- home
- Advanced Search
- Energy Research
- European Marine Science
- Energy Research
- European Marine Science
description Publicationkeyboard_double_arrow_right Article 2023 Germany, SpainPublisher:Cambridge University Press (CUP) Funded by:EC | OceanPeak, EC | STOIKOS, EC | 4C +4 projectsEC| OceanPeak ,EC| STOIKOS ,EC| 4C ,EC| ForExD ,EC| GENIE ,ARC| ARC Future Fellowships - Grant ID: FT210100512 ,SNSF| Ocean extremes in a warmer world: Discovering risks for marine ecosystems (OceanX) - Phase 2Mercedes Bustamante; Joyashree Roy; Daniel Ospina; Ploy Achakulwisut; Anubha Aggarwal; Ana Bastos; Wendy Broadgate; Josep G. Canadell; Edward R. Carr; Deliang Chen; Helen A. Cleugh; Kristie L. Ebi; Clea Edwards; Carol Farbotko; Marcos Fernández-Martínez; Thomas L. Frölicher; Sabine Fuss; Oliver Geden; Nicolas Gruber; Luke J. Harrington; Judith Hauck; Zeke Hausfather; Sophie Hebden; Aniek Hebinck; Saleemul Huq; Matthias Huss; M. Laurice P. Jamero; Sirkku Juhola; Nilushi Kumarasinghe; Shuaib Lwasa; Bishawjit Mallick; Maria Martin; Steven McGreevy; Paula Mirazo; Aditi Mukherji; Greg Muttitt; Gregory F. Nemet; David Obura; Chukwumerije Okereke; Tom Oliver; Ben Orlove; Nadia S. Ouedraogo; Prabir K. Patra; Mark Pelling; Laura M. Pereira; Åsa Persson; Julia Pongratz; Anjal Prakash; Anja Rammig; Colin Raymond; Aaron Redman; Cristobal Reveco; Johan Rockström; Regina Rodrigues; David R. Rounce; E. Lisa F. Schipper; Peter Schlosser; Odirilwe Selomane; Gregor Semieniuk; Yunne-Jai Shin; Tasneem A. Siddiqui; Vartika Singh; Giles B. Sioen; Youba Sokona; Detlef Stammer; Norman J. Steinert; Sunhee Suk; Rowan Sutton; Lisa Thalheimer; Vikki Thompson; Gregory Trencher; Kees van der Geest; Saskia E. Werners; Thea Wübbelmann; Nico Wunderling; Jiabo Yin; Kirsten Zickfeld; Jakob Zscheischler;doi: 10.1017/sus.2023.25
Abstract Non-technical summary We identify a set of essential recent advances in climate change research with high policy relevance, across natural and social sciences: (1) looming inevitability and implications of overshooting the 1.5°C warming limit, (2) urgent need for a rapid and managed fossil fuel phase-out, (3) challenges for scaling carbon dioxide removal, (4) uncertainties regarding the future contribution of natural carbon sinks, (5) intertwinedness of the crises of biodiversity loss and climate change, (6) compound events, (7) mountain glacier loss, (8) human immobility in the face of climate risks, (9) adaptation justice, and (10) just transitions in food systems. Technical summary The Intergovernmental Panel on Climate Change Assessment Reports provides the scientific foundation for international climate negotiations and constitutes an unmatched resource for researchers. However, the assessment cycles take multiple years. As a contribution to cross- and interdisciplinary understanding of climate change across diverse research communities, we have streamlined an annual process to identify and synthesize significant research advances. We collected input from experts on various fields using an online questionnaire and prioritized a set of 10 key research insights with high policy relevance. This year, we focus on: (1) the looming overshoot of the 1.5°C warming limit, (2) the urgency of fossil fuel phase-out, (3) challenges to scale-up carbon dioxide removal, (4) uncertainties regarding future natural carbon sinks, (5) the need for joint governance of biodiversity loss and climate change, (6) advances in understanding compound events, (7) accelerated mountain glacier loss, (8) human immobility amidst climate risks, (9) adaptation justice, and (10) just transitions in food systems. We present a succinct account of these insights, reflect on their policy implications, and offer an integrated set of policy-relevant messages. This science synthesis and science communication effort is also the basis for a policy report contributing to elevate climate science every year in time for the United Nations Climate Change Conference. Social media summary We highlight recent and policy-relevant advances in climate change research – with input from more than 200 experts.
Global Sustainabilit... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2023License: CC BYData sources: Diposit Digital de Documents de la UABElectronic Publication Information CenterArticle . 2023Data sources: Electronic Publication Information Centeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1017/sus.2023.25&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Global Sustainabilit... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2023License: CC BYData sources: Diposit Digital de Documents de la UABElectronic Publication Information CenterArticle . 2023Data sources: Electronic Publication Information Centeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1017/sus.2023.25&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 Netherlands, GermanyPublisher:Copernicus GmbH Funded by:EC | GREEN GODS, , EC | ESM2025 +10 projectsEC| GREEN GODS ,[no funder available] ,EC| ESM2025 ,NSF| ACO: An Open CI Ecosystem to Advance Scientific Discovery (OpenCI) ,NSF| Track 1: ACCESS Resource Allocations Marketplace and Platform Services (RAMPS) ,SNSF| Climate and Environmental Physics: Modeling Global Biogeochemical Cycles in the Earth System 2021-2025 (bgcCEP20) ,NSF| INFEWS: U.S.-China: Integrated systems modeling for sustainable FEW nexus under multi-factor global changes: Innovative comparison between Yellow River and Mississippi River Basins ,UKRI| The UK Earth system modelling project ,NSF| NRT: Addressing resiliency to climate-related hazards and disasters through data-informed decision making ,NSF| Track 2: Customized Multi-tier Assistance, Training, and Computational Help (MATCH) for End User ACCESS to CI ,NSF| Track 3: COre National Ecosystem for CyberinfrasTructure (CONECT) ,UKRI| NCEO LTS-S ,NSF| Track 4: Advanced CI Coordination Ecosystem: Monitoring and Measurement ServicesHanqin Tian; Naiqing Pan; Rona L. Thompson; Josep G. Canadell; P. Suntharalingam; Pierre Regnier; Eric A. Davidson; Michael J. Prather; Philippe Ciais; Marilena Muntean; Shufen Pan; Wilfried Winiwarter; Sönke Zaehle; Feng Zhou; Robert B. Jackson; Hermann W. Bange; Sarah Berthet; Zihao Bian; Daniele Bianchi; Lex Bouwman; Erik T. Buitenhuis; G. S. Dutton; Minpeng Hu; Akihiko Ito; Atul K. Jain; Aurich Jeltsch‐Thömmes; Fortunat Joos; Sian Kou‐Giesbrecht; P. B. Krummel; Lan X; Angela Landolfi; Ronny Lauerwald; Ya Li; Chaoqun Lü; Taylor Maavara; Manfredi Manizza; Dylan B. Millet; Jens Mühle; Prabir K. Patra; Glen P. Peters; Xiaoyu Qin; Peter Raymond; Laure Resplandy; Judith A. Rosentreter; Hao Shi; Qing Sun; Daniele Tonina; Francesco N. Tubiello; Guido R. van der Werf; Nicolas Vuichard; Junjie Wang; Kelley C. Wells; Luke M. Western; Chris Wilson; Jia Yang; Yuanzhi Yao; Yongfa You; Qing Zhu;Abstract. Nitrous oxide (N2O) is a long-lived potent greenhouse gas and stratospheric ozone-depleting substance that has been accumulating in the atmosphere since the preindustrial period. The mole fraction of atmospheric N2O has increased by nearly 25 % from 270 ppb (parts per billion) in 1750 to 336 ppb in 2022, with the fastest annual growth rate since 1980 of more than 1.3 ppb yr−1 in both 2020 and 2021. According to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR6), the relative contribution of N2O to the total enhanced effective radiative forcing of greenhouse gases was 6.4 % for 1750–2022. As a core component of our global greenhouse gas assessments coordinated by the Global Carbon Project (GCP), our global N2O budget incorporates both natural and anthropogenic sources and sinks and accounts for the interactions between nitrogen additions and the biogeochemical processes that control N2O emissions. We use bottom-up (BU: inventory, statistical extrapolation of flux measurements, and process-based land and ocean modeling) and top-down (TD: atmospheric measurement-based inversion) approaches. We provide a comprehensive quantification of global N2O sources and sinks in 21 natural and anthropogenic categories in 18 regions between 1980 and 2020. We estimate that total annual anthropogenic N2O emissions have increased 40 % (or 1.9 Tg N yr−1) in the past 4 decades (1980–2020). Direct agricultural emissions in 2020 (3.9 Tg N yr−1, best estimate) represent the large majority of anthropogenic emissions, followed by other direct anthropogenic sources, including fossil fuel and industry, waste and wastewater, and biomass burning (2.1 Tg N yr−1), and indirect anthropogenic sources (1.3 Tg N yr−1) . For the year 2020, our best estimate of total BU emissions for natural and anthropogenic sources was 18.5 (lower–upper bounds: 10.6–27.0) Tg N yr−1, close to our TD estimate of 17.0 (16.6–17.4) Tg N yr−1. For the 2010–2019 period, the annual BU decadal-average emissions for both natural and anthropogenic sources were 18.2 (10.6–25.9) Tg N yr−1 and TD emissions were 17.4 (15.8–19.20) Tg N yr−1. The once top emitter Europe has reduced its emissions by 31 % since the 1980s, while those of emerging economies have grown, making China the top emitter since the 2010s. The observed atmospheric N2O concentrations in recent years have exceeded projected levels under all scenarios in the Coupled Model Intercomparison Project Phase 6 (CMIP6), underscoring the importance of reducing anthropogenic N2O emissions. To evaluate mitigation efforts and contribute to the Global Stocktake of the United Nations Framework Convention on Climate Change, we propose the establishment of a global network for monitoring and modeling N2O from the surface through to the stratosphere. The data presented in this work can be downloaded from https://doi.org/10.18160/RQ8P-2Z4R (Tian et al., 2023).
OceanRep arrow_drop_down Earth System Science Data (ESSD)Article . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.5194/essd-2...Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefWageningen Staff PublicationsArticle . 2024License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-16-2543-2024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert OceanRep arrow_drop_down Earth System Science Data (ESSD)Article . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.5194/essd-2...Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefWageningen Staff PublicationsArticle . 2024License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-16-2543-2024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2023 Germany, SpainPublisher:Cambridge University Press (CUP) Funded by:EC | OceanPeak, EC | STOIKOS, EC | 4C +4 projectsEC| OceanPeak ,EC| STOIKOS ,EC| 4C ,EC| ForExD ,EC| GENIE ,ARC| ARC Future Fellowships - Grant ID: FT210100512 ,SNSF| Ocean extremes in a warmer world: Discovering risks for marine ecosystems (OceanX) - Phase 2Mercedes Bustamante; Joyashree Roy; Daniel Ospina; Ploy Achakulwisut; Anubha Aggarwal; Ana Bastos; Wendy Broadgate; Josep G. Canadell; Edward R. Carr; Deliang Chen; Helen A. Cleugh; Kristie L. Ebi; Clea Edwards; Carol Farbotko; Marcos Fernández-Martínez; Thomas L. Frölicher; Sabine Fuss; Oliver Geden; Nicolas Gruber; Luke J. Harrington; Judith Hauck; Zeke Hausfather; Sophie Hebden; Aniek Hebinck; Saleemul Huq; Matthias Huss; M. Laurice P. Jamero; Sirkku Juhola; Nilushi Kumarasinghe; Shuaib Lwasa; Bishawjit Mallick; Maria Martin; Steven McGreevy; Paula Mirazo; Aditi Mukherji; Greg Muttitt; Gregory F. Nemet; David Obura; Chukwumerije Okereke; Tom Oliver; Ben Orlove; Nadia S. Ouedraogo; Prabir K. Patra; Mark Pelling; Laura M. Pereira; Åsa Persson; Julia Pongratz; Anjal Prakash; Anja Rammig; Colin Raymond; Aaron Redman; Cristobal Reveco; Johan Rockström; Regina Rodrigues; David R. Rounce; E. Lisa F. Schipper; Peter Schlosser; Odirilwe Selomane; Gregor Semieniuk; Yunne-Jai Shin; Tasneem A. Siddiqui; Vartika Singh; Giles B. Sioen; Youba Sokona; Detlef Stammer; Norman J. Steinert; Sunhee Suk; Rowan Sutton; Lisa Thalheimer; Vikki Thompson; Gregory Trencher; Kees van der Geest; Saskia E. Werners; Thea Wübbelmann; Nico Wunderling; Jiabo Yin; Kirsten Zickfeld; Jakob Zscheischler;doi: 10.1017/sus.2023.25
Abstract Non-technical summary We identify a set of essential recent advances in climate change research with high policy relevance, across natural and social sciences: (1) looming inevitability and implications of overshooting the 1.5°C warming limit, (2) urgent need for a rapid and managed fossil fuel phase-out, (3) challenges for scaling carbon dioxide removal, (4) uncertainties regarding the future contribution of natural carbon sinks, (5) intertwinedness of the crises of biodiversity loss and climate change, (6) compound events, (7) mountain glacier loss, (8) human immobility in the face of climate risks, (9) adaptation justice, and (10) just transitions in food systems. Technical summary The Intergovernmental Panel on Climate Change Assessment Reports provides the scientific foundation for international climate negotiations and constitutes an unmatched resource for researchers. However, the assessment cycles take multiple years. As a contribution to cross- and interdisciplinary understanding of climate change across diverse research communities, we have streamlined an annual process to identify and synthesize significant research advances. We collected input from experts on various fields using an online questionnaire and prioritized a set of 10 key research insights with high policy relevance. This year, we focus on: (1) the looming overshoot of the 1.5°C warming limit, (2) the urgency of fossil fuel phase-out, (3) challenges to scale-up carbon dioxide removal, (4) uncertainties regarding future natural carbon sinks, (5) the need for joint governance of biodiversity loss and climate change, (6) advances in understanding compound events, (7) accelerated mountain glacier loss, (8) human immobility amidst climate risks, (9) adaptation justice, and (10) just transitions in food systems. We present a succinct account of these insights, reflect on their policy implications, and offer an integrated set of policy-relevant messages. This science synthesis and science communication effort is also the basis for a policy report contributing to elevate climate science every year in time for the United Nations Climate Change Conference. Social media summary We highlight recent and policy-relevant advances in climate change research – with input from more than 200 experts.
Global Sustainabilit... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2023License: CC BYData sources: Diposit Digital de Documents de la UABElectronic Publication Information CenterArticle . 2023Data sources: Electronic Publication Information Centeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1017/sus.2023.25&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Global Sustainabilit... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2023License: CC BYData sources: Diposit Digital de Documents de la UABElectronic Publication Information CenterArticle . 2023Data sources: Electronic Publication Information Centeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1017/sus.2023.25&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 Netherlands, GermanyPublisher:Copernicus GmbH Funded by:EC | GREEN GODS, , EC | ESM2025 +10 projectsEC| GREEN GODS ,[no funder available] ,EC| ESM2025 ,NSF| ACO: An Open CI Ecosystem to Advance Scientific Discovery (OpenCI) ,NSF| Track 1: ACCESS Resource Allocations Marketplace and Platform Services (RAMPS) ,SNSF| Climate and Environmental Physics: Modeling Global Biogeochemical Cycles in the Earth System 2021-2025 (bgcCEP20) ,NSF| INFEWS: U.S.-China: Integrated systems modeling for sustainable FEW nexus under multi-factor global changes: Innovative comparison between Yellow River and Mississippi River Basins ,UKRI| The UK Earth system modelling project ,NSF| NRT: Addressing resiliency to climate-related hazards and disasters through data-informed decision making ,NSF| Track 2: Customized Multi-tier Assistance, Training, and Computational Help (MATCH) for End User ACCESS to CI ,NSF| Track 3: COre National Ecosystem for CyberinfrasTructure (CONECT) ,UKRI| NCEO LTS-S ,NSF| Track 4: Advanced CI Coordination Ecosystem: Monitoring and Measurement ServicesHanqin Tian; Naiqing Pan; Rona L. Thompson; Josep G. Canadell; P. Suntharalingam; Pierre Regnier; Eric A. Davidson; Michael J. Prather; Philippe Ciais; Marilena Muntean; Shufen Pan; Wilfried Winiwarter; Sönke Zaehle; Feng Zhou; Robert B. Jackson; Hermann W. Bange; Sarah Berthet; Zihao Bian; Daniele Bianchi; Lex Bouwman; Erik T. Buitenhuis; G. S. Dutton; Minpeng Hu; Akihiko Ito; Atul K. Jain; Aurich Jeltsch‐Thömmes; Fortunat Joos; Sian Kou‐Giesbrecht; P. B. Krummel; Lan X; Angela Landolfi; Ronny Lauerwald; Ya Li; Chaoqun Lü; Taylor Maavara; Manfredi Manizza; Dylan B. Millet; Jens Mühle; Prabir K. Patra; Glen P. Peters; Xiaoyu Qin; Peter Raymond; Laure Resplandy; Judith A. Rosentreter; Hao Shi; Qing Sun; Daniele Tonina; Francesco N. Tubiello; Guido R. van der Werf; Nicolas Vuichard; Junjie Wang; Kelley C. Wells; Luke M. Western; Chris Wilson; Jia Yang; Yuanzhi Yao; Yongfa You; Qing Zhu;Abstract. Nitrous oxide (N2O) is a long-lived potent greenhouse gas and stratospheric ozone-depleting substance that has been accumulating in the atmosphere since the preindustrial period. The mole fraction of atmospheric N2O has increased by nearly 25 % from 270 ppb (parts per billion) in 1750 to 336 ppb in 2022, with the fastest annual growth rate since 1980 of more than 1.3 ppb yr−1 in both 2020 and 2021. According to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR6), the relative contribution of N2O to the total enhanced effective radiative forcing of greenhouse gases was 6.4 % for 1750–2022. As a core component of our global greenhouse gas assessments coordinated by the Global Carbon Project (GCP), our global N2O budget incorporates both natural and anthropogenic sources and sinks and accounts for the interactions between nitrogen additions and the biogeochemical processes that control N2O emissions. We use bottom-up (BU: inventory, statistical extrapolation of flux measurements, and process-based land and ocean modeling) and top-down (TD: atmospheric measurement-based inversion) approaches. We provide a comprehensive quantification of global N2O sources and sinks in 21 natural and anthropogenic categories in 18 regions between 1980 and 2020. We estimate that total annual anthropogenic N2O emissions have increased 40 % (or 1.9 Tg N yr−1) in the past 4 decades (1980–2020). Direct agricultural emissions in 2020 (3.9 Tg N yr−1, best estimate) represent the large majority of anthropogenic emissions, followed by other direct anthropogenic sources, including fossil fuel and industry, waste and wastewater, and biomass burning (2.1 Tg N yr−1), and indirect anthropogenic sources (1.3 Tg N yr−1) . For the year 2020, our best estimate of total BU emissions for natural and anthropogenic sources was 18.5 (lower–upper bounds: 10.6–27.0) Tg N yr−1, close to our TD estimate of 17.0 (16.6–17.4) Tg N yr−1. For the 2010–2019 period, the annual BU decadal-average emissions for both natural and anthropogenic sources were 18.2 (10.6–25.9) Tg N yr−1 and TD emissions were 17.4 (15.8–19.20) Tg N yr−1. The once top emitter Europe has reduced its emissions by 31 % since the 1980s, while those of emerging economies have grown, making China the top emitter since the 2010s. The observed atmospheric N2O concentrations in recent years have exceeded projected levels under all scenarios in the Coupled Model Intercomparison Project Phase 6 (CMIP6), underscoring the importance of reducing anthropogenic N2O emissions. To evaluate mitigation efforts and contribute to the Global Stocktake of the United Nations Framework Convention on Climate Change, we propose the establishment of a global network for monitoring and modeling N2O from the surface through to the stratosphere. The data presented in this work can be downloaded from https://doi.org/10.18160/RQ8P-2Z4R (Tian et al., 2023).
OceanRep arrow_drop_down Earth System Science Data (ESSD)Article . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.5194/essd-2...Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefWageningen Staff PublicationsArticle . 2024License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-16-2543-2024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert OceanRep arrow_drop_down Earth System Science Data (ESSD)Article . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.5194/essd-2...Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefWageningen Staff PublicationsArticle . 2024License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-16-2543-2024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu