Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
  • Access
    Clear
  • Type
  • Year range
  • Field of Science
  • Funder
  • SDG [Beta]
  • Country
    Clear
  • Language
  • Source
  • Research community
    Clear
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
241 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • Closed Access
  • Open Source
  • CN
  • IT
  • AU
  • Netherlands

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Limin Du;
    Limin Du
    ORCID
    Harvested from ORCID Public Data File

    Limin Du in OpenAIRE
    Yanan He;

    Abstract This paper investigates the spillovers of extreme risks between crude oil and stock markets using daily data of the S&P 500 stock index and West Texas Intermediate (WTI) crude oil futures returns. Based on the method of Granger causality in risk, Value at Risk (VaR) is employed to measure market risk, and a class of kernel-based tests is used to detect negative and positive risk spillover effects. Empirical results reveal that there are significant risk spillovers between the two markets. Extreme movements, past or current, in one market may have a significant predictive power for those in the other market. Prior to the recent financial crisis, there are positive risk spillovers from stock market to crude oil market, and negative spillovers from crude oil market to stock market. After the financial crisis, bidirectional positive risk spillovers are strengthened markedly. The risk spillovers may occur instantaneously, and/or with a (long) time delay. Both positive and negative risk spillover effects exhibit asymmetric correlations.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Economicsarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy Economics
    Article . 2015 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    179
    citations179
    popularityTop 1%
    influenceTop 1%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Economicsarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy Economics
      Article . 2015 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Zhou, Yuekuan (author); orcid Liu, Zhengxuan (author);
    Liu, Zhengxuan (author)
    ORCID
    Harvested from ORCID Public Data File

    Liu, Zhengxuan (author) in OpenAIRE
    Xing, Chaojie (author);

    The large thermal potentials with geothermal gradient of abandoned wells provide the possibility and opportunity for carbon-neutrality transition of district heating systems, whereas energy harvesting from abandoned geothermal wells is full of challenges, due to the considerable initial investment in economic cost, system performance degradation, and so on. In this chapter, a systematic and comprehensive review on the application techniques of abandoned wells is presented, in terms of advanced thermal/power conversions, renewable integrations for district heating, and strategies for performance enhancement. Discussions on real applications have been conducted and future prospects presented, from perspectives of lifetime system performance, techno-economic feasibility analysis, and potential assessment of abandoned wells for carbon-neutrality transition. The results of this chapter can provide preliminary knowledge and cutting-edge technologies on renewable integrations with abandoned wells, so as to demonstrate techno-economic-environmental potentials of abandoned wells and contributions toward carbon-neutrality transition. Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public. Design & Construction Management

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://doi.org/10.1016/b978-0...
    Part of book or chapter of book . 2022 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    TU Delft Repository
    Part of book or chapter of book . 2022
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility12
    visibilityviews12
    downloaddownloads7
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      https://doi.org/10.1016/b978-0...
      Part of book or chapter of book . 2022 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      TU Delft Repository
      Part of book or chapter of book . 2022
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Chunhui Duan;
    Chunhui Duan
    ORCID
    Harvested from ORCID Public Data File

    Chunhui Duan in OpenAIRE
    orcid Ke Gao;
    Ke Gao
    ORCID
    Harvested from ORCID Public Data File

    Ke Gao in OpenAIRE
    Jacobus J. van Franeker; orcid Feng Liu;
    Feng Liu
    ORCID
    Harvested from ORCID Public Data File

    Feng Liu in OpenAIRE
    +2 Authors

    Using benzo[1,2-b:4,5-b']dithiophene and two matched 5,6-difluorobenzo[2,1,3]thiadiazole-based monomers, we demonstrate that random copolymerization of two electron deficient monomers, alternating with one electron rich monomer, forms a successful approach to synthesize state-of-the-art semiconducting copolymers for organic solar cells. Over a range of compositions, these random copolymers provide impressive power conversion efficiencies (PCEs) of about 8.0%, higher than those of their binary parent polymers, and with little batch-to-batch variation. A PCE over 8% could also be achieved when the active layer was deposited from nonhalogenated solvents at room temperature.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of the Ameri...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of the American Chemical Society
    Article . 2016 . Peer-reviewed
    Data sources: Crossref
    addClaim
    102
    citations102
    popularityTop 10%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Michel Dubuisson;
    Michel Dubuisson
    ORCID
    Harvested from ORCID Public Data File

    Michel Dubuisson in OpenAIRE
    Lei Shi; Desheng Zhang; orcid B.P.M. van Esch;
    B.P.M. van Esch
    ORCID
    Harvested from ORCID Public Data File

    B.P.M. van Esch in OpenAIRE
    +1 Authors

    Tip leakage vortex (TLV) in an axial flow pump was simulated by using the shear-stress transport (SST) k-ω turbulence model with a refined high-quality structured grid at different flow rate conditions. The TLV trajectories were obtained by using the swirling strength method corresponding to the cross-sections of streamlines of the TLV. High-speed photography experiments were conducted to observe the TLV trajectory based on cavitation tracing bubbles in an axial flow pump with a transparent casing. The TLV trajectories predicted by the SST k-ω turbulence model agreed well with the visualization results. The numerical and experimental results show that the starting point of the TLV is near the leading edge at part-load flow rate condition (Q/QBEP=0.85), and it moves towards the trailing edge to approximately 20% blade chord at the design flow rate condition (Q/QBEP=1.0). At large flow rate conditions (Q/QBEP=1.2), the starting point of the TLV shifts to about 40% blade chord, and the relative angle between the TLV trajectory and the blade chord is gradually reduced with the increased flow rate. Detailed statistics of the fluid dynamics of the end-wall shear layer and the TLV at design and off-design conditions were discussed based on the numerical results. The shear layer and jetting flow in the tip gap are highly affected by the pressure difference between the pressure side (PS) and suction side (SS). It was also found that the distributions of static pressure, turbulent kinetic energy (TKE) and vorticity inside the TLV core are associated with the TLV structure which is affected by blade loading and operation conditions of the axial flow pump.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Computers & Fluidsarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Computers & Fluids
    Article . 2015 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    173
    citations173
    popularityTop 1%
    influenceTop 1%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Computers & Fluidsarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Computers & Fluids
      Article . 2015 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Katzav, Joel;

    I bring out the limitations of four important views of what the target of useful climate model assessment is. Three of these views are drawn from philosophy. They include the views of Elisabeth Lloyd and Wendy Parker, and an application of Bayesian confirmation theory. The fourth view I criticise is based on the actual practice of climate model assessment. In bringing out the limitations of these four views, I argue that an approach to climate model assessment that neither demands too much of such assessment nor threatens to be unreliable will, in typical cases, have to aim at something other than the confirmation of claims about how the climate system actually is. This means, I suggest, that the Intergovernmental Panel on Climate Change’s (IPCC¿s) focus on establishing confidence in climate model explanations and predictions is misguided. So too, it means that standard epistemologies of science with pretensions to generality, e.g., Bayesian epistemologies, fail to illuminate the assessment of climate models. I go on to outline a view that neither demands too much nor threatens to be unreliable, a view according to which useful climate model assessment typically aims to show that certain climatic scenarios are real possibilities and, when the scenarios are determined to be real possibilities, partially to determine how remote they are.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Studies in History a...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    34
    citations34
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Aslannejad, H.;
    Aslannejad, H.
    ORCID
    Harvested from ORCID Public Data File

    Aslannejad, H. in OpenAIRE
    orcid BARELLI, Linda;
    BARELLI, Linda
    ORCID
    Harvested from ORCID Public Data File

    BARELLI, Linda in OpenAIRE
    Babaie, A.; orcid Bozorgmehri, S.;
    Bozorgmehri, S.
    ORCID
    Harvested from ORCID Public Data File

    Bozorgmehri, S. in OpenAIRE

    The use of natural gas as fuel for solid oxide fuel cell is one of main potentials of this technology to be exploited as an efficient and profitable future power generation source. However, using direct methane (main component of natural gas) in conventional nickel-based fuel cells leads to carbon deposition problem which causes performance failure even in short period (24 h). According to thermodynamic principles, fuel addition with oxygen carriers is a good solution to prevent carbon deposition problem. Among the different options, a deep investigation is here presented for the air addition case. Through experimental activity under different operating conditions and suitable performance and structural cell characterization, the 1:5 optimal air addition to methane is determined, providing outcomes of interest for SOFC operation optimization in case of direct methane feeding. In fact, through impedance spectroscopy analysis and voltage measurements, as well as ex-post structural analysis, it is proved that in these conditions both carbon deposition and anode layers delamination are avoided, also after 100 h operation; moreover a cell stable operation at 0.6 V is guaranteed. The proposed operation mode, therefore, represents a promising solution, to be deeply investigated in the future at stack level, for SOFCs directly fed with natural gas.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Applied Energy
    Article . 2016 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Applied Energy
    Article . 2016
    addClaim
    48
    citations48
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Applied Energy
      Article . 2016 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Applied Energy
      Article . 2016
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid bw VEZZOLI, CARLO ARNALDO;
    VEZZOLI, CARLO ARNALDO
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    VEZZOLI, CARLO ARNALDO in OpenAIRE
    orcid Tukker, A.;
    Tukker, A.
    ORCID
    Harvested from ORCID Public Data File

    Tukker, A. in OpenAIRE
    Sto, E.;

    This special issue is a result of work of Sustainable Consumption Research Exchanges (SCORE!). This EU supported network project under the 6th Framework Program engaged a few hundred professionals interested in sustainable consumption and production (SCP) in Europe and beyond. A key goal of the network is to enhance understanding how radical reductions of environmental impacts and at global level a more equitable growth can be realised. In April 2006, SCORE! organised a workshop in Copenhagen with support of the European Environment Agency, titled 'Governance of change to Sustainable Consumption and Production'. This special issue contains 7 papers based on presentations during that workshop. It further contains a summary of the main conclusions drawn by the SCORE! project team on the basis of a broader review of radical change to SCP from a business, design, consumer and system innovation perspective. The conclusion is unambiguously that governments cannot 'outsource politics', but must form a 'triangle of change' with business and consumers. We have further to understand the systemic nature of the change required. Some policies are currently more viable than others, given existing mega-trends, mega-structures and mega-views, which cannot be changed easily in the short-term and usually cannot be tackled head-on. Such issues, like paradigms on the possibility of continuous exponential growth, the belief in free markets and trade, need a longer-term deliberative process before change is possible. © 2007 Elsevier Ltd. All rights reserved.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao RE.PUBLIC@POLIMI Res...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Cleaner Production
    Article . 2008 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    26
    citations26
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao RE.PUBLIC@POLIMI Res...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Cleaner Production
      Article . 2008 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Kai Wang;
    Kai Wang
    ORCID
    Harvested from ORCID Public Data File

    Kai Wang in OpenAIRE
    orcid bw Yu Xue;
    Yu Xue
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Yu Xue in OpenAIRE
    Hao Xu; Lianzhong Huang; +6 Authors

    Wing-diesel engine-powered hybrid ships can effectively reduce fuel consumption and CO2 emissions by using wind energy as the auxiliary driving power. The energy optimization management of the hybrid system can further improve the ship's energy efficiency. To achieve this purpose, it is significant to establish an effective energy consumption model for the energy optimization management of the hybrid system. Therefore, an energy consumption model is established based on the energy conversion analysis of the hybrid power system in this paper. This model can effectively describe the energy consumption of the hybrid ship under different navigational environmental conditions. Then, a joint optimization method of the wing attack angle and of the sailing speed for the hybrid ship is proposed by adopting a swarm intelligence optimization algorithm, in order to reduce energy consumption and CO2 emissions of the hybrid ship under different navigational environmental conditions. Finally, the energy consumption optimization potentials by adopting the hybrid power system and the proposed joint optimization method are analyzed. The results show that the energy consumption and CO2 emissions along a typical route can be reduced by about 4.5%. This study provides an important basis for future practical operations of wing-diesel engine-powered hybrid ships. Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public. Transport Engineering and Logistics

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy
    Article . 2022 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    38
    citations38
    popularityTop 10%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    visibility27
    visibilityviews27
    downloaddownloads55
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy
      Article . 2022 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Ran, C.L.; Zhang, Y.Z.; orcid Yin, Y.;
    Yin, Y.
    ORCID
    Harvested from ORCID Public Data File

    Yin, Y. in OpenAIRE

    Abstract Massive adoption of shared electric mobility benefits people’s daily commute and environment but creates overload issues into the power grid, then further cause challenges to charging service operations and power management. Previous research always focuses on single optimization process on shared vehicle planning, rather than the combination of demand management into day-ahead planning operations. To this end, we attempt to propose a mixed integer programming model integrating demand response operations to further explore the impacts of demand response on shared electric vehicle planning operations. We first model a two-stages model integrating charging facility location in the first stage and vehicle relocation in the second stage. Moreover, both supply-side and demand-side uncertainties are considered and approximated into tractable form by applying sample average approximation and distributional robust set featuring the entropy knowledge and electric vehicle’s multi-level charging duration. The demand response policy is also proposed to reshape the original charging demand into an economical and reliable way to improve operational efficiency and mitigate the power overload issues caused by massive electric vehicle adoption. Further, we conduct a real-world case study in Amsterdam, the Netherlands, to explore the social-operational impacts of vehicle planning optimization model integrating the demand response, robust charging facility planning in three areas: (1) The demand response integration promote electric vehicle planning operations on cost-saving for about 3%. (2) Data richness of serviceability towards charging piles influence all decisions through the shared electric vehicle charging station planning. (3) A trade-off exists between technical progress on charging rate and charging technology stability.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Applied Energy
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    31
    citations31
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Applied Energy
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Hailong Jiao; Henk Corporaal; Luc Waeijen; Yifan He;

    Algorithms from many application domains, such as linear algebra and image/signal processing, heavily use the multiplication operator. Despite hardware support which is present in most modern cores, multiplication remains one of the most energy hungry arithmetic operations. This work explores how the energy efficiency of hardware multipliers can be improved by taking into account that the operands of a multiplication typically do not utilize the full width of the datapath. Seven datawidth-aware multiplier designs are implemented and evaluated. Post-layout energy analysis is performed to obtain the energy efficiency of each design for a number of representative benchmarks targeting the consumer market. The results show a significant improvement in energy efficiency compared to a 32-bit Baugh-Wooley baseline multiplier. A 32-bit sign-magnitude based design, integrated in a two's complement datapath, is shown to have a 1.38 times better energy efficiency than a baseline two's complement multiplier. In the best case (JPEG encoding), the energy efficiency is increased by a factor 2.25, demonstrating that a sign-magnitude multiplier, and datawidth-aware multipliers in general, are an attractive option for ultra low-energy designs.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao DANS (Data Archiving...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://doi.org/10.1109/dsd.20...
    Conference object . 2018 . Peer-reviewed
    Data sources: Crossref
    addClaim
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao DANS (Data Archiving...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      https://doi.org/10.1109/dsd.20...
      Conference object . 2018 . Peer-reviewed
      Data sources: Crossref
      addClaim
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right
Powered by OpenAIRE graph