- home
- Advanced Search
- Energy Research
- Bioresource Technology
- Netherlands
- Energy Research
- Bioresource Technology
- Netherlands
description Publicationkeyboard_double_arrow_right Article 2021 Belgium, NetherlandsPublisher:Elsevier BV Abdelrahman, Amr; Furkan Aras, Muhammed; Cicekalan, Busra; Fakioglu, Malhun; Cingoz, Seyma; Basa, Safak; Guven, Huseyin; Ozgun, Hale; Ozturk, Izzet; Koyuncu, Ismail; van Lier, Jules B.; Volcke, Eveline I. P.; Evren Ersahin, Mustafa;Energy-rich sludge can be obtained from primary clarifiers preceding biological reactors. Alternatively, the incoming wastewater can be sent to a very-high-loaded activated sludge system, i.e., a so-called A-stage. However, the effects of applying an A-stage instead of a primary clarifier, on the subsequent sludge digestion for long-term operation is still unknown. In this study, biogas production and permeate quality, and filterability characteristics were investigated in a lab-scale anaerobic membrane bioreactor for primary sludge and A-stage sludge (A-sludge) treatment. A higher specific methane yield was obtained from digestion of A-sludge compared to primary sludge. Similarly, specific methanogenic activity was higher when the anaerobic membrane bioreactor was fed with A-sludge compared to primary sludge. Plant-wide mass balance analysis indicated that about 35% of the organic matter in wastewater was recovered as methane by including an A-stage, compared to about 20% with a primary clarifier.
Bioresource Technolo... arrow_drop_down Ghent University Academic BibliographyArticle . 2022Data sources: Ghent University Academic BibliographyDelft University of Technology: Institutional RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.3968868&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Bioresource Technolo... arrow_drop_down Ghent University Academic BibliographyArticle . 2022Data sources: Ghent University Academic BibliographyDelft University of Technology: Institutional RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.3968868&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 NetherlandsPublisher:Elsevier BV Dhaliwal, S.S.; Oberoi, H.S.; Sandhu, S.K.; Nanda, D.; Kumar, D.; Uppal, S.K.;The thermotolerant yeast strain isolated from sugarcane juice through enrichment technique was identified as a strain of Pichiakudriavzevii (Issatchenkiaorientalis) through molecular characterization. The P. kudriavzevii cells adapted to galactose medium produced about 30% more ethanol from sugarcane juice than the non-adapted cells. The recycled cells could be used for four successive cycles without a significant drop in ethanol production. Fermentation in a laboratory fermenter with galactose adapted P. kudriavzevii cells at 40°C resulted in an ethanol concentration and productivity of 71.9 g L(-1) and 4.0 g L(-1)h(-1), respectively from sugarcane juice composed of about 14% (w/v) sucrose, 2% (w/v) glucose and 1% (w/v) fructose. In addition to ethanol, 3.30 g L(-1) arabitol and 4.19 g L(-1) glycerol were also produced, whereas sorbitol and xylitol were not formed during fermentation. Use of galactose adapted P. kudriavzevii cells for ethanol production from sugarcane juice holds potential for scale-up studies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2011.02.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu103 citations 103 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2011.02.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 Switzerland, NetherlandsPublisher:Elsevier BV Funded by:NWO | Biorefineries for China a...NWO| Biorefineries for China and Europe ? The Road to SustainabilityPosada Duque, J.A.; Patel, A.D.; Roes, A.L.; Blok, K.; Faaij, A.P.C.; Patel, M.K.;pmid: 23069604
The aim of this study is to present and apply a quick screening method and to identify the most promising bioethanol derivatives using an early-stage sustainability assessment method that compares a bioethanol-based conversion route to its respective petrochemical counterpart. The method combines, by means of a multi-criteria approach, quantitative and qualitative proxy indicators describing economic, environmental, health and safety and operational aspects. Of twelve derivatives considered, five were categorized as favorable (diethyl ether, 1,3-butadiene, ethyl acetate, propylene and ethylene), two as promising (acetaldehyde and ethylene oxide) and five as unfavorable derivatives (acetic acid, n-butanol, isobutylene, hydrogen and acetone) for an integrated biorefinery concept.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2012.09.058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 198 citations 198 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2012.09.058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2021 Belgium, NetherlandsPublisher:Elsevier BV Abdelrahman, Amr; Furkan Aras, Muhammed; Cicekalan, Busra; Fakioglu, Malhun; Cingoz, Seyma; Basa, Safak; Guven, Huseyin; Ozgun, Hale; Ozturk, Izzet; Koyuncu, Ismail; van Lier, Jules B.; Volcke, Eveline I. P.; Evren Ersahin, Mustafa;Energy-rich sludge can be obtained from primary clarifiers preceding biological reactors. Alternatively, the incoming wastewater can be sent to a very-high-loaded activated sludge system, i.e., a so-called A-stage. However, the effects of applying an A-stage instead of a primary clarifier, on the subsequent sludge digestion for long-term operation is still unknown. In this study, biogas production and permeate quality, and filterability characteristics were investigated in a lab-scale anaerobic membrane bioreactor for primary sludge and A-stage sludge (A-sludge) treatment. A higher specific methane yield was obtained from digestion of A-sludge compared to primary sludge. Similarly, specific methanogenic activity was higher when the anaerobic membrane bioreactor was fed with A-sludge compared to primary sludge. Plant-wide mass balance analysis indicated that about 35% of the organic matter in wastewater was recovered as methane by including an A-stage, compared to about 20% with a primary clarifier.
Bioresource Technolo... arrow_drop_down Ghent University Academic BibliographyArticle . 2022Data sources: Ghent University Academic BibliographyDelft University of Technology: Institutional RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.3968868&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Bioresource Technolo... arrow_drop_down Ghent University Academic BibliographyArticle . 2022Data sources: Ghent University Academic BibliographyDelft University of Technology: Institutional RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.3968868&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 NetherlandsPublisher:Elsevier BV Dhaliwal, S.S.; Oberoi, H.S.; Sandhu, S.K.; Nanda, D.; Kumar, D.; Uppal, S.K.;The thermotolerant yeast strain isolated from sugarcane juice through enrichment technique was identified as a strain of Pichiakudriavzevii (Issatchenkiaorientalis) through molecular characterization. The P. kudriavzevii cells adapted to galactose medium produced about 30% more ethanol from sugarcane juice than the non-adapted cells. The recycled cells could be used for four successive cycles without a significant drop in ethanol production. Fermentation in a laboratory fermenter with galactose adapted P. kudriavzevii cells at 40°C resulted in an ethanol concentration and productivity of 71.9 g L(-1) and 4.0 g L(-1)h(-1), respectively from sugarcane juice composed of about 14% (w/v) sucrose, 2% (w/v) glucose and 1% (w/v) fructose. In addition to ethanol, 3.30 g L(-1) arabitol and 4.19 g L(-1) glycerol were also produced, whereas sorbitol and xylitol were not formed during fermentation. Use of galactose adapted P. kudriavzevii cells for ethanol production from sugarcane juice holds potential for scale-up studies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2011.02.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu103 citations 103 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2011.02.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 Switzerland, NetherlandsPublisher:Elsevier BV Funded by:NWO | Biorefineries for China a...NWO| Biorefineries for China and Europe ? The Road to SustainabilityPosada Duque, J.A.; Patel, A.D.; Roes, A.L.; Blok, K.; Faaij, A.P.C.; Patel, M.K.;pmid: 23069604
The aim of this study is to present and apply a quick screening method and to identify the most promising bioethanol derivatives using an early-stage sustainability assessment method that compares a bioethanol-based conversion route to its respective petrochemical counterpart. The method combines, by means of a multi-criteria approach, quantitative and qualitative proxy indicators describing economic, environmental, health and safety and operational aspects. Of twelve derivatives considered, five were categorized as favorable (diethyl ether, 1,3-butadiene, ethyl acetate, propylene and ethylene), two as promising (acetaldehyde and ethylene oxide) and five as unfavorable derivatives (acetic acid, n-butanol, isobutylene, hydrogen and acetone) for an integrated biorefinery concept.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2012.09.058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 198 citations 198 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2012.09.058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu