- home
- Advanced Search
- Energy Research
- European Marine Science
- Energy Research
- European Marine Science
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Wiley Funded by:EC | FutureMARESEC| FutureMARESDavid Mouillot; David Mouillot; Fabien Moullec; Yunne-Jai Shin; Ignacio Pita;doi: 10.1111/gcb.15814
pmid: 34309958
AbstractClimate change is rapidly becoming one of the biggest threats to marine life, and its impacts have the potential to strongly affect fisheries upon which millions of people rely. This is particularly crucial for the Mediterranean Sea, which is one of the world's biodiversity hotspots, one of the world's most overfished regions, and where temperatures are rising 25% faster than in the rest of the ocean on average. In this study, we calculated a vulnerability index for 100 species that compose 95% of the Mediterranean catches, through a trait‐based approach. The Climate Risk Assessment (CRA) methodology was subsequently used to assess the risks due to climate change of Mediterranean fisheries. We found that the northern Mediterranean fisheries target more vulnerable species than their southern counterparts. However, when combining this catch‐based vulnerability with a suite of socio‐economic parameters, north African countries stand out as the most vulnerable to climate change impacts. Indeed, considering countries’ exposure of the fisheries sector and their vulnerability to climate change, a sharp contrast between northern and southern Mediterranean appears, with Egypt and Tunisia scoring the highest risk. By integrating a trait‐based approach on targeted marine species with socio‐economic features, our analysis helps to better understand the ramifications of climate change consequences on Mediterranean fisheries and highlights the regions that could potentially be particularly affected.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15814&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15814&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Wiley Funded by:EC | FutureMARESEC| FutureMARESDavid Mouillot; David Mouillot; Fabien Moullec; Yunne-Jai Shin; Ignacio Pita;doi: 10.1111/gcb.15814
pmid: 34309958
AbstractClimate change is rapidly becoming one of the biggest threats to marine life, and its impacts have the potential to strongly affect fisheries upon which millions of people rely. This is particularly crucial for the Mediterranean Sea, which is one of the world's biodiversity hotspots, one of the world's most overfished regions, and where temperatures are rising 25% faster than in the rest of the ocean on average. In this study, we calculated a vulnerability index for 100 species that compose 95% of the Mediterranean catches, through a trait‐based approach. The Climate Risk Assessment (CRA) methodology was subsequently used to assess the risks due to climate change of Mediterranean fisheries. We found that the northern Mediterranean fisheries target more vulnerable species than their southern counterparts. However, when combining this catch‐based vulnerability with a suite of socio‐economic parameters, north African countries stand out as the most vulnerable to climate change impacts. Indeed, considering countries’ exposure of the fisheries sector and their vulnerability to climate change, a sharp contrast between northern and southern Mediterranean appears, with Egypt and Tunisia scoring the highest risk. By integrating a trait‐based approach on targeted marine species with socio‐economic features, our analysis helps to better understand the ramifications of climate change consequences on Mediterranean fisheries and highlights the regions that could potentially be particularly affected.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15814&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15814&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu