Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
  • Access
  • Type
  • Year range
  • Field of Science
  • Funder
  • SDG [Beta]
  • Country
  • Language
  • Source
  • Research community
    Clear
  • Organization
    Clear
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
117 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • European Marine Science
  • Chinese Academy of Sciences

  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: von Schuckmann, Karina; Minière, Audrey; Gues, Flora; Cuesta-Valero, Francisco José; +58 Authors

    Project: GCOS Earth Heat Inventory - A study under the Global Climate Observing System (GCOS) concerted international effort to update the Earth heat inventory (EHI), and presents an updated international assessment of ocean warming estimates, and new and updated estimates of heat gain in the atmosphere, cryosphere and land over the period from 1960 to present. Summary: The file “GCOS_EHI_1960-2020_Earth_Heat_Inventory_Ocean_Heat_Content_data.nc” contains a consistent long-term Earth system heat inventory over the period 1960-2020. Human-induced atmospheric composition changes cause a radiative imbalance at the top-of-atmosphere which is driving global warming. Understanding the heat gain of the Earth system from this accumulated heat – and particularly how much and where the heat is distributed in the Earth system - is fundamental to understanding how this affects warming oceans, atmosphere and land, rising temperatures and sea level, and loss of grounded and floating ice, which are fundamental concerns for society. This dataset is based on a study under the Global Climate Observing System (GCOS) concerted international effort to update the Earth heat inventory published in von Schuckmann et al. (2020), and presents an updated international assessment of ocean warming estimates, and new and updated estimates of heat gain in the atmosphere, cryosphere and land over the period 1960-2020. The dataset also contains estimates for global ocean heat content over 1960-2020 for different depth layers, i.e., 0-300m, 0-700m, 700-2000m, 0-2000m, 2000-bottom, which are described in von Schuckmann et al. (2022). This version includes an update of heat storage of global ocean heat content, where one additional product (Li et al., 2022) had been included to the initial estimate. The Earth heat inventory had been updated accordingly, considering also the update for continental heat content (Cuesta-Valero et al., 2023).

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ World Data Center fo...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    World Data Center for Climate
    Dataset . 2023
    License: CC BY
    Data sources: Datacite
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ World Data Center fo...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      World Data Center for Climate
      Dataset . 2023
      License: CC BY
      Data sources: Datacite
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid bw Wu-Bing Xu;
    Wu-Bing Xu
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Wu-Bing Xu in OpenAIRE
    orcid bw Wen-Yong Guo;
    Wen-Yong Guo
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Wen-Yong Guo in OpenAIRE
    orcid Josep M. Serra-Diaz;
    Josep M. Serra-Diaz
    ORCID
    Harvested from ORCID Public Data File

    Josep M. Serra-Diaz in OpenAIRE
    orcid Franziska Schrodt;
    Franziska Schrodt
    ORCID
    Harvested from ORCID Public Data File

    Franziska Schrodt in OpenAIRE
    +55 Authors

    As Earth’s climate has varied strongly through geological time, studying the impacts of past climate change on biodiversity helps to understand the risks from future climate change. However, it remains unclear how paleoclimate shapes spatial variation in biodiversity. Here, we assessed the influence of Quaternary climate change on spatial dissimilarity in taxonomic, phylogenetic, and functional composition among neighboring 200-kilometer cells (beta-diversity) for angiosperm trees worldwide. We found that larger glacial-interglacial temperature change was strongly associated with lower spatial turnover (species replacements) and higher nestedness (richness changes) components of beta-diversity across all three biodiversity facets. Moreover, phylogenetic and functional turnover was lower and nestedness higher than random expectations based on taxonomic beta-diversity in regions that experienced large temperature change, reflecting phylogenetically and functionally selective processes in species replacement, extinction, and colonization during glacial-interglacial oscillations. Our results suggest that future human-driven climate change could cause local homogenization and reduction in taxonomic, phylogenetic, and functional diversity of angiosperm trees worldwide.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The University of Wa...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Science Advances
    Article . 2023 . Peer-reviewed
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Science Advances
    Article . 2023
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim
    Access Routes
    Green
    gold
    21
    citations21
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The University of Wa...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Science Advances
      Article . 2023 . Peer-reviewed
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Science Advances
      Article . 2023
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Xu, Qinghai; orcid Chen, Fahu;
    Chen, Fahu
    ORCID
    Harvested from ORCID Public Data File

    Chen, Fahu in OpenAIRE
    orcid Zhang, Shengrui;
    Zhang, Shengrui
    ORCID
    Harvested from ORCID Public Data File

    Zhang, Shengrui in OpenAIRE
    Cao, Xianyong; +6 Authors

    A cal. 20-year-resolution pollen record from Gonghai Lake presented the detailed process of mountain vegetation succession and East Asian Summer Monsoon (EASM) changes since the last deglaciation in Shanxi Province, North China. Modern vegetation distribution and lake surface pollen assemblages suggested that the fossil pollen mainly came from local and surrounding vegetation in Gonghai Lake, which reflected the elevational changes of plant communities in study area. From 14,700 to 11,100 cal. yr BP, open forests and mountain meadows dominated by shrubs and herbaceous species in surrounding area, suggesting a weak EASM with less precipitation. In the period between 11,100 and 7300 cal. yr BP, bushwoods and grasses were gradually replaced by mixed broadleaf-conifer forest, first developed by pioneer species of Betula and Populus and then replaced by Picea, Pinus, and Quercus, implying an enhanced EASM and increased temperature and precipitation. During the period of 7300–5000 cal. yr BP, warm-fitted trees became expanded and widespread, indicating a climax community of mixed broadleaf-conifer forest and warm and humid climate with higher temperature and sufficient precipitation and the strongest period of EASM. From 5000 to 1600 cal. yr BP, Pinus pollen increased, but Quercus pollen decreased, showing the breakup of the climax community and the recession of the EASM. Since 1600 cal. yr BP, under the threats of land reclamation and deforestation, forest cover sharply decreased, and mountain grass lands were developed. The EASM changes inferred from pollen record of Gonghai Lake were asynchronous to the oxygen isotope records of stalagmites from southern China. We suggest that the existence of remnant Northern Hemisphere ice sheets and relative low sea levels might hampered the northward penetration of the EASM in early Holocene, which caused the maximum monsoon precipitation to reach northern China until mid-Holocene.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Holocenearrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    82
    citations82
    popularityTop 1%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Holocenearrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Li, Gang;
    Li, Gang
    ORCID
    Harvested from ORCID Public Data File

    Li, Gang in OpenAIRE
    Li, Xiao-Sen; orcid Wang, Yi;
    Wang, Yi
    ORCID
    Harvested from ORCID Public Data File

    Wang, Yi in OpenAIRE
    Zhang, Yu;

    The gas production behavior of methane hydrate in porous media using the huff and puff method was investigated in the Cubic Hydrate Simulator (CHS), a novel developed three-dimensional 5.8-L cubic pressure vessel. Three horizontal layers equally divide the CHS into four regions. A 9-spot distribution of the vertical wells, a single horizontal well and a 25-spot distribution of the thermometers are arranged on each layer, respectively. The vertical wells at the axis of the CHS were used as the injection and production wells. The huff and puff method includes the injection, soaking and production stages. The amount of water injected and produced, the gas production rate, the percentage of the hydrate dissociation and the gas-to-water ratio were evaluated. Under the thermodynamic conditions in this work, the gas production from the sediment in this work using the huff and puff method is economically profitable from the relative criterion point of view. The sensitivity analysis demonstrates the dependence of the gas production on the initial hydrate saturation, and the temperature and the injection rate of the injected hot water.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy
    Article . 2011 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    78
    citations78
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy
      Article . 2011 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid bw Cristina Trigal;
    Cristina Trigal
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Cristina Trigal in OpenAIRE
    orcid Erik Jeppesen;
    Erik Jeppesen
    ORCID
    Harvested from ORCID Public Data File

    Erik Jeppesen in OpenAIRE
    orcid bw Tiina Nõges;
    Tiina Nõges
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Tiina Nõges in OpenAIRE
    orcid Ulrike Scharfenberger;
    Ulrike Scharfenberger
    ORCID
    Harvested from ORCID Public Data File

    Ulrike Scharfenberger in OpenAIRE
    +17 Authors

    AbstractSubmerged macrophytes are of key importance for the structure and functioning of shallow lakes and can be decisive for maintaining them in a clear water state. The ongoing climate change affects the macrophytes through changes in temperature and precipitation, causing variations in nutrient load, water level and light availability. To investigate how these factors jointly determine macrophyte dominance and growth, we conducted a highly standardized pan‐European experiment involving the installation of mesocosms in lakes. The experimental design consisted of mesotrophic and eutrophic nutrient conditions at 1 m (shallow) and 2 m (deep) depth along a latitudinal temperature gradient with average water temperatures ranging from 14.9 to 23.9°C (Sweden to Greece) and a natural drop in water levels in the warmest countries (Greece and Turkey). We determined percent plant volume inhabited (PVI) of submerged macrophytes on a monthly basis for 5 months and dry weight at the end of the experiment. Over the temperature gradient, PVI was highest in the shallow mesotrophic mesocosms followed by intermediate levels in the shallow eutrophic and deep mesotrophic mesocosms, and lowest levels in the deep eutrophic mesocosms. We identified three pathways along which water temperature likely affected PVI, exhibiting (a) a direct positive effect if light was not limiting; (b) an indirect positive effect due to an evaporation‐driven water level reduction, causing a nonlinear increase in mean available light; and (c) an indirect negative effect through algal growth and, thus, high light attenuation under eutrophic conditions. We conclude that high temperatures combined with a temperature‐mediated water level decrease can counterbalance the negative effects of eutrophic conditions on macrophytes by enhancing the light availability. While a water level reduction can promote macrophyte dominance, an extreme reduction will likely decrease macrophyte biomass and, consequently, their capacity to function as a carbon store and food source.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Estonian University ...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Global Change Biology
    Article . 2020 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Global Change Biology
    Article
    License: CC BY
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim
    Access Routes
    Green
    hybrid
    42
    citations42
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    visibility55
    visibilityviews55
    downloaddownloads21
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Estonian University ...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Global Change Biology
      Article . 2020 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Global Change Biology
      Article
      License: CC BY
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Pablo Urrutia-Cordero;
    Pablo Urrutia-Cordero
    ORCID
    Harvested from ORCID Public Data File

    Pablo Urrutia-Cordero in OpenAIRE
    orcid Fernando Chaguaceda;
    Fernando Chaguaceda
    ORCID
    Harvested from ORCID Public Data File

    Fernando Chaguaceda in OpenAIRE
    Fernando Chaguaceda; orcid Lars-Anders Hansson;
    Lars-Anders Hansson
    ORCID
    Harvested from ORCID Public Data File

    Lars-Anders Hansson in OpenAIRE
    +4 Authors

    AbstractIn addition to a rise in mean air and water temperatures, more frequent and intense extreme climate events (such as heat waves) have been recorded around the globe during the past decades. These environmental changes are projected to intensify further in the future, and we still know little about how they will affect ecological processes driving harmful cyanobacterial bloom formation. Therefore, we conducted a long‐term experiment in 400‐L shallow freshwater mesocosms, where we evaluated the effects of a constant +4°C increase in mean water temperatures and compared it with a fluctuating warming scenario ranging from 0 to +8°C (i.e., including heat waves) but with the same +4°C long‐term elevation in mean water temperatures. We focused on investigating not only warming effects on cyanobacterial pelagic dynamics (phenology and biomass levels), but also on their recruitment from sediments—which are a fundamental part of their life history for which the response to warming remains largely unexplored. Our results demonstrate that (1) a warmer environment not only induces a seasonal advancement and boosts biomass levels of specific cyanobacterial species in the pelagic environment, but also increases their recruitment rates from the sediments, and (2) these species‐specific benthic and pelagic processes respond differently depending on whether climate warming is expressed only as an increase in mean water temperatures or, in addition, through an increased warming variability (including heat waves). These results are important because they show, for the first time, that climate warming can affect cyanobacterial dynamics at different life‐history stages, all the way from benthic recruitment up to their establishment in the pelagic community. Furthermore, it also highlights that both cyanobacterial benthic recruitment and pelagic biomass dynamics may be different as a result of changes in the variability of warming conditions. We argue that these findings are a critical first step to further our understanding of the relative importance of increased recruitment rates for harmful cyanobacterial bloom formation under different climate change scenarios.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Ecologyarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Ecology
    Article . 2020 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Ecology
    Article
    License: CC BY
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Ecology
    Article . 2021
    addClaim
    Access Routes
    Green
    hybrid
    37
    citations37
    popularityTop 1%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Ecologyarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Ecology
      Article . 2020 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Ecology
      Article
      License: CC BY
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Ecology
      Article . 2021
      addClaim
  • Authors: orcid bw Heidi Kreibich;
    Heidi Kreibich
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Heidi Kreibich in OpenAIRE
    orcid bw Anne F. Van Loon;
    Anne F. Van Loon
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Anne F. Van Loon in OpenAIRE
    orcid bw Kai Schröter;
    Kai Schröter
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Kai Schröter in OpenAIRE
    orcid bw Philip J. Ward;
    Philip J. Ward
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Philip J. Ward in OpenAIRE
    +87 Authors

    La gestion des risques a réduit la vulnérabilité aux inondations et aux sécheresses dans le monde1,2, mais leurs impacts continuent d'augmenter3. Une meilleure compréhension des causes de l'évolution des impacts est donc nécessaire, mais a été entravée par un manque de données empiriques4,5. Sur la base d'un ensemble de données mondiales de 45 paires d'événements qui se sont produits dans la même zone, nous montrons que la gestion des risques réduit généralement les impacts des inondations et des sécheresses, mais fait face à des difficultés pour réduire les impacts d'événements sans précédent d'une ampleur jamais connue auparavant. Si le deuxième événement était beaucoup plus dangereux que le premier, son impact était presque toujours plus élevé. En effet, la gestion n'a pas été conçue pour faire face à de tels événements extrêmes : par exemple, ils ont dépassé les niveaux de conception des digues et des réservoirs. Dans deux cas de réussite, l'impact du deuxième événement, plus dangereux, a été plus faible, en raison de l'amélioration de la gouvernance de la gestion des risques et des investissements élevés dans la gestion intégrée. La difficulté observée à gérer des événements sans précédent est alarmante, étant donné que des événements hydrologiques plus extrêmes sont projetés en raison du changement climatique3. La gestión de riesgos ha reducido la vulnerabilidad a las inundaciones y sequías a nivel mundial1,2, pero sus impactos siguen aumentando3. Por lo tanto, se necesita una mejor comprensión de las causas de los impactos cambiantes, pero se ha visto obstaculizada por la falta de datos empíricos4,5. Sobre la base de un conjunto de datos global de 45 pares de eventos que ocurrieron dentro de la misma área, mostramos que la gestión de riesgos generalmente reduce los impactos de inundaciones y sequías, pero enfrenta dificultades para reducir los impactos de eventos sin precedentes de una magnitud no experimentada anteriormente. Si el segundo evento era mucho más peligroso que el primero, su impacto era casi siempre mayor. Esto se debe a que la gestión no fue diseñada para hacer frente a tales eventos extremos: por ejemplo, superaron los niveles de diseño de diques y embalses. En dos casos de éxito, el impacto del segundo evento, más peligroso, fue menor, como resultado de una mejor gobernanza de la gestión de riesgos y una alta inversión en la gestión integrada. La dificultad observada para gestionar eventos sin precedentes es alarmante, dado que se proyectan eventos hidrológicos más extremos debido al cambio climático3. Risk management has reduced vulnerability to floods and droughts globally1,2, yet their impacts are still increasing3. An improved understanding of the causes of changing impacts is therefore needed, but has been hampered by a lack of empirical data4,5. On the basis of a global dataset of 45 pairs of events that occurred within the same area, we show that risk management generally reduces the impacts of floods and droughts but faces difficulties in reducing the impacts of unprecedented events of a magnitude not previously experienced. If the second event was much more hazardous than the first, its impact was almost always higher. This is because management was not designed to deal with such extreme events: for example, they exceeded the design levels of levees and reservoirs. In two success stories, the impact of the second, more hazardous, event was lower, as a result of improved risk management governance and high investment in integrated management. The observed difficulty of managing unprecedented events is alarming, given that more extreme hydrological events are projected owing to climate change3. أدت إدارة المخاطر إلى تقليل التعرض للفيضانات والجفاف على مستوى العالم1,2، ومع ذلك لا تزال آثارها تتزايد3. لذلك هناك حاجة إلى فهم أفضل لأسباب تغير التأثيرات، ولكن أعيق ذلك بسبب نقص البيانات التجريبية4، 5. على أساس مجموعة بيانات عالمية مكونة من 45 زوجًا من الأحداث التي وقعت داخل نفس المنطقة، نظهر أن إدارة المخاطر تقلل عمومًا من آثار الفيضانات والجفاف ولكنها تواجه صعوبات في الحد من آثار الأحداث غير المسبوقة ذات الحجم الذي لم تشهده من قبل. إذا كان الحدث الثاني أكثر خطورة من الأول، فإن تأثيره كان دائمًا أعلى. وذلك لأن الإدارة لم تكن مصممة للتعامل مع مثل هذه الأحداث المتطرفة: على سبيل المثال، تجاوزت مستويات تصميم السدود والخزانات. في قصتي نجاح، كان تأثير الحدث الثاني، الأكثر خطورة، أقل، نتيجة لتحسين حوكمة إدارة المخاطر والاستثمار العالي في الإدارة المتكاملة. إن الصعوبة الملحوظة في إدارة الأحداث غير المسبوقة تنذر بالخطر، بالنظر إلى أنه من المتوقع حدوث المزيد من الأحداث الهيدرولوجية المتطرفة بسبب تغير المناخ3.

    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim
  • Authors: Li, Gang; orcid Gao, Kunshan;
    Gao, Kunshan
    ORCID
    Harvested from ORCID Public Data File

    Gao, Kunshan in OpenAIRE

    Solar ultraviolet radiation (UVR, 280-400 nm) in aquatic environments significantly affects photosynthetic carbon fixation by marine phytoplankton. To document such UV-related effects in Chinese waters, we measured in-situ photosynthetic carbon fixation in the coastal surface seawater of the South China Sea under solar radiation in the presence and in the absence of UVR during the winter monsoon period (15 October to 16 December 2005). Phytoplankton biomass (Chl a) ranged from 1.40 to 3.79 mu g l(-1), 75-98% of which was accounted for by piconanoplankton cells ( 20 or <20 mu m) insignificantly interacted to influence the UV-induced inhibition of carbon fixation.

    addClaim
    11
    citations11
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Tierney, M; Almond, R; Stanwell-Smith, D; Zöckler, C; +5 Authors

    AbstractThe unsustainable use of wild animals and plants is thought to be a significant driver of biodiversity loss in many regions of the world. The international community has therefore called for action to ensure the sustainable use of living resources and safeguard them for future generations. Indicators that can track changes in populations of species used by humans are essential tools for measuring progress towards these ideals and informing management decisions. Here we present two indicators that could be used to track changes in populations of utilized vertebrate species and levels of harvest sustainability. Preliminary results based on sample data both at the global level and for the Arctic show that utilized species are faring better than other species overall. This could be a consequence of better management of these populations, as indicated by more sustainable harvest levels in recent decades. Limitations of the indicators are still apparent; in particular, there is a lack of data on harvested populations of some vertebrate classes and from certain regions. Focusing monitoring efforts on broadening the scope of data collected and identifying interactions with other potential drivers of decline will strengthen these indicators as policy tools and improve their potential to be incorporated into future sets of indicators to track progress towards global biodiversity targets.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Oryxarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Oryx
    Article . 2014 . Peer-reviewed
    License: Cambridge Core User Agreement
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Oryx
    Article
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    UCL Discovery
    Article . 2014
    Data sources: UCL Discovery
    addClaim
    Access Routes
    Green
    gold
    12
    citations12
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Oryxarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Oryx
      Article . 2014 . Peer-reviewed
      License: Cambridge Core User Agreement
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Oryx
      Article
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      UCL Discovery
      Article . 2014
      Data sources: UCL Discovery
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Xianyong Cao; orcid Natalia Rudaya;
    Natalia Rudaya
    ORCID
    Harvested from ORCID Public Data File

    Natalia Rudaya in OpenAIRE
    orcid Xiaozhong Huang;
    Xiaozhong Huang
    ORCID
    Harvested from ORCID Public Data File

    Xiaozhong Huang in OpenAIRE
    orcid Xiaoduo Pan;
    Xiaoduo Pan
    ORCID
    Harvested from ORCID Public Data File

    Xiaoduo Pan in OpenAIRE
    +10 Authors

    AbstractA comprehensive understanding of the regional vegetation responses to long‐term climate change will help to forecast Earth system dynamics. Based on a new well‐dated pollen data set from Kanas Lake and a review on the published pollen records in and around the Altai Mountains, the regional vegetation dynamics and forcing mechanisms are discussed. In the Altai Mountains, the forest optimum occurred during 10–7 ka for the upper forest zone and the tree line decline and/or ecological shifts were caused by climatic cooling from around 7 ka. In the lower forest zone, the forest reached an optimum in the middle Holocene, and then increased openness of the forest, possibly caused by both climate cooling and human activities, took place in the late Holocene. In the lower basins or plains around the Altai Mountains, the development of protograssland or forest benefited from increasing humidity in the middle to late Holocene.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Geophysical Research...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Geophysical Research Letters
    Article . 2018 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim
    82
    citations82
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Geophysical Research...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Geophysical Research Letters
      Article . 2018 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right
Powered by OpenAIRE graph