer-reviewedData sources: European Union Open Data PortalGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 63 citations 63 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Research@WUR arrow_drop_down Research@WURArticle . 2017License: CC BYFull-Text: https://edepot.wur.nl/421467Data sources: Research@WURCGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/10568/111821Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/bg-14-...Article . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefGFZ German Research Centre for GeosciencesArticle . 2017Data sources: GFZ German Research Centre for GeosciencesArchiMer - Institutional Archive of IfremerOther literature type . 2017Data sources: ArchiMer - Institutional Archive of IfremerUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Université Jean Monnet – Saint-Etienne: HALArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)https://hdl.handle.net/1871.1/...Review . 2017http://dx.doi.org/10.5194/bg-1...Article . 2017 . Peer-reviewedData sources: European Union Open Data PortalGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2022Publisher:American Association for the Advancement of Science (AAAS) Luisa Fontoura; Stephanie D’Agata; Majambo Gamoyo; Diego R. Barneche; Osmar J. Luiz; Elizabeth M. P. Madin; Linda Eggertsen; Joseph M. Maina;pmid: 35050678
The global decline of coral reefs has led to calls for strategies that reconcile biodiversity conservation and fisheries benefits. Still, considerable gaps in our understanding of the spatial ecology of ecosystem services remain. We combined spatial information on larval dispersal networks and estimates of human pressure to test the importance of connectivity for ecosystem service provision. We found that reefs receiving larvae from highly connected dispersal corridors were associated with high fish species richness. Generally, larval “sinks” contained twice as much fish biomass as “sources” and exhibited greater resilience to human pressure when protected. Despite their potential to support biodiversity persistence and sustainable fisheries, up to 70% of important dispersal corridors, sinks, and source reefs remain unprotected, emphasizing the need for increased protection of networks of well-connected reefs.
HAL-IRD arrow_drop_down Université de Bretagne Occidentale: HALArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.69 citations 69 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert HAL-IRD arrow_drop_down Université de Bretagne Occidentale: HALArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2020Publisher:Elsevier BV Authors: Lion S.; Vlaskos I.; Taccani R.;handle: 11368/2959317
Reducing emissions from internal combustion engines is becoming one of the most important tasks for engine manufactures and transport regulatory organizations. In particular, the marine transportation sector is one of the most polluting, due to the intense maritime activity and the use of low-quality fuels, burned in Heavy Duty Diesel Engines, for ship propulsion and auxiliary power generation. In order to reduce the global shipping environmental impact, the IMO (International Maritime Organization) is restricting NOx and SOx ships’ emissions through the introduction of the IMO Tier III legislation, which requires to consider a wide spectrum of emissions reduction technologies and strategies, which are going to have an impact on the engine performance and fuel consumption. In this work, the main solutions being currently developed or adopted for low and medium speed Diesel engines have been reviewed from a qualitative, and sometimes quantitative, point of view, but, in comparison to previous literature, focusing more on their potential with respect to possible waste heat recovery systems utilization, such as, in particular, steam Rankine cycles and Organic Rankine Cycles (ORC). Indeed, even though many of the considered emissions mitigation technologies lead to a certain amount of penalty in fuel economy, the use of waste heat recovery systems to recover wasted engines energy could become interesting in order to develop more efficient but, at the same time, cleaner engines.
Archivio istituziona... arrow_drop_down Energy Conversion and ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen 184 citations 184 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down Energy Conversion and ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type , Preprint 2020Publisher:Cold Spring Harbor Laboratory Funded by:NSF | NSF-BSF: Live Cellular Im...NSF| NSF-BSF: Live Cellular Immune Mechanisms In Corals Under Heat StressAuthors: Margaret W. Miller; Nikki Traylor-Knowles; Xaymara M. Serrano; Xaymara M. Serrano; +4 AuthorsMargaret W. Miller; Nikki Traylor-Knowles; Xaymara M. Serrano; Xaymara M. Serrano; Benjamin Young; Dana E. Williams; Dana E. Williams; Stephanie M. Rosales;AbstractCoral disease outbreaks are expected to increase in prevalence, frequency and severity due to climate change and other anthropogenic stressors. This is especially worrying for the Caribbean branchingAcropora palmatawhich has already seen an 80% decrease in its coral cover, with this primarily due to disease. Despite the importance of this species, there has yet to be a characterization of its transcriptomic response to disease exposure. In this study we provide the first transcriptomic analysis of 12A. palmatagenotypes, and their symbiont Symbiodiniaceae, exposed to disease in 2016 and 2017. Year was the primary driver of sample variance forA. palmataand the Symbiodiniaceae. Lower expression of ribosomal genes in the coral, and higher expression of transmembrane ion transport genes in the Symbiodiniaceae indicate that the increased virulence in 2017 may have been due to a dysbiosis between the coral and Symbiodiniaceae. We also identified a conserved suite of innate immune genes responding to the disease challenge that was activated in both years. This included genes from the Toll-like receptor and lectin pathways, and antimicrobial peptides. Co-expression analysis identified a module positively correlated to disease exposure rich in innate immune genes, with D-amino acid oxidase, a gene implicated in phagocytosis and microbiome homeostasis, as the hub gene. The role of D-amino acid oxidase in coral immunity has not been characterized but holds potential as an important enzyme for responding to disease. Our results indicate thatA. palmatamounts a similar immune response to disease exposure as other coral species previously studied, but with unique features that may be critical to the survival of this keystone Caribbean species.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Part of book or chapter of book 2008Publisher:IEEE Michael P. Meredith; C. Le Quéré; C. Turley; R. Pingree; Richard Washington; Nathaniel L. Bindoff; R. Arthurton; J. Flueckiger; D. Iglesias-Rodriguez; John A. Church; David P. Stevens; W. Berger; F. MacKenzie; Reto Knutti; Meike Vogt; Gill Malin; U. Bathmann; M. Kendall; Douglas G. Martinson; A. Tudhope; M. Le Tissier; Helge Drange; I. Salter; R. Wood; D. de Gusmao; M. Barange; W. Maslowski; R. Hopcroft; G. Beaugrand; E. Lewis-Brown; Steve Rintoul; A. Andersson; C. Mauritzen; J. Raven; J.C. Gascard; C. Wallace; Michael Sparrow; M. Edwards; P. Treguer; A.C. Fischer; Zhaomin Wang; Stephen Dye; Richard J. Matear; N. Bates; Sabine Kasten; T. Furevik; Gavin A. Schmidt; M. Visbeck; H. Cattle; C. Paull; K. Shimada; P. Chisholm; P.C. Reid;The oceans play a key role in climate regulation especially in part buffering (neutralising) the effects of increasing levels of greenhouse gases in the atmosphere and rising global temperatures. This chapter examines how the regulatory processes performed by the oceans alter as a response to climate change and assesses the extent to which positive feedbacks from the ocean may exacerbate climate change. There is clear evidence for rapid change in the oceans. As the main heat store for the world there has been an accelerating change in sea temperatures over the last few decades, which has contributed to rising sea-level. The oceans are also the main store of carbon dioxide (CO2), and are estimated to have taken up approximately 40% of anthropogenic-sourced CO2 from the atmosphere since the beginning of the industrial revolution. A proportion of the carbon uptake is exported via the four ocean 'carbon pumps' (Solubility, Biological, Continental Shelf and Carbonate Counter) to the deep ocean reservoir. Increases in sea temperature and changing planktonic systems and ocean currents may lead to a reduction in the uptake of CO2 by the ocean; some evidence suggests a suppression of parts of the marine carbon sink is already underway. While the oceans have buffered climate change through the uptake of CO2 produced by fossil fuel burning this has already had an impact on ocean chemistry through ocean acidification and will continue to do so. Feedbacks to climate change from acidification may result from expected impacts on marine organisms (especially corals and calcareous plankton), ecosystems and biogeochemical cycles. The polar regions of the world are showing the most rapid responses to climate change. As a result of a strong ice-ocean influence, small changes in temperature, salinity and ice cover may trigger large and sudden changes in regional climate with potential downstream feedbacks to the climate of the rest of the world. A warming Arctic Ocean may lead to further releases of the potent greenhouse gas methane from hydrates and permafrost. The Southern Ocean plays a critical role in driving, modifying and regulating global climate change via the carbon cycle and through its impact on adjacent Antarctica. The Antarctic Peninsula has shown some of the most rapid rises in atmospheric and oceanic temperature in the world, with an associated retreat of the majority of glaciers. Parts of the West Antarctic ice sheet are deflating rapidly, very likely due to a change in the flux of oceanic heat to the undersides of the floating ice shelves. The final section on modelling feedbacks from the ocean to climate change identifies limitations and priorities for model development and associated observations. Considering the importance of the oceans to climate change and our limited understanding of climate-related ocean processes, our ability to measure the changes that are taking place are conspicuously inadequate. The chapter highlights the need for a comprehensive, adequately funded and globally extensive ocean observing system to be implemented and sustained as a high priority. Unless feedbacks from the oceans to climate change are adequately included in climate change models, it is possible that the mitigation actions needed to stabilise CO2 and limit temperature rise over the next century will be underestimated.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2009License: CC BYFull-Text: https://escholarship.org/uc/item/0066b5zhData sources: Bielefeld Academic Search Engine (BASE)https://escholarship.org/conte...Part of book or chapter of bookLicense: CC BYData sources: UnpayWalleScholarship - University of CaliforniaArticle . 2009Data sources: eScholarship - University of CaliforniaElectronic Publication Information CenterArticle . 2009Data sources: Electronic Publication Information CenterNERC Open Research ArchivePart of book or chapter of book . 2009Data sources: NERC Open Research Archivehttps://doi.org/10.1016/s0065-...Part of book or chapter of book . 2009 . Peer-reviewedData sources: CrossrefUniversity of Southampton: e-Prints SotonPart of book or chapter of book . 2009Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen 113 citations 113 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2009License: CC BYFull-Text: https://escholarship.org/uc/item/0066b5zhData sources: Bielefeld Academic Search Engine (BASE)https://escholarship.org/conte...Part of book or chapter of bookLicense: CC BYData sources: UnpayWalleScholarship - University of CaliforniaArticle . 2009Data sources: eScholarship - University of CaliforniaElectronic Publication Information CenterArticle . 2009Data sources: Electronic Publication Information CenterNERC Open Research ArchivePart of book or chapter of book . 2009Data sources: NERC Open Research Archivehttps://doi.org/10.1016/s0065-...Part of book or chapter of book . 2009 . Peer-reviewedData sources: CrossrefUniversity of Southampton: e-Prints SotonPart of book or chapter of book . 2009Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2018Publisher:The Royal Society Funded by:NSF | COLLABORATIVE RESEARCH: E..., EC | PALEOGENIE, UKRI | SCORE: Supply Chain Optim...NSF| COLLABORATIVE RESEARCH: EVALUATING DEEP-SEA VENTILATION AND THE GLOBAL CARBON CYCLE DURING EARLY PALEOGENE HYPERTHERMALS ,EC| PALEOGENIE ,UKRI| SCORE: Supply Chain Optimisation for demand Response EfficiencyDaniela N. Schmidt; Ellen Thomas; Elisabeth Authier; David Saunders; Andy Ridgwell;pmid: 30177568
pmc: PMC6127389
Climate change is predicted to alter temperature, carbonate chemistry and oxygen availability in the oceans, which will affect individuals, populations and ecosystems. We use the fossil record of benthic foraminifers to assess developmental impacts in response to environmental changes during the Palaeocene–Eocene Thermal Maximum (PETM). Using an unprecedented number of µ-computed tomography scans, we determine the size of the proloculus (first chamber), the number of chambers and the final size of two benthic foraminiferal species which survived the extinction at sites 690 (Atlantic sector, Southern Ocean, palaeodepth 1900 m), 1210 (central equatorial Pacific, palaeodepth 2100 m) and 1135 (Indian Ocean sector, Southern Ocean, palaeodepth 600–1000 m). The population at the shallowest site, 1135, does not show a clear response to the PETM, whereas those at the other sites record reductions in diameter or proloculus size. Temperature was similar at all sites, thus it is not likely to be the reason for differences between sites. At site 1210, small size coincided with higher chamber numbers during the peak event, and may have been caused by a combination of low carbonate ion concentrations and low food supply. Dwarfing at site 690 occurred at lower chamber numbers, and may have been caused by decreasing carbonate saturation at sufficient food levels to reproduce. Proloculus size varied strongly between sites and through time, suggesting a large influence of environment on both microspheric and megalospheric forms without clear bimodality. The effect of the environmental changes during the PETM was more pronounced at deeper sites, possibly implicating carbonate saturation. This article is part of a discussion meeting issue ‘Hyperthermals: rapid and extreme global warming in our geological past’.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2018License: CC BYFull-Text: https://escholarship.org/uc/item/6zn9r227Data sources: Bielefeld Academic Search Engine (BASE)Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering SciencesArticleLicense: CC BYData sources: UnpayWalleScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of CaliforniaUniversity of Bristol: Bristol ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering SciencesArticle . 2018 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: Crossrefhttp://dx.doi.org/10.1098/rsta...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen hybrid 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2018License: CC BYFull-Text: https://escholarship.org/uc/item/6zn9r227Data sources: Bielefeld Academic Search Engine (BASE)Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering SciencesArticleLicense: CC BYData sources: UnpayWalleScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of CaliforniaUniversity of Bristol: Bristol ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering SciencesArticle . 2018 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: Crossrefhttp://dx.doi.org/10.1098/rsta...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
