Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
4 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • Restricted
  • CA
  • IT
  • Neuroscience

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Mark P. Jensen; orcid Johannes Vlaeyen;
    Johannes Vlaeyen
    ORCID
    Harvested from ORCID Public Data File

    Johannes Vlaeyen in OpenAIRE
    Warren R. Nielson; Petra A. Karsdorp;

    Activity pacing (AP) is a concept that is central to many chronic pain theories and treatments, yet there remains confusion regarding its definition and effects.To review the current knowledge concerning AP and integrate this knowledge in a manner that allows for a clear definition and useful directions for future research.A narrative review of the major theoretical approaches to AP and of the empirical evidence regarding the effects of AP interventions, followed by an integrative discussion.The concept of AP is derived from 2 main traditions: operant and energy conservation. Although there are common elements across these traditions, significant conceptual and practical differences exist, which has led to confusion. Little empirical evidence exists concerning the efficacy of AP as a treatment for chronic pain.Future research on AP should be based on a clear theoretical foundation, consider the context in which the AP behavior occurs and the type of pacing problem ("underactivity" vs. "overactivity"), and should examine the impact of AP treatment on multiple clinical outcomes. We provide a provisional definition of AP and specific recommendations that we believe will move the field forward.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Clinical Journal of ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Clinical Journal of Pain
    Article . 2013 . Peer-reviewed
    Data sources: Crossref
    addClaim
    115
    citations115
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Clinical Journal of ...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Clinical Journal of Pain
      Article . 2013 . Peer-reviewed
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Emilia Bramanti;
    Emilia Bramanti
    ORCID
    Harvested from ORCID Public Data File

    Emilia Bramanti in OpenAIRE
    orcid Massimo Onor;
    Massimo Onor
    ORCID
    Harvested from ORCID Public Data File

    Massimo Onor in OpenAIRE
    orcid Laura Colombaioni;
    Laura Colombaioni
    ORCID
    Harvested from ORCID Public Data File

    Laura Colombaioni in OpenAIRE

    The heavy metal thallium is an emerging pollutant among the most potentially toxic species to which human populations are exposed. Its harmful effects on living organisms are well-known at high doses, typical of acute intoxication. Its harmful effects at low doses are by far less known. In a previous paper, we reported a TlCl-induced metabolic shift to lactate and ethanol production in living hippocampal HN9.10e neurons that appeared after a single short exposure (48 h) at low doses (1-100 μg/L). This metabolic shift to lactate and ethanol suggests a marked impairment of cell bioenergetics. In this work, we provide detailed evidence for TlCl-induced changes of neuronal morphology and mitochondrial activity. Confocal microscopy and fluorescent probes were used to qualitatively and quantitatively analyze, at the subcellular level, living HN9.10e neurons during and after TlCl exposure. An early onset mitochondrial dysfunction appeared, associated with signs of cellular deregulation such as neurite shortening, loss of substrate adhesion, and increase of cytoplasmic calcium. The dose-dependent alteration of mitochondrial ROS (mtROS) level and of transmembrane mitochondrial potential (ΔΨm) has been observed also for very low TlCl doses (1 μg/L). The treatment with the ATP synthase inhibitor oligomycin revealed a severe impairment of the mitochondrial function, more significant than that measured by the simple quantification of the tetramethylrhodamine methyl ester (TMRM) fluorescence. These results highlight that mitochondria are a key subcellular target of TlCl neurotoxicity. The transmembrane mitochondrial potential was significantly correlated with the ethanol concentration in cell culture medium ( P < 0.001, r = -0.817), suggesting that ethanol could be potentially used as a biomarker of mitochondrial impairment.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CNR ExploRA
    Article . 2019
    Data sources: CNR ExploRA
    ACS Chemical Neuroscience
    Article . 2018 . Peer-reviewed
    Data sources: Crossref
    addClaim
    24
    citations24
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CNR ExploRA
      Article . 2019
      Data sources: CNR ExploRA
      ACS Chemical Neuroscience
      Article . 2018 . Peer-reviewed
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Rosanna Migliore;
    Rosanna Migliore
    ORCID
    Harvested from ORCID Public Data File

    Rosanna Migliore in OpenAIRE
    Michele Migliore; orcid Xavier Leinekugel;
    Xavier Leinekugel
    ORCID
    Harvested from ORCID Public Data File

    Xavier Leinekugel in OpenAIRE
    Xavier Leinekugel; +1 Authors

    AbstractThe possible effects on cognitive processes of external electric fields, such as those generated by power line pillars and household appliances are of increasing public concern. They are difficult to study experimentally, and the relatively scarce and contradictory evidence make it difficult to clearly assess these effects. In this study, we investigate how, why and to what extent external perturbations of the intrinsic neuronal activity, such as those that can be caused by generation, transmission and use of electrical energy can affect neuronal activity during cognitive processes. For this purpose, we used a morphologically and biophysically realistic three‐dimensional model of CA1 pyramidal neurons. The simulation findings suggest that an electric field oscillating at power lines frequency, and environmentally measured strength, can significantly alter both the average firing rate and temporal spike distribution properties of a hippocampal CA1 pyramidal neuron. This effect strongly depends on the specific and instantaneous relative spatial location of the neuron with respect to the field, and on the synaptic input properties. The model makes experimentally testable predictions on the possible functional consequences for normal hippocampal functions such as object recognition and spatial navigation. The results suggest that, although EF effects on cognitive processes may be difficult to occur in everyday life, their functional consequences deserve some consideration, especially when they constitute a systematic presence in living environments.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CNR ExploRA
    Article . 2017
    Data sources: CNR ExploRA
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    European Journal of Neuroscience
    Article . 2016 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim
    4
    citations4
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CNR ExploRA
      Article . 2017
      Data sources: CNR ExploRA
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      European Journal of Neuroscience
      Article . 2016 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Jenni Schulz; David G. Norris; David G. Norris; David G. Norris; +6 Authors

    PurposeTo explore the use of PINS radiofrequency (RF) pulses to reduce RF power deposition in multiband/simultaneous multislice imaging with the RARE/turbo spin echo (TSE) sequence at 3T and 7T.MethodsA PINS‐TSE sequence was implemented and combined with blipped CAIPI to improve the reconstruction of superposed slices. Whole brain imaging of healthy volunteers was performed at both 3T and 7T using a 32‐channel coil for signal reception.ResultsA considerable reduction in power deposition was achieved compared with a standard sequence of the manufacturer. At 3T, the reduction in specific absorption rate (SAR) made short pulse repetition times (TRs) possible, however, in order to obtain a good T2 contrast, it is advisable to maintain TR while extending the echo train length. At 7T, whole brain coverage with a spatial resolution of 1 × 1 × 2 mm3 was achieved in an acquisition time of 150 s. Furthermore, it could be shown that pulse sequences that use PINS pulses do not suffer from having additional magnetization transfer contrast.ConclusionPINS RF pulses combined with multiband imaging reduce SAR sufficiently to enable routine TSE imaging at 7T within clinically acceptable acquisition times. In general, the combination of multiband imaging with PINS RF pulses represents a method to reduce total RF power deposition. Magn Reson Med 71:44–49, 2014. © 2013 Wiley Periodicals, Inc.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Magnetic Resonance i...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Magnetic Resonance in Medicine
    Article . 2013 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    Access Routes
    Green
    bronze
    41
    citations41
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    visibility1
    visibilityviews1
    Powered by Usage counts
    more_vert
Powered by OpenAIRE graph