- home
- Advanced Search
- Energy Research
- European Marine Science
- Energy Research
- European Marine Science
description Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV M. Touceda-González; Á. Prieto-Fernández; G. Renella; L. Giagnoni; A. Sessitsch; G. Brader; J. Kumpiene; I. Dimitriou; J. Eriksson; W. Friesl-Hanl; R. Galazka; J. Janssen; M. Mench; I. Müller; S. Neu; M. Puschenreiter; G. Siebielec; J. Vangronsveld; P.S. Kidd;pmid: 28802993
Gentle remediation options (GRO) are based on the combined use of plants, associated microorganisms and soil amendments, which can potentially restore soil functions and quality. We studied the effects of three GRO (aided-phytostabilisation, in situ stabilisation and phytoexclusion, and aided-phytoextraction) on the soil microbial biomass and respiration, the activities of hydrolase enzymes involved in the biogeochemical cycles of C, N, P, and S, and bacterial community structure of trace element contaminated soils (TECS) from six field trials across Europe. Community structure was studied using denaturing gradient gel electrophoresis (DGGE) fingerprinting of Bacteria, α- and β-Proteobacteria, Actinobacteria and Streptomycetaceae, and sequencing of DGGE bands characteristic of specific treatments. The number of copies of genes involved in ammonia oxidation and denitrification were determined by qPCR. Phytomanagement increased soil microbial biomass at three sites and respiration at the Biogeco site (France). Enzyme activities were consistently higher in treated soils compared to untreated soils at the Biogeco site. At this site, microbial biomass increased from 696 to 2352 mg ATP kg-1 soil, respiration increased from 7.4 to 40.1 mg C-CO2 kg-1 soil d-1, and enzyme activities were 2-11-fold higher in treated soils compared to untreated soil. Phytomanagement induced shifts in the bacterial community structure at both, the total community and functional group levels, and generally increased the number of copies of genes involved in the N cycle (nirK, nirS, nosZ, and amoA). The influence of the main soil physico-chemical properties and trace element availability were assessed and eventual site-specific effects elucidated. Overall, our results demonstrate that phytomanagement of TECS influences soil biological activity in the long term.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2017.07.097&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 32 citations 32 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 12visibility views 12 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2017.07.097&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object 2017 United Kingdom, FrancePublisher:Elsevier BV Funded by:EC | AGREENSKILLSPLUSEC| AGREENSKILLSPLUSAuthors: Celestino Quintela-Sabarís; Celestino Quintela-Sabarís; Petra Kidd; Ioannis Dimitriou; +17 AuthorsCelestino Quintela-Sabarís; Celestino Quintela-Sabarís; Petra Kidd; Ioannis Dimitriou; Michel Mench; Valérie Bert; Ingo Müller; Markus Puschenreiter; Rolf Herzig; Nadège Oustriere; Aliaksandr Kolbas; Grzegorz Siebielec; Andrew B. Cundy; William Galland; Rafał Gałązka; Wolfgang Friesl-Hanl; Jurate Kumpiene; Jolien Janssen; Jaco Vangronsveld; Lilian Marchand; Silke Neu;pmid: 28531917
Gentle remediation options (GRO), i.e. in situ stabilisation, (aided) phytoextraction and (aided) phytostabilisation, were implemented at ten European sites contaminated with trace elements (TE) from various anthropogenic sources: mining, atmospheric fallout, landfill leachates, wood preservatives, dredged-sediments, and dumped wastes. To assess the performance of the GRO options, topsoil was collected from each field trial, potted, and cultivated with lettuce (Lactuca sativa L.) for 48days. Shoot dry weight (DW) yield, photosynthesis efficiency and major element and TE concentrations in the soil pore water and lettuce shoots were measured. GRO implementation had a limited effect on TE concentrations in the soil pore water, although use of multivariate Co-inertia Analysis revealed a clear amelioration effect in phytomanaged soils. Phytomanagement increased shoot DW yield at all industrial and mine sites, whereas in agricultural soils improvements were produced in one out of five sites. Photosynthesis efficiency was less sensitive than changes in shoot biomass and did not discriminate changes in soil conditions. Based on lettuce shoot DW yield, compost amendment followed by phytoextraction yielded better results than phytostabilisation; moreover shoot ionome data proved that, depending on initial soil conditions, recurrent compost application may be required to maintain crop production with common shoot nutrient concentrations.
e-Prints Soton arrow_drop_down e-Prints SotonArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)INERIS: HAL (Institut National de l'Environnement Industriel et des Risques)Article . 2017License: CC BY SAFull-Text: https://ineris.hal.science/ineris-01853447Data sources: Bielefeld Academic Search Engine (BASE)Mémoires en Sciences de l'Information et de la CommunicationConference object . 2017The Science of The Total EnvironmentArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2017.04.187&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 33 citations 33 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 23visibility views 23 download downloads 62 Powered bymore_vert e-Prints Soton arrow_drop_down e-Prints SotonArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)INERIS: HAL (Institut National de l'Environnement Industriel et des Risques)Article . 2017License: CC BY SAFull-Text: https://ineris.hal.science/ineris-01853447Data sources: Bielefeld Academic Search Engine (BASE)Mémoires en Sciences de l'Information et de la CommunicationConference object . 2017The Science of The Total EnvironmentArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2017.04.187&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV M. Touceda-González; Á. Prieto-Fernández; G. Renella; L. Giagnoni; A. Sessitsch; G. Brader; J. Kumpiene; I. Dimitriou; J. Eriksson; W. Friesl-Hanl; R. Galazka; J. Janssen; M. Mench; I. Müller; S. Neu; M. Puschenreiter; G. Siebielec; J. Vangronsveld; P.S. Kidd;pmid: 28802993
Gentle remediation options (GRO) are based on the combined use of plants, associated microorganisms and soil amendments, which can potentially restore soil functions and quality. We studied the effects of three GRO (aided-phytostabilisation, in situ stabilisation and phytoexclusion, and aided-phytoextraction) on the soil microbial biomass and respiration, the activities of hydrolase enzymes involved in the biogeochemical cycles of C, N, P, and S, and bacterial community structure of trace element contaminated soils (TECS) from six field trials across Europe. Community structure was studied using denaturing gradient gel electrophoresis (DGGE) fingerprinting of Bacteria, α- and β-Proteobacteria, Actinobacteria and Streptomycetaceae, and sequencing of DGGE bands characteristic of specific treatments. The number of copies of genes involved in ammonia oxidation and denitrification were determined by qPCR. Phytomanagement increased soil microbial biomass at three sites and respiration at the Biogeco site (France). Enzyme activities were consistently higher in treated soils compared to untreated soils at the Biogeco site. At this site, microbial biomass increased from 696 to 2352 mg ATP kg-1 soil, respiration increased from 7.4 to 40.1 mg C-CO2 kg-1 soil d-1, and enzyme activities were 2-11-fold higher in treated soils compared to untreated soil. Phytomanagement induced shifts in the bacterial community structure at both, the total community and functional group levels, and generally increased the number of copies of genes involved in the N cycle (nirK, nirS, nosZ, and amoA). The influence of the main soil physico-chemical properties and trace element availability were assessed and eventual site-specific effects elucidated. Overall, our results demonstrate that phytomanagement of TECS influences soil biological activity in the long term.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2017.07.097&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 32 citations 32 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 12visibility views 12 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2017.07.097&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object 2017 United Kingdom, FrancePublisher:Elsevier BV Funded by:EC | AGREENSKILLSPLUSEC| AGREENSKILLSPLUSAuthors: Celestino Quintela-Sabarís; Celestino Quintela-Sabarís; Petra Kidd; Ioannis Dimitriou; +17 AuthorsCelestino Quintela-Sabarís; Celestino Quintela-Sabarís; Petra Kidd; Ioannis Dimitriou; Michel Mench; Valérie Bert; Ingo Müller; Markus Puschenreiter; Rolf Herzig; Nadège Oustriere; Aliaksandr Kolbas; Grzegorz Siebielec; Andrew B. Cundy; William Galland; Rafał Gałązka; Wolfgang Friesl-Hanl; Jurate Kumpiene; Jolien Janssen; Jaco Vangronsveld; Lilian Marchand; Silke Neu;pmid: 28531917
Gentle remediation options (GRO), i.e. in situ stabilisation, (aided) phytoextraction and (aided) phytostabilisation, were implemented at ten European sites contaminated with trace elements (TE) from various anthropogenic sources: mining, atmospheric fallout, landfill leachates, wood preservatives, dredged-sediments, and dumped wastes. To assess the performance of the GRO options, topsoil was collected from each field trial, potted, and cultivated with lettuce (Lactuca sativa L.) for 48days. Shoot dry weight (DW) yield, photosynthesis efficiency and major element and TE concentrations in the soil pore water and lettuce shoots were measured. GRO implementation had a limited effect on TE concentrations in the soil pore water, although use of multivariate Co-inertia Analysis revealed a clear amelioration effect in phytomanaged soils. Phytomanagement increased shoot DW yield at all industrial and mine sites, whereas in agricultural soils improvements were produced in one out of five sites. Photosynthesis efficiency was less sensitive than changes in shoot biomass and did not discriminate changes in soil conditions. Based on lettuce shoot DW yield, compost amendment followed by phytoextraction yielded better results than phytostabilisation; moreover shoot ionome data proved that, depending on initial soil conditions, recurrent compost application may be required to maintain crop production with common shoot nutrient concentrations.
e-Prints Soton arrow_drop_down e-Prints SotonArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)INERIS: HAL (Institut National de l'Environnement Industriel et des Risques)Article . 2017License: CC BY SAFull-Text: https://ineris.hal.science/ineris-01853447Data sources: Bielefeld Academic Search Engine (BASE)Mémoires en Sciences de l'Information et de la CommunicationConference object . 2017The Science of The Total EnvironmentArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2017.04.187&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 33 citations 33 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 23visibility views 23 download downloads 62 Powered bymore_vert e-Prints Soton arrow_drop_down e-Prints SotonArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)INERIS: HAL (Institut National de l'Environnement Industriel et des Risques)Article . 2017License: CC BY SAFull-Text: https://ineris.hal.science/ineris-01853447Data sources: Bielefeld Academic Search Engine (BASE)Mémoires en Sciences de l'Information et de la CommunicationConference object . 2017The Science of The Total EnvironmentArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2017.04.187&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu