- home
- Advanced Search
Filters
Clear All- Energy Research
- 7. Clean energy
- Netherlands
- Neuroscience
- Energy Research
- 7. Clean energy
- Netherlands
- Neuroscience
description Publicationkeyboard_double_arrow_right Article , Journal 2009 NetherlandsPublisher:Springer Science and Business Media LLC Authors: Verdaasdonk, B.W. (author); Koopman, H.F.J.M. (author); Van der Helm, F.C.T. (author);pmid: 19504121
Like human walking, passive dynamic walking-i.e. walking down a slope with no actuation except gravity-is energy efficient by exploiting the natural dynamics. In the animal world, neural oscillators termed central pattern generators (CPGs) provide the basic rhythm for muscular activity in locomotion. We present a CPG model, which automatically tunes into the resonance frequency of the passive dynamics of a bipedal walker, i.e. the CPG model exhibits resonance tuning behavior. Each leg is coupled to its own CPG, controlling the hip moment of force. Resonance tuning above the endogenous frequency of the CPG-i.e. the CPG's eigenfrequency-is achieved by feedback of both limb angles to their corresponding CPG, while integration of the limb angles provides resonance tuning at and below the endogenous frequency of the CPG. Feedback of the angular velocity of both limbs to their corresponding CPG compensates for the time delay in the loop coupling each limb to its CPG. The resonance tuning behavior of the CPG model allows the gait velocity to be controlled by a single parameter, while retaining the energy efficiency of passive dynamic walking.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00422-009-0316-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 19visibility views 19 download downloads 40 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00422-009-0316-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2017 NetherlandsPublisher:SPOOL Authors: de Witte, D. (author); de Klijn-Chevalerias, M.L. (author); Loonen, R.C.G.M. (author); Hensen, J.L.M. (author); +2 Authorsde Witte, D. (author); de Klijn-Chevalerias, M.L. (author); Loonen, R.C.G.M. (author); Hensen, J.L.M. (author); Knaack, U. (author); Zimmermann, G. (author);Convective Concrete is about a research-driven design process of an innovative thermal mass concept. The goal is to improve building energy efficiency and comfort levels by addressing some of the shortcomings of conventional building slabs with high thermal storage capacity. Such heavyweight constructions tend to have a slow response time and do not make use of the available thermal mass effectively. Convective Concrete explores new ways of using thermal mass in buildings more intelligently. To accomplish this ondemand charging of thermal mass, a network of ducts and fans is embedded in the concrete wall element. This is done by developing customized formwork elements in combination with advanced concrete mixtures. To achieve an efficient airflow rate, the embedded lost formwork and the concrete itself function like a lung. SPOOL, Vol. 4 No. 2: Energy Innovation #4
https://dx.doi.org/1... arrow_drop_down DANS (Data Archiving and Networked Services)Conference object . 2017Data sources: DANS (Data Archiving and Networked Services)Journal of Facade Design and EngineeringArticle . 2017Data sources: DANS (Data Archiving and Networked Services)Journal of Facade Design and EngineeringArticle . 2017Data sources: DANS (Data Archiving and Networked Services)Delft University of Technology: Institutional RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7480/spool.2017.2.1919&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
visibility 43visibility views 43 download downloads 14 Powered bymore_vert https://dx.doi.org/1... arrow_drop_down DANS (Data Archiving and Networked Services)Conference object . 2017Data sources: DANS (Data Archiving and Networked Services)Journal of Facade Design and EngineeringArticle . 2017Data sources: DANS (Data Archiving and Networked Services)Journal of Facade Design and EngineeringArticle . 2017Data sources: DANS (Data Archiving and Networked Services)Delft University of Technology: Institutional RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7480/spool.2017.2.1919&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2009 NetherlandsPublisher:Springer Science and Business Media LLC Authors: Verdaasdonk, B.W. (author); Koopman, H.F.J.M. (author); Van der Helm, F.C.T. (author);pmid: 19504121
Like human walking, passive dynamic walking-i.e. walking down a slope with no actuation except gravity-is energy efficient by exploiting the natural dynamics. In the animal world, neural oscillators termed central pattern generators (CPGs) provide the basic rhythm for muscular activity in locomotion. We present a CPG model, which automatically tunes into the resonance frequency of the passive dynamics of a bipedal walker, i.e. the CPG model exhibits resonance tuning behavior. Each leg is coupled to its own CPG, controlling the hip moment of force. Resonance tuning above the endogenous frequency of the CPG-i.e. the CPG's eigenfrequency-is achieved by feedback of both limb angles to their corresponding CPG, while integration of the limb angles provides resonance tuning at and below the endogenous frequency of the CPG. Feedback of the angular velocity of both limbs to their corresponding CPG compensates for the time delay in the loop coupling each limb to its CPG. The resonance tuning behavior of the CPG model allows the gait velocity to be controlled by a single parameter, while retaining the energy efficiency of passive dynamic walking.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00422-009-0316-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 19visibility views 19 download downloads 40 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00422-009-0316-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2017 NetherlandsPublisher:SPOOL Authors: de Witte, D. (author); de Klijn-Chevalerias, M.L. (author); Loonen, R.C.G.M. (author); Hensen, J.L.M. (author); +2 Authorsde Witte, D. (author); de Klijn-Chevalerias, M.L. (author); Loonen, R.C.G.M. (author); Hensen, J.L.M. (author); Knaack, U. (author); Zimmermann, G. (author);Convective Concrete is about a research-driven design process of an innovative thermal mass concept. The goal is to improve building energy efficiency and comfort levels by addressing some of the shortcomings of conventional building slabs with high thermal storage capacity. Such heavyweight constructions tend to have a slow response time and do not make use of the available thermal mass effectively. Convective Concrete explores new ways of using thermal mass in buildings more intelligently. To accomplish this ondemand charging of thermal mass, a network of ducts and fans is embedded in the concrete wall element. This is done by developing customized formwork elements in combination with advanced concrete mixtures. To achieve an efficient airflow rate, the embedded lost formwork and the concrete itself function like a lung. SPOOL, Vol. 4 No. 2: Energy Innovation #4
https://dx.doi.org/1... arrow_drop_down DANS (Data Archiving and Networked Services)Conference object . 2017Data sources: DANS (Data Archiving and Networked Services)Journal of Facade Design and EngineeringArticle . 2017Data sources: DANS (Data Archiving and Networked Services)Journal of Facade Design and EngineeringArticle . 2017Data sources: DANS (Data Archiving and Networked Services)Delft University of Technology: Institutional RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7480/spool.2017.2.1919&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
visibility 43visibility views 43 download downloads 14 Powered bymore_vert https://dx.doi.org/1... arrow_drop_down DANS (Data Archiving and Networked Services)Conference object . 2017Data sources: DANS (Data Archiving and Networked Services)Journal of Facade Design and EngineeringArticle . 2017Data sources: DANS (Data Archiving and Networked Services)Journal of Facade Design and EngineeringArticle . 2017Data sources: DANS (Data Archiving and Networked Services)Delft University of Technology: Institutional RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7480/spool.2017.2.1919&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu