- home
- Advanced Search
- Energy Research
- SE
- AT
- Neuroscience
- Energy Research
- SE
- AT
- Neuroscience
description Publicationkeyboard_double_arrow_right Article 2023Embargo end date: 01 Aug 2024 GermanyPublisher:Wiley Funded by:EC | NovAnI, NWO | New concepts in catalytic...EC| NovAnI ,NWO| New concepts in catalytic lignin depolymerization: sustainable pathways towards value added chemicalsAuthors: Anastasiia M. Afanasenko; Xianyuan Wu; Alessandra De Santi; Walid A. M. Elgaher; +7 AuthorsAnastasiia M. Afanasenko; Xianyuan Wu; Alessandra De Santi; Walid A. M. Elgaher; Andreas M. Kany; Roya Shafiei; Marie‐Sophie Schulze; Thomas F. Schulz; Jörg Haupenthal; Anna K. H. Hirsch; Katalin Barta;AbstractDeriving active pharmaceutical agents from renewable resources is crucial to increasing the economic feasibility of modern biorefineries and promises to alleviate critical supply‐chain dependencies in pharma manufacturing. Our multidisciplinary approach combines research in lignin‐first biorefining, sustainable catalysis, and alternative solvents with bioactivity screening, an in vivo efficacy study, and a structural‐similarity search. The resulting sustainable path to novel anti‐infective, anti‐inflammatory, and anticancer molecules enabled the rapid identification of frontrunners for key therapeutic indications, including an anti‐infective against the priority pathogen Streptococcus pneumoniae with efficacy in vivo and promising plasma and metabolic stability. Our catalytic methods provided straightforward access, inspired by the innate structural features of lignin, to synthetically challenging biologically active molecules with the core structure of dopamine, namely, tetrahydroisoquinolines, quinazolinones, 3‐arylindoles and the natural product tetrahydropapaveroline. Our diverse array of atom‐economic transformations produces only harmless side products and uses benign reaction media, such as tunable deep eutectic solvents for modulating reactivity in challenging cyclization steps.
Angewandte Chemie arrow_drop_down Angewandte Chemie International EditionArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefAngewandte Chemie International EditionArticle . 2023License: CC BYData sources: University of Groningen Research PortalScientific documents from the Saarland UniversityArticle . 2024License: CC BYData sources: Scientific documents from the Saarland Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ange.202308131&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu15 citations 15 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Angewandte Chemie arrow_drop_down Angewandte Chemie International EditionArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefAngewandte Chemie International EditionArticle . 2023License: CC BYData sources: University of Groningen Research PortalScientific documents from the Saarland UniversityArticle . 2024License: CC BYData sources: Scientific documents from the Saarland Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ange.202308131&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1989Publisher:Elsevier BV Authors: Donna M. Jakowec; Jack Neiman; Margaret L. Rand; Marian A. Packham;pmid: 2617478
Platelet aggregation, secretion of serotonin, and formation of thromboxane B2 induced by platelet-activating factor (1-O-alkyl-2-acetyl-sn-glyceryl-3-phosphorylcholine) were studied in plasma containing physiological concentrations of ionized calcium in eight alcoholics after cessation of heavy drinking. Responses of platelets of four nonalcoholic volunteers, matched with a subgroup of the alcoholics by age and sex, were also investigated. Aggregation of platelets from alcoholics was significantly less throughout the 6-day detoxification period compared with controls. Secretion of serotonin (5-hydroxy-tryptamine) was negligible and the production of thromboxane B2 was not detectable. Decreased platelet aggregability in response to aggregating agents, including platelet-activating factor, may be important in the development of hemorrhagic complications in alcoholics.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0049-3848(89)90252-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0049-3848(89)90252-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Preprint , Report 2021 Netherlands, Austria, AustriaPublisher:American Chemical Society (ACS) Funded by:EC | Smartphon, EC | REWIRE, EC | BORGES +1 projectsEC| Smartphon ,EC| REWIRE ,EC| BORGES ,EC| PLASMMONSAuthors: Vasileiadis, Thomas; Marchesi D’Alvise, Tommaso; Saak, Clara-Magdalena; Pochylski, Mikolaj; +7 AuthorsVasileiadis, Thomas; Marchesi D’Alvise, Tommaso; Saak, Clara-Magdalena; Pochylski, Mikolaj; Harvey, Sean; Synatschke, Christopher V.; Gapinski, Jacek; Fytas, George; Backus, Ellen H. G.; Weil, Tanja; Graczykowski, Bartlomiej;pmid: 34904831
pmc: PMC8796235
The actuation of micro- and nanostructures controlled by external stimuli remains one of the exciting challenges in nanotechnology due to the wealth of fundamental questions and potential applications in energy harvesting, robotics, sensing, biomedicine, and tunable metamaterials. Photoactuation utilizes the conversion of light into motion through reversible chemical and physical processes and enables remote and spatiotemporal control of the actuation. Here, we report a fast light-to-motion conversion in few-nanometer thick bare polydopamine (PDA) membranes stimulated by visible light. Light-induced heating of PDA leads to desorption of water molecules and contraction of membranes in less than 140 μs. Switching off the light leads to a spontaneous expansion in less than 20 ms due to heat dissipation and water adsorption. Our findings demonstrate that pristine PDA membranes are multiresponsive materials that can be harnessed as robust building blocks for soft, micro-, and nanoscale actuators stimulated by light, temperature, and moisture level.
Nano Letters arrow_drop_down AMUR - Adam Mickiewicz University Repository, PoznanReport . 2021Full-Text: https://hdl.handle.net/10593/27226Data sources: Bielefeld Academic Search Engine (BASE)Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Nano LettersArticle . 2021License: CC BYData sources: Universiteit van Amsterdam Digital Academic RepositoryAdam Mickiewicz University RepositoryPreprint . 2021Data sources: Adam Mickiewicz University Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.nanolett.1c03165&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 28 citations 28 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 4visibility views 4 download downloads 12 Powered bymore_vert Nano Letters arrow_drop_down AMUR - Adam Mickiewicz University Repository, PoznanReport . 2021Full-Text: https://hdl.handle.net/10593/27226Data sources: Bielefeld Academic Search Engine (BASE)Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Nano LettersArticle . 2021License: CC BYData sources: Universiteit van Amsterdam Digital Academic RepositoryAdam Mickiewicz University RepositoryPreprint . 2021Data sources: Adam Mickiewicz University Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.nanolett.1c03165&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Bo Söderpalm; Louise Adermark; Mia Ericson; Susanne Jonsson;pmid: 24686030
The ability of drugs of abuse to increase mesolimbic levels of dopamine is a characteristic associated with their rewarding effects. Exactly how these effects are produced by different substances is not as well characterised. Our previous work in rats has demonstrated that accumbal glycine receptors (GlyRs) are involved in mediating the dopamine-activating effects of ethanol, and in modulating ethanol intake. In this study the investigation of GlyR involvement was extended to include several different drugs of abuse. By using microdialysis and electrophysiology we compared effects of addictive drugs, with and without the GlyR antagonist strychnine, on dopamine levels and neurotransmission in nucleus accumbens. The dopamine-increasing effect of systemic ethanol and the drug-induced change in neurotransmission in vitro, as measured by microdialysis and field potential recordings, were dependent on GlyRs in nAc. Accumbal GlyRs were also involved in the actions of tetrahydrocannabinol and nicotine, but not in those of cocaine or morphine. These data indicate that accumbal GlyRs play a key role in ethanol-induced dopamine activation and contribute also to that of cannabinoids and nicotine.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.neuropharm.2014.03.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu35 citations 35 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.neuropharm.2014.03.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Wiley Authors: Bo Söderpalm; Helga H. Lidö; Mia Ericson;doi: 10.1111/acer.13483
pmid: 28833225
Identification of ethanol's (EtOH) primary molecular brain targets and determination of their functional role is an ongoing, important quest. Pentameric ligand‐gated ion channels, that is, the nicotinic acetylcholine receptor, the γ‐aminobutyric acid type A receptor, the 5‐hydroxytryptamine3, and the glycine receptor (GlyR), are such targets. Here, aspects of the structure and function of these receptors and EtOH's interaction with them are briefly reviewed, with special emphasis on the GlyR and the importance of this receptor and its ligands for EtOH pharmacology. It is suggested that GlyRs are involved in (i) the dopamine‐activating effect of EtOH, (ii) regulating EtOH intake, and (iii) the relapse preventing effect of acamprosate. Exploration of the GlyR subtypes involved and efforts to develop subtype specific agonists or antagonists may offer new pharmacotherapies for alcohol use disorders.
Alcoholism Clinical ... arrow_drop_down Alcoholism Clinical and Experimental ResearchArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/acer.13483&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu50 citations 50 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Alcoholism Clinical ... arrow_drop_down Alcoholism Clinical and Experimental ResearchArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/acer.13483&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1993Publisher:Wiley F D Rodriguez; Christer Alling; Christofer Lundqvist; Lena Gustavsson; Per Simonsson;pmid: 8419548
Abstract: Phosphatidylethanol is formed by phospholipase D in animal cells exposed to ethanol. Previous reports have demonstrated that the degradation of phosphatidylethanol is slow, indicating that this lipid may be present in the cells after ethanol itself has disappeared. Accumulation of an abnormal alcohol metabolite may influence cellular functions. In the present study, cultivation of NG108–15 neuroblastoma × glioma hybrid cells in the presence of ethanol resulted in an accumulation of phosphatidylethanol and a simultaneous increase in basal inositol 1,4,5‐trisphosphate levels. The direct effects of phosphatidylethanol on the phosphoinositide signal transduction system were examined through incorporation of exogenous phosphatidylethanol into membranes of ethanol‐naive cells. An incorporation amounting to 2.8% of cellular phospholipids was achieved after a 5‐h incubation with 30 μM phosphatidylethanol. Phosphatidylethanol was found to cause a time‐and dose‐dependent increase in the basal levels of inositol 1,4,5‐trisphosphate. The effects on inositol 1,4,5‐trisphosphate levels of exogenously added phosphatidylethanol and ethanol exposure for 2 days were not additive. No effect on bradykinin‐stimulated inositol 1,4,5‐trisphosphate production could be detected. However, the increase in basal inositol 1,4,5‐trisphosphate levels indicates that phosphatidylethanol affects inositol 1,4,5‐trisphosphate turnover and emphasizes the importance of considering phosphatidylethanol as a possible mediator of ethanol‐induced effects on cellular processes.
Journal of Neurochem... arrow_drop_down Journal of NeurochemistryArticle . 1993 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1471-4159.1993.tb03209.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 35 citations 35 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Neurochem... arrow_drop_down Journal of NeurochemistryArticle . 1993 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1471-4159.1993.tb03209.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1987Publisher:Elsevier BV Authors: C. Alling; L. Gustavsson;pmid: 3827907
The mechanism of phosphatidyl [14C]ethanol formation was studied in rat brain microsomal fraction. Phospholipase D and base-exchange enzymes were assayed with [14C]ethanol as substrate. Phospholipase D was found to catalyse the formation of phosphatidylethanol. The reaction was dependent on sodium-oleate as activating factor. Phosphatidylethanol formation by phospholipase D has previously only been reported to occur in plant tissues. Stimulation of base-exchange enzymes with calcium in the presence of [14 C]ethanol did not induce any formation of phosphatidylethanol. These findings indicate that phosphatidylethanol formation in ethanol intoxicated rats is catalysed by phospholipase D.
Biochemical and Biop... arrow_drop_down Biochemical and Biophysical Research CommunicationsArticle . 1987 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefBiochemical and Biophysical Research CommunicationsArticle . 1987Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0006-291x(87)91507-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu165 citations 165 popularity Top 10% influence Top 1% impulse Top 10% Powered by BIP!
more_vert Biochemical and Biop... arrow_drop_down Biochemical and Biophysical Research CommunicationsArticle . 1987 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefBiochemical and Biophysical Research CommunicationsArticle . 1987Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0006-291x(87)91507-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Publisher:Springer Science and Business Media LLC Hanna Karlsson; Emil Persson; Irene Perini; Adam Yngve; Markus Heilig; Gustav Tinghög;Social drinking is common, but it is unclear how moderate levels of alcohol influence decision making. Most prior studies have focused on adverse long-term effects on cognitive and executive function in people with alcohol use disorders (AUD). Some studies have investigated the acute effects of alcohol on decision making in healthy people, but have predominantly used small samples and focused on a narrow selection of tasks related to personal decision making, e.g., delay or probability discounting. Here, we conducted a large (n = 264), preregistered randomized placebo-controlled study (RCT) using a parallel group design, to systematically assess the acute effects of alcohol on measures of decision making in both personal and social domains. We found a robust effect of a 0.6 g/kg dose of alcohol on both moral judgment and altruistic behavior, but no effects on several measures of risk taking or waiting impulsivity. These findings suggest that alcohol at low to moderate doses selectively moderates decision making in the social domain, and promotes utilitarian decisions over those dictated by rule-based ethical principles (deontological). This is consistent with existing theory that emphasizes the dual roles of shortsighted information processing and salient social cues in shaping decisions made under the influence of alcohol. A better understanding of these effects is important to understand altered social functioning during alcohol intoxication.
Neuropsychopharmacol... arrow_drop_down NeuropsychopharmacologyArticle . 2021 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41386-021-01218-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Neuropsychopharmacol... arrow_drop_down NeuropsychopharmacologyArticle . 2021 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41386-021-01218-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1988Publisher:Springer Science and Business Media LLC P. Hulthe; L. Svensson; K. Johannessen; Claudia Fahlke; Ernest Hård; Jörgen A. Engel; B. Snape;doi: 10.1007/bf01244784
pmid: 3210013
In the present series of experiments we have studied the effects of the dihydropyridine calcium channel antagonist nifedipine on ethanol-induced changes in behavior and dopamine (DA) release and metabolism. The locomotor-stimulatory effect of low doses of ethanol (2.5 g/kg) was antagonized by nifedipine, whereas ethanol-induced sedation observed after higher doses (4.5 g/kg) was potentiated. Biochemical studies indicated that ethanol enhanced the metabolism and release of DA in the striatum and the DA-rich limbic regions measured by post mortem analyses of DA-metabolites by HPLC with electrochemical detection and by in vivo voltammetry in anaesthetized rats, respectively. Pretreatment with nifedipine antagonized the stimulatory effects of ethanol on the DA-system. Nifedipine reduced the preference for ethanol, estimated by the relative intake of ethanol (6% v/v) and water in a free-choice situation, suggesting an influence of nifedipine not only on the stimulatory but also on the positive reinforcing effects of ethanol. The present results suggest that the locomotor-stimulatory and positive reinforcing effects of ethanol as well as its enhancing effect on dopaminergic activity may involve an enhancement of calcium mediated mechanisms.
Journal of Neural Tr... arrow_drop_down Journal of Neural TransmissionArticle . 1988 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/bf01244784&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu124 citations 124 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Neural Tr... arrow_drop_down Journal of Neural TransmissionArticle . 1988 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/bf01244784&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Article , Other literature type 1994Publisher:Birkhäuser Basel Lena Gustavsson; Christer Larsson; D Rodriguez; Christofer Lundqvist; Per Simonsson; Christer Alling;pmid: 8032150
Cell culture models were used to study the effects of long-term ethanol exposure on neuronal cells. Effects on phospholipase C and phospholipase D mediated signal transduction were investigated by assaying receptor-binding, G protein function, activities of lipases, formation of second messengers and c-fos mRNA. The signal transduction cascades displayed abnormal activities from 2 to 7 days of exposure which differed from the acute effects. Phosphatidylethanol formed by phospholipase D is an abnormal lipid that may harmfully affect nerve cell function.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1007/978-3-...Part of book or chapter of book . 1994 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-0348-7330-7_3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1007/978-3-...Part of book or chapter of book . 1994 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-0348-7330-7_3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2023Embargo end date: 01 Aug 2024 GermanyPublisher:Wiley Funded by:EC | NovAnI, NWO | New concepts in catalytic...EC| NovAnI ,NWO| New concepts in catalytic lignin depolymerization: sustainable pathways towards value added chemicalsAuthors: Anastasiia M. Afanasenko; Xianyuan Wu; Alessandra De Santi; Walid A. M. Elgaher; +7 AuthorsAnastasiia M. Afanasenko; Xianyuan Wu; Alessandra De Santi; Walid A. M. Elgaher; Andreas M. Kany; Roya Shafiei; Marie‐Sophie Schulze; Thomas F. Schulz; Jörg Haupenthal; Anna K. H. Hirsch; Katalin Barta;AbstractDeriving active pharmaceutical agents from renewable resources is crucial to increasing the economic feasibility of modern biorefineries and promises to alleviate critical supply‐chain dependencies in pharma manufacturing. Our multidisciplinary approach combines research in lignin‐first biorefining, sustainable catalysis, and alternative solvents with bioactivity screening, an in vivo efficacy study, and a structural‐similarity search. The resulting sustainable path to novel anti‐infective, anti‐inflammatory, and anticancer molecules enabled the rapid identification of frontrunners for key therapeutic indications, including an anti‐infective against the priority pathogen Streptococcus pneumoniae with efficacy in vivo and promising plasma and metabolic stability. Our catalytic methods provided straightforward access, inspired by the innate structural features of lignin, to synthetically challenging biologically active molecules with the core structure of dopamine, namely, tetrahydroisoquinolines, quinazolinones, 3‐arylindoles and the natural product tetrahydropapaveroline. Our diverse array of atom‐economic transformations produces only harmless side products and uses benign reaction media, such as tunable deep eutectic solvents for modulating reactivity in challenging cyclization steps.
Angewandte Chemie arrow_drop_down Angewandte Chemie International EditionArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefAngewandte Chemie International EditionArticle . 2023License: CC BYData sources: University of Groningen Research PortalScientific documents from the Saarland UniversityArticle . 2024License: CC BYData sources: Scientific documents from the Saarland Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ange.202308131&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu15 citations 15 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Angewandte Chemie arrow_drop_down Angewandte Chemie International EditionArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefAngewandte Chemie International EditionArticle . 2023License: CC BYData sources: University of Groningen Research PortalScientific documents from the Saarland UniversityArticle . 2024License: CC BYData sources: Scientific documents from the Saarland Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ange.202308131&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1989Publisher:Elsevier BV Authors: Donna M. Jakowec; Jack Neiman; Margaret L. Rand; Marian A. Packham;pmid: 2617478
Platelet aggregation, secretion of serotonin, and formation of thromboxane B2 induced by platelet-activating factor (1-O-alkyl-2-acetyl-sn-glyceryl-3-phosphorylcholine) were studied in plasma containing physiological concentrations of ionized calcium in eight alcoholics after cessation of heavy drinking. Responses of platelets of four nonalcoholic volunteers, matched with a subgroup of the alcoholics by age and sex, were also investigated. Aggregation of platelets from alcoholics was significantly less throughout the 6-day detoxification period compared with controls. Secretion of serotonin (5-hydroxy-tryptamine) was negligible and the production of thromboxane B2 was not detectable. Decreased platelet aggregability in response to aggregating agents, including platelet-activating factor, may be important in the development of hemorrhagic complications in alcoholics.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0049-3848(89)90252-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0049-3848(89)90252-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Preprint , Report 2021 Netherlands, Austria, AustriaPublisher:American Chemical Society (ACS) Funded by:EC | Smartphon, EC | REWIRE, EC | BORGES +1 projectsEC| Smartphon ,EC| REWIRE ,EC| BORGES ,EC| PLASMMONSAuthors: Vasileiadis, Thomas; Marchesi D’Alvise, Tommaso; Saak, Clara-Magdalena; Pochylski, Mikolaj; +7 AuthorsVasileiadis, Thomas; Marchesi D’Alvise, Tommaso; Saak, Clara-Magdalena; Pochylski, Mikolaj; Harvey, Sean; Synatschke, Christopher V.; Gapinski, Jacek; Fytas, George; Backus, Ellen H. G.; Weil, Tanja; Graczykowski, Bartlomiej;pmid: 34904831
pmc: PMC8796235
The actuation of micro- and nanostructures controlled by external stimuli remains one of the exciting challenges in nanotechnology due to the wealth of fundamental questions and potential applications in energy harvesting, robotics, sensing, biomedicine, and tunable metamaterials. Photoactuation utilizes the conversion of light into motion through reversible chemical and physical processes and enables remote and spatiotemporal control of the actuation. Here, we report a fast light-to-motion conversion in few-nanometer thick bare polydopamine (PDA) membranes stimulated by visible light. Light-induced heating of PDA leads to desorption of water molecules and contraction of membranes in less than 140 μs. Switching off the light leads to a spontaneous expansion in less than 20 ms due to heat dissipation and water adsorption. Our findings demonstrate that pristine PDA membranes are multiresponsive materials that can be harnessed as robust building blocks for soft, micro-, and nanoscale actuators stimulated by light, temperature, and moisture level.
Nano Letters arrow_drop_down AMUR - Adam Mickiewicz University Repository, PoznanReport . 2021Full-Text: https://hdl.handle.net/10593/27226Data sources: Bielefeld Academic Search Engine (BASE)Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Nano LettersArticle . 2021License: CC BYData sources: Universiteit van Amsterdam Digital Academic RepositoryAdam Mickiewicz University RepositoryPreprint . 2021Data sources: Adam Mickiewicz University Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.nanolett.1c03165&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 28 citations 28 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 4visibility views 4 download downloads 12 Powered bymore_vert Nano Letters arrow_drop_down AMUR - Adam Mickiewicz University Repository, PoznanReport . 2021Full-Text: https://hdl.handle.net/10593/27226Data sources: Bielefeld Academic Search Engine (BASE)Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Nano LettersArticle . 2021License: CC BYData sources: Universiteit van Amsterdam Digital Academic RepositoryAdam Mickiewicz University RepositoryPreprint . 2021Data sources: Adam Mickiewicz University Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.nanolett.1c03165&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Bo Söderpalm; Louise Adermark; Mia Ericson; Susanne Jonsson;pmid: 24686030
The ability of drugs of abuse to increase mesolimbic levels of dopamine is a characteristic associated with their rewarding effects. Exactly how these effects are produced by different substances is not as well characterised. Our previous work in rats has demonstrated that accumbal glycine receptors (GlyRs) are involved in mediating the dopamine-activating effects of ethanol, and in modulating ethanol intake. In this study the investigation of GlyR involvement was extended to include several different drugs of abuse. By using microdialysis and electrophysiology we compared effects of addictive drugs, with and without the GlyR antagonist strychnine, on dopamine levels and neurotransmission in nucleus accumbens. The dopamine-increasing effect of systemic ethanol and the drug-induced change in neurotransmission in vitro, as measured by microdialysis and field potential recordings, were dependent on GlyRs in nAc. Accumbal GlyRs were also involved in the actions of tetrahydrocannabinol and nicotine, but not in those of cocaine or morphine. These data indicate that accumbal GlyRs play a key role in ethanol-induced dopamine activation and contribute also to that of cannabinoids and nicotine.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.neuropharm.2014.03.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu35 citations 35 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.neuropharm.2014.03.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Wiley Authors: Bo Söderpalm; Helga H. Lidö; Mia Ericson;doi: 10.1111/acer.13483
pmid: 28833225
Identification of ethanol's (EtOH) primary molecular brain targets and determination of their functional role is an ongoing, important quest. Pentameric ligand‐gated ion channels, that is, the nicotinic acetylcholine receptor, the γ‐aminobutyric acid type A receptor, the 5‐hydroxytryptamine3, and the glycine receptor (GlyR), are such targets. Here, aspects of the structure and function of these receptors and EtOH's interaction with them are briefly reviewed, with special emphasis on the GlyR and the importance of this receptor and its ligands for EtOH pharmacology. It is suggested that GlyRs are involved in (i) the dopamine‐activating effect of EtOH, (ii) regulating EtOH intake, and (iii) the relapse preventing effect of acamprosate. Exploration of the GlyR subtypes involved and efforts to develop subtype specific agonists or antagonists may offer new pharmacotherapies for alcohol use disorders.
Alcoholism Clinical ... arrow_drop_down Alcoholism Clinical and Experimental ResearchArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/acer.13483&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu50 citations 50 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Alcoholism Clinical ... arrow_drop_down Alcoholism Clinical and Experimental ResearchArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/acer.13483&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1993Publisher:Wiley F D Rodriguez; Christer Alling; Christofer Lundqvist; Lena Gustavsson; Per Simonsson;pmid: 8419548
Abstract: Phosphatidylethanol is formed by phospholipase D in animal cells exposed to ethanol. Previous reports have demonstrated that the degradation of phosphatidylethanol is slow, indicating that this lipid may be present in the cells after ethanol itself has disappeared. Accumulation of an abnormal alcohol metabolite may influence cellular functions. In the present study, cultivation of NG108–15 neuroblastoma × glioma hybrid cells in the presence of ethanol resulted in an accumulation of phosphatidylethanol and a simultaneous increase in basal inositol 1,4,5‐trisphosphate levels. The direct effects of phosphatidylethanol on the phosphoinositide signal transduction system were examined through incorporation of exogenous phosphatidylethanol into membranes of ethanol‐naive cells. An incorporation amounting to 2.8% of cellular phospholipids was achieved after a 5‐h incubation with 30 μM phosphatidylethanol. Phosphatidylethanol was found to cause a time‐and dose‐dependent increase in the basal levels of inositol 1,4,5‐trisphosphate. The effects on inositol 1,4,5‐trisphosphate levels of exogenously added phosphatidylethanol and ethanol exposure for 2 days were not additive. No effect on bradykinin‐stimulated inositol 1,4,5‐trisphosphate production could be detected. However, the increase in basal inositol 1,4,5‐trisphosphate levels indicates that phosphatidylethanol affects inositol 1,4,5‐trisphosphate turnover and emphasizes the importance of considering phosphatidylethanol as a possible mediator of ethanol‐induced effects on cellular processes.
Journal of Neurochem... arrow_drop_down Journal of NeurochemistryArticle . 1993 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1471-4159.1993.tb03209.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 35 citations 35 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Neurochem... arrow_drop_down Journal of NeurochemistryArticle . 1993 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1471-4159.1993.tb03209.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1987Publisher:Elsevier BV Authors: C. Alling; L. Gustavsson;pmid: 3827907
The mechanism of phosphatidyl [14C]ethanol formation was studied in rat brain microsomal fraction. Phospholipase D and base-exchange enzymes were assayed with [14C]ethanol as substrate. Phospholipase D was found to catalyse the formation of phosphatidylethanol. The reaction was dependent on sodium-oleate as activating factor. Phosphatidylethanol formation by phospholipase D has previously only been reported to occur in plant tissues. Stimulation of base-exchange enzymes with calcium in the presence of [14 C]ethanol did not induce any formation of phosphatidylethanol. These findings indicate that phosphatidylethanol formation in ethanol intoxicated rats is catalysed by phospholipase D.
Biochemical and Biop... arrow_drop_down Biochemical and Biophysical Research CommunicationsArticle . 1987 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefBiochemical and Biophysical Research CommunicationsArticle . 1987Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0006-291x(87)91507-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu165 citations 165 popularity Top 10% influence Top 1% impulse Top 10% Powered by BIP!
more_vert Biochemical and Biop... arrow_drop_down Biochemical and Biophysical Research CommunicationsArticle . 1987 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefBiochemical and Biophysical Research CommunicationsArticle . 1987Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0006-291x(87)91507-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Publisher:Springer Science and Business Media LLC Hanna Karlsson; Emil Persson; Irene Perini; Adam Yngve; Markus Heilig; Gustav Tinghög;Social drinking is common, but it is unclear how moderate levels of alcohol influence decision making. Most prior studies have focused on adverse long-term effects on cognitive and executive function in people with alcohol use disorders (AUD). Some studies have investigated the acute effects of alcohol on decision making in healthy people, but have predominantly used small samples and focused on a narrow selection of tasks related to personal decision making, e.g., delay or probability discounting. Here, we conducted a large (n = 264), preregistered randomized placebo-controlled study (RCT) using a parallel group design, to systematically assess the acute effects of alcohol on measures of decision making in both personal and social domains. We found a robust effect of a 0.6 g/kg dose of alcohol on both moral judgment and altruistic behavior, but no effects on several measures of risk taking or waiting impulsivity. These findings suggest that alcohol at low to moderate doses selectively moderates decision making in the social domain, and promotes utilitarian decisions over those dictated by rule-based ethical principles (deontological). This is consistent with existing theory that emphasizes the dual roles of shortsighted information processing and salient social cues in shaping decisions made under the influence of alcohol. A better understanding of these effects is important to understand altered social functioning during alcohol intoxication.
Neuropsychopharmacol... arrow_drop_down NeuropsychopharmacologyArticle . 2021 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41386-021-01218-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Neuropsychopharmacol... arrow_drop_down NeuropsychopharmacologyArticle . 2021 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41386-021-01218-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1988Publisher:Springer Science and Business Media LLC P. Hulthe; L. Svensson; K. Johannessen; Claudia Fahlke; Ernest Hård; Jörgen A. Engel; B. Snape;doi: 10.1007/bf01244784
pmid: 3210013
In the present series of experiments we have studied the effects of the dihydropyridine calcium channel antagonist nifedipine on ethanol-induced changes in behavior and dopamine (DA) release and metabolism. The locomotor-stimulatory effect of low doses of ethanol (2.5 g/kg) was antagonized by nifedipine, whereas ethanol-induced sedation observed after higher doses (4.5 g/kg) was potentiated. Biochemical studies indicated that ethanol enhanced the metabolism and release of DA in the striatum and the DA-rich limbic regions measured by post mortem analyses of DA-metabolites by HPLC with electrochemical detection and by in vivo voltammetry in anaesthetized rats, respectively. Pretreatment with nifedipine antagonized the stimulatory effects of ethanol on the DA-system. Nifedipine reduced the preference for ethanol, estimated by the relative intake of ethanol (6% v/v) and water in a free-choice situation, suggesting an influence of nifedipine not only on the stimulatory but also on the positive reinforcing effects of ethanol. The present results suggest that the locomotor-stimulatory and positive reinforcing effects of ethanol as well as its enhancing effect on dopaminergic activity may involve an enhancement of calcium mediated mechanisms.
Journal of Neural Tr... arrow_drop_down Journal of Neural TransmissionArticle . 1988 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/bf01244784&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu124 citations 124 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Neural Tr... arrow_drop_down Journal of Neural TransmissionArticle . 1988 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/bf01244784&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Article , Other literature type 1994Publisher:Birkhäuser Basel Lena Gustavsson; Christer Larsson; D Rodriguez; Christofer Lundqvist; Per Simonsson; Christer Alling;pmid: 8032150
Cell culture models were used to study the effects of long-term ethanol exposure on neuronal cells. Effects on phospholipase C and phospholipase D mediated signal transduction were investigated by assaying receptor-binding, G protein function, activities of lipases, formation of second messengers and c-fos mRNA. The signal transduction cascades displayed abnormal activities from 2 to 7 days of exposure which differed from the acute effects. Phosphatidylethanol formed by phospholipase D is an abnormal lipid that may harmfully affect nerve cell function.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1007/978-3-...Part of book or chapter of book . 1994 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-0348-7330-7_3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1007/978-3-...Part of book or chapter of book . 1994 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-0348-7330-7_3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu