- home
- Advanced Search
- Energy Research
- European Marine Science
- Energy Research
- European Marine Science
description Publicationkeyboard_double_arrow_right Article , Journal 2013 ItalyPublisher:Elsevier BV Funded by:EC | NORSEWINDEC| NORSEWINDKaragali Ioanna; Badger Merete; Hahmann Andrea N; Pena Diaz Alfredo; Hasager Charlotte Bay; Sempreviva Anna Maria;handle: 20.500.14243/246777
Abstract Satellite data are used to characterize the near-surface winds over the Northern European Shelf Seas. We compare mean winds from QuikSCAT with reanalysis fields from the Weather Research and Forecasting (WRF) model and in situ data from the FINO-1 offshore research mast. The aim is to evaluate the spatial and temporal variability of the near-surface wind field, including the inter- and intra-annual variability for resource assessment purposes. This study demonstrates the applicability of satellite observations as the means to provide information useful for selecting areas to perform higher resolution model runs or for mast installations. Comparisons between QuikSCAT and WRF reanalyses show biases ranging mostly between 0.6 and −0.6 m s−1 with a standard deviation of 1.8–2.8 m s−1. The combined analyses of inter- and intra-annual indices and the wind speed and direction distributions allow the identification of 3 sub-domains with similar intra-annual variability. Local characteristics observed from the long-term QuikSCAT wind rose distributions are depicted in high-resolution satellite Synthetic Aperture Radar (SAR) wind fields. The winds derived from the WRF reanalysis dataset miss seasonal features observed by QuikSCAT and at FINO-1.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2013.01.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu47 citations 47 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2013.01.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 France, Denmark, FrancePublisher:Elsevier BV Funded by:EC | NORSEWINDEC| NORSEWINDHasager, Charlotte B.; Mouche, Alexis; Badger, Merete; Bingol, Ferhat; Karagali, Ioanna; Driesenaar, Tilly; Stoffelen, Ad; Pena, Alfredo; Longepe, Nicolas;The offshore wind climatology in the Northern European seas is analysed from ten years of Envisat synthetic aperture radar (SAR) images using a total of 9256 scenes, ten years of QuikSCAT and two years of ASCAT gridded ocean surface vector wind products and high-quality wind observations from four meteorological masts in the North Sea. The traditional method for assessment of the wind resource for wind energy application is through analysis of wind speed and wind direction observed during one or more years at a meteorological mast equipped with well-calibrated anemometers at several levels. The cost of such measurements is very high and therefore they are only sparsely available. An alternative method is the application of satellite remote sensing. Comparison of wind resource statistics from satellite products is presented and discussed including the uncertainty on the wind resource. The diurnal wind variability is found to be negligible at some location but up to 0.5 m s− 1 at two sites. Synergetic use of observations from multiple satellites in different orbits provides wind observations at six times in the diurnal cycle and increases the number of observations. At Horns Rev M2, FINO1 and Greater Gabbard satellite and in situ collocated samples show differences in mean wind speed of − 2%, − 1% and 3%, respectively. At Egmond aan Zee the difference is 10%. It is most likely due to scatterometer data sampled further offshore than at the meteorological mast. Comparing energy density with all samples at Horns Rev M2 shows overestimation 7–19% and at FINO1 underestimation 2–5% but no clear conclusion can be drawn as the comparison data are not collocated. At eight new offshore wind farm areas in Denmark, the variability in mean energy density observed by SAR ranges from 347 W m− 2 in Sejerøbugten to 514 W m− 2 at Horns Rev 3. The spatial variability in the near-shore areas is much higher than at areas located further offshore.
Remote Sensing of En... arrow_drop_down Remote Sensing of EnvironmentArticle . 2015 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRemote Sensing of EnvironmentArticle . 2015License: CC BY NC NDData sources: BASE (Open Access Aggregator)Online Research Database In TechnologyArticle . 2015Data sources: Online Research Database In TechnologyArchiMer - Institutional Archive of IfremerOther literature type . 2015Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rse.2014.09.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 85 citations 85 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Remote Sensing of En... arrow_drop_down Remote Sensing of EnvironmentArticle . 2015 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRemote Sensing of EnvironmentArticle . 2015License: CC BY NC NDData sources: BASE (Open Access Aggregator)Online Research Database In TechnologyArticle . 2015Data sources: Online Research Database In TechnologyArchiMer - Institutional Archive of IfremerOther literature type . 2015Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rse.2014.09.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Wiley Funded by:EC | NORSEWINDEC| NORSEWINDAuthors: Ioanna Karagali; Merete Badger; Alfredo Peña; Charlotte Bay Hasager;doi: 10.1002/we.1565
ABSTRACTThe QuikSCAT mission provided valuable daily information on global ocean wind speed and direction from July 1999 until November 2009 for various applications including numerical weather prediction, ocean and atmospheric modelling. One new and important application for wind vector satellite data is offshore wind energy, where accurate and frequent measurements are required for siting and operating modern wind farms. The greatest advantage of satellite observations rests in their extended spatial coverage. This paper presents analyses of the 10 year data set from QuikSCAT, for the overview of the wind characteristics observed in the North and Baltic Seas, where most of Europe's offshore wind farms operate and more will be constructed. Significant issues in data availability are identified, directly related to the flagging schemes. In situ observations from three locations in the North Sea are used for comparisons. Mean biases (in situ minus satellite) are close to zero for wind speed and ‐2.7° for wind direction with a standard deviation of 1.2 m s − 1 and 15°, respectively. The impact of using QuikSCAT and in situ measurements extrapolated to 10 m for wind power density estimations is assessed, accounting for possible influences of rain‐contaminated retrievals, the sample size, the atmospheric stability effects and either fitting the Weibull distribution or obtaining the estimates from the time series of wind speed observations.Copyright © 2012 John Wiley & Sons, Ltd.
Wind Energy arrow_drop_down Wind EnergyArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/we.1565&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 52 citations 52 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Wind Energy arrow_drop_down Wind EnergyArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/we.1565&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2013 Denmark, United KingdomPublisher:MDPI AG Funded by:EC | INTRODUCING SPRITES, EC | NORSEWINDEC| INTRODUCING SPRITES ,EC| NORSEWINDCharlotte Hasager; Detlef Stein; Michael Courtney; Alfredo Peña; Torben Mikkelsen; Matthew Stickland; Andrew Oldroyd;doi: 10.3390/rs5094280
In the North Sea, an array of wind profiling wind lidars were deployed mainly on offshore platforms. The purpose was to observe free stream winds at hub height. Eight lidars were validated prior to offshore deployment with observations from cup anemometers at 60, 80, 100 and 116 m on an onshore met mast situated in flat terrain. The so-called “NORSEWInD standard” for comparing lidar and mast wind data includes the criteria that the slope of the linear regression should lie within 0.98 and 1.01 and the linear correlation coefficient higher than 0.98 for the wind speed range 4–16 m∙s−1. Five lidars performed excellently, two slightly failed the first criterion and one failed both. The lidars were operated offshore from six months to more than two years and observed in total 107 months of 10-min mean wind profile observations. Four lidars were re-evaluated post deployment with excellent results. The flow distortion around platforms was examined using wind tunnel experiments and computational fluid dynamics and it was found that at 100 m height wind observations by the lidars were not significantly influenced by flow distortion. Observations of the vertical wind profile shear exponent at hub height are presented.
CORE arrow_drop_down Remote SensingOther literature type . 2013License: CC BYFull-Text: http://www.mdpi.com/2072-4292/5/9/4280/pdfData sources: Multidisciplinary Digital Publishing InstituteOnline Research Database In TechnologyArticle . 2013Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs5094280&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 50 citations 50 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down Remote SensingOther literature type . 2013License: CC BYFull-Text: http://www.mdpi.com/2072-4292/5/9/4280/pdfData sources: Multidisciplinary Digital Publishing InstituteOnline Research Database In TechnologyArticle . 2013Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs5094280&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016 France, France, France, Denmark, FrancePublisher:American Meteorological Society Funded by:EC | NEWAEC| NEWABadger, Merete; Pena, Alfredo; Hahmann, Andrea N.; Mouche, Alexis; Hasager, Charlotte B.;AbstractOcean wind retrievals from satellite sensors are typically performed for the standard level of 10 m. This restricts their full exploitation for wind energy planning, which requires wind information at much higher levels where wind turbines operate. A new method is presented for the vertical extrapolation of satellite-based wind maps. Winds near the sea surface are obtained from satellite data and used together with an adaptation of the Monin–Obukhov similarity theory to estimate the wind speed at higher levels. The thermal stratification of the atmosphere is taken into account through a long-term stability correction that is based on numerical weather prediction (NWP) model outputs. The effect of the long-term stability correction on the wind profile is significant. The method is applied to Envisat Advanced Synthetic Aperture Radar scenes acquired over the south Baltic Sea. This leads to maps of the long-term stability correction and wind speed at a height of 100 m with a spatial resolution of 0.02°. Calculations of the corresponding wind power density and Weibull parameters are shown. Comparisons with mast observations reveal that NWP model outputs can correct successfully for long-term stability effects and also, to some extent, for the limited number of satellite samples. The satellite-based and NWP-simulated wind profiles are almost equally accurate with respect to those from the mast. However, the satellite-based maps have a higher spatial resolution, which is particularly important in nearshore areas where most offshore wind farms are built.
Université de Bretag... arrow_drop_down Université de Bretagne Occidentale: HALArticle . 2016Full-Text: https://hal.science/hal-04200833Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Full-Text: https://hal.science/hal-04200833Data sources: Bielefeld Academic Search Engine (BASE)Online Research Database In TechnologyArticle . 2016Data sources: Online Research Database In TechnologyArchiMer - Institutional Archive of IfremerOther literature type . 2016Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1175/jamc-d-15-0197.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Université de Bretag... arrow_drop_down Université de Bretagne Occidentale: HALArticle . 2016Full-Text: https://hal.science/hal-04200833Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Full-Text: https://hal.science/hal-04200833Data sources: Bielefeld Academic Search Engine (BASE)Online Research Database In TechnologyArticle . 2016Data sources: Online Research Database In TechnologyArchiMer - Institutional Archive of IfremerOther literature type . 2016Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1175/jamc-d-15-0197.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2013 ItalyPublisher:Elsevier BV Funded by:EC | NORSEWINDEC| NORSEWINDKaragali Ioanna; Badger Merete; Hahmann Andrea N; Pena Diaz Alfredo; Hasager Charlotte Bay; Sempreviva Anna Maria;handle: 20.500.14243/246777
Abstract Satellite data are used to characterize the near-surface winds over the Northern European Shelf Seas. We compare mean winds from QuikSCAT with reanalysis fields from the Weather Research and Forecasting (WRF) model and in situ data from the FINO-1 offshore research mast. The aim is to evaluate the spatial and temporal variability of the near-surface wind field, including the inter- and intra-annual variability for resource assessment purposes. This study demonstrates the applicability of satellite observations as the means to provide information useful for selecting areas to perform higher resolution model runs or for mast installations. Comparisons between QuikSCAT and WRF reanalyses show biases ranging mostly between 0.6 and −0.6 m s−1 with a standard deviation of 1.8–2.8 m s−1. The combined analyses of inter- and intra-annual indices and the wind speed and direction distributions allow the identification of 3 sub-domains with similar intra-annual variability. Local characteristics observed from the long-term QuikSCAT wind rose distributions are depicted in high-resolution satellite Synthetic Aperture Radar (SAR) wind fields. The winds derived from the WRF reanalysis dataset miss seasonal features observed by QuikSCAT and at FINO-1.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2013.01.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu47 citations 47 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2013.01.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 France, Denmark, FrancePublisher:Elsevier BV Funded by:EC | NORSEWINDEC| NORSEWINDHasager, Charlotte B.; Mouche, Alexis; Badger, Merete; Bingol, Ferhat; Karagali, Ioanna; Driesenaar, Tilly; Stoffelen, Ad; Pena, Alfredo; Longepe, Nicolas;The offshore wind climatology in the Northern European seas is analysed from ten years of Envisat synthetic aperture radar (SAR) images using a total of 9256 scenes, ten years of QuikSCAT and two years of ASCAT gridded ocean surface vector wind products and high-quality wind observations from four meteorological masts in the North Sea. The traditional method for assessment of the wind resource for wind energy application is through analysis of wind speed and wind direction observed during one or more years at a meteorological mast equipped with well-calibrated anemometers at several levels. The cost of such measurements is very high and therefore they are only sparsely available. An alternative method is the application of satellite remote sensing. Comparison of wind resource statistics from satellite products is presented and discussed including the uncertainty on the wind resource. The diurnal wind variability is found to be negligible at some location but up to 0.5 m s− 1 at two sites. Synergetic use of observations from multiple satellites in different orbits provides wind observations at six times in the diurnal cycle and increases the number of observations. At Horns Rev M2, FINO1 and Greater Gabbard satellite and in situ collocated samples show differences in mean wind speed of − 2%, − 1% and 3%, respectively. At Egmond aan Zee the difference is 10%. It is most likely due to scatterometer data sampled further offshore than at the meteorological mast. Comparing energy density with all samples at Horns Rev M2 shows overestimation 7–19% and at FINO1 underestimation 2–5% but no clear conclusion can be drawn as the comparison data are not collocated. At eight new offshore wind farm areas in Denmark, the variability in mean energy density observed by SAR ranges from 347 W m− 2 in Sejerøbugten to 514 W m− 2 at Horns Rev 3. The spatial variability in the near-shore areas is much higher than at areas located further offshore.
Remote Sensing of En... arrow_drop_down Remote Sensing of EnvironmentArticle . 2015 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRemote Sensing of EnvironmentArticle . 2015License: CC BY NC NDData sources: BASE (Open Access Aggregator)Online Research Database In TechnologyArticle . 2015Data sources: Online Research Database In TechnologyArchiMer - Institutional Archive of IfremerOther literature type . 2015Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rse.2014.09.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 85 citations 85 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Remote Sensing of En... arrow_drop_down Remote Sensing of EnvironmentArticle . 2015 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRemote Sensing of EnvironmentArticle . 2015License: CC BY NC NDData sources: BASE (Open Access Aggregator)Online Research Database In TechnologyArticle . 2015Data sources: Online Research Database In TechnologyArchiMer - Institutional Archive of IfremerOther literature type . 2015Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rse.2014.09.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Wiley Funded by:EC | NORSEWINDEC| NORSEWINDAuthors: Ioanna Karagali; Merete Badger; Alfredo Peña; Charlotte Bay Hasager;doi: 10.1002/we.1565
ABSTRACTThe QuikSCAT mission provided valuable daily information on global ocean wind speed and direction from July 1999 until November 2009 for various applications including numerical weather prediction, ocean and atmospheric modelling. One new and important application for wind vector satellite data is offshore wind energy, where accurate and frequent measurements are required for siting and operating modern wind farms. The greatest advantage of satellite observations rests in their extended spatial coverage. This paper presents analyses of the 10 year data set from QuikSCAT, for the overview of the wind characteristics observed in the North and Baltic Seas, where most of Europe's offshore wind farms operate and more will be constructed. Significant issues in data availability are identified, directly related to the flagging schemes. In situ observations from three locations in the North Sea are used for comparisons. Mean biases (in situ minus satellite) are close to zero for wind speed and ‐2.7° for wind direction with a standard deviation of 1.2 m s − 1 and 15°, respectively. The impact of using QuikSCAT and in situ measurements extrapolated to 10 m for wind power density estimations is assessed, accounting for possible influences of rain‐contaminated retrievals, the sample size, the atmospheric stability effects and either fitting the Weibull distribution or obtaining the estimates from the time series of wind speed observations.Copyright © 2012 John Wiley & Sons, Ltd.
Wind Energy arrow_drop_down Wind EnergyArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/we.1565&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 52 citations 52 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Wind Energy arrow_drop_down Wind EnergyArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/we.1565&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2013 Denmark, United KingdomPublisher:MDPI AG Funded by:EC | INTRODUCING SPRITES, EC | NORSEWINDEC| INTRODUCING SPRITES ,EC| NORSEWINDCharlotte Hasager; Detlef Stein; Michael Courtney; Alfredo Peña; Torben Mikkelsen; Matthew Stickland; Andrew Oldroyd;doi: 10.3390/rs5094280
In the North Sea, an array of wind profiling wind lidars were deployed mainly on offshore platforms. The purpose was to observe free stream winds at hub height. Eight lidars were validated prior to offshore deployment with observations from cup anemometers at 60, 80, 100 and 116 m on an onshore met mast situated in flat terrain. The so-called “NORSEWInD standard” for comparing lidar and mast wind data includes the criteria that the slope of the linear regression should lie within 0.98 and 1.01 and the linear correlation coefficient higher than 0.98 for the wind speed range 4–16 m∙s−1. Five lidars performed excellently, two slightly failed the first criterion and one failed both. The lidars were operated offshore from six months to more than two years and observed in total 107 months of 10-min mean wind profile observations. Four lidars were re-evaluated post deployment with excellent results. The flow distortion around platforms was examined using wind tunnel experiments and computational fluid dynamics and it was found that at 100 m height wind observations by the lidars were not significantly influenced by flow distortion. Observations of the vertical wind profile shear exponent at hub height are presented.
CORE arrow_drop_down Remote SensingOther literature type . 2013License: CC BYFull-Text: http://www.mdpi.com/2072-4292/5/9/4280/pdfData sources: Multidisciplinary Digital Publishing InstituteOnline Research Database In TechnologyArticle . 2013Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs5094280&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 50 citations 50 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down Remote SensingOther literature type . 2013License: CC BYFull-Text: http://www.mdpi.com/2072-4292/5/9/4280/pdfData sources: Multidisciplinary Digital Publishing InstituteOnline Research Database In TechnologyArticle . 2013Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs5094280&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016 France, France, France, Denmark, FrancePublisher:American Meteorological Society Funded by:EC | NEWAEC| NEWABadger, Merete; Pena, Alfredo; Hahmann, Andrea N.; Mouche, Alexis; Hasager, Charlotte B.;AbstractOcean wind retrievals from satellite sensors are typically performed for the standard level of 10 m. This restricts their full exploitation for wind energy planning, which requires wind information at much higher levels where wind turbines operate. A new method is presented for the vertical extrapolation of satellite-based wind maps. Winds near the sea surface are obtained from satellite data and used together with an adaptation of the Monin–Obukhov similarity theory to estimate the wind speed at higher levels. The thermal stratification of the atmosphere is taken into account through a long-term stability correction that is based on numerical weather prediction (NWP) model outputs. The effect of the long-term stability correction on the wind profile is significant. The method is applied to Envisat Advanced Synthetic Aperture Radar scenes acquired over the south Baltic Sea. This leads to maps of the long-term stability correction and wind speed at a height of 100 m with a spatial resolution of 0.02°. Calculations of the corresponding wind power density and Weibull parameters are shown. Comparisons with mast observations reveal that NWP model outputs can correct successfully for long-term stability effects and also, to some extent, for the limited number of satellite samples. The satellite-based and NWP-simulated wind profiles are almost equally accurate with respect to those from the mast. However, the satellite-based maps have a higher spatial resolution, which is particularly important in nearshore areas where most offshore wind farms are built.
Université de Bretag... arrow_drop_down Université de Bretagne Occidentale: HALArticle . 2016Full-Text: https://hal.science/hal-04200833Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Full-Text: https://hal.science/hal-04200833Data sources: Bielefeld Academic Search Engine (BASE)Online Research Database In TechnologyArticle . 2016Data sources: Online Research Database In TechnologyArchiMer - Institutional Archive of IfremerOther literature type . 2016Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1175/jamc-d-15-0197.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Université de Bretag... arrow_drop_down Université de Bretagne Occidentale: HALArticle . 2016Full-Text: https://hal.science/hal-04200833Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Full-Text: https://hal.science/hal-04200833Data sources: Bielefeld Academic Search Engine (BASE)Online Research Database In TechnologyArticle . 2016Data sources: Online Research Database In TechnologyArchiMer - Institutional Archive of IfremerOther literature type . 2016Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1175/jamc-d-15-0197.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu