Advanced search in Research products
Research products
arrow_drop_down
unfold_less Compact
1and
Any field
arrow_drop_down
includes
arrow_drop_down
or
  • Access
    Clear
  • Type
  • Year range
  • Field of Science
  • Funder
  • SDG [Beta]
  • Country
    Clear
  • Language
  • Source
  • Research community
    Clear
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
466 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • Closed Access
  • Restricted
  • GB
  • DE
  • Neuroscience

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: A. Clark; S. Lindgren; orcid S. P. Brooks;
    S. P. Brooks
    ORCID
    Harvested from ORCID Public Data File

    S. P. Brooks in OpenAIRE
    H.J. Little; +1 Authors

    Effects of nicotine, administered by continuous infusion via osmotic minipumps, were studied on the operant self-administration of alcohol by rats, using a variable interval (15 s) schedule, and measuring the acquisition, maintenance, extinction and reinstatement of responding for alcohol. Doses of nicotine of 0.25, 1.25 and 7.5 mg/kg/24 h had no significant effects on the maintenance of responding for alcohol, but 5 mg/kg/24 h nicotine resulted in a significant increase in responding on the lever delivering the reward when water was substituted for the alcohol, indicating delayed extinction of responding. During infusion of 2.5 mg/kg/24 h nicotine, responding was significantly greater over the "sucrose-fading" training sessions, during acquisition of responding, when mixtures of alcohol and sucrose were provided as reward. When minipumps infusing 2.5 mg/kg/24 h nicotine were implanted after the alcohol responding had been acquired, the responding for alcohol increase during the first week of nicotine infusion, but corresponding nicotine infusion doses of 0.25, 1.25 and 7.5 had no significant effects. The results indicate that nicotine can increase operant responding for alcohol and this is crucially dependent on the dose of nicotine and the time of testing. The results have implications for the frequently encountered dependence on the combination of alcohol and nicotine.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Neuropharmacologyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Neuropharmacology
    Article . 2001 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Neuropharmacologyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Neuropharmacology
      Article . 2001 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Chaudhuri, K. Ray;
    Chaudhuri, K. Ray
    ORCID
    Harvested from ORCID Public Data File

    Chaudhuri, K. Ray in OpenAIRE
    Maule, S.; Thomaides, T.; Pavitt, D.; +2 Authors

    Patients with pure autonomic failure (PAF) and multiple system atrophy (MSA) may complain of feeling light-headed after alcohol ingestion particularly on assumption of the upright posture. The reasons for this have not been investigated. We therefore studied the effects of oral alcohol (40% vodka in sugar-free orange juice) and placebo (juice only) on the systemic and regional (including superior mesenteric artery, SMA) blood flow in nine patients with PAF and six patients with MSA. After alcohol, there was a fall in supine blood pressure (BP) and vasodilatation in the SMA but no change in cardiac output, or forearm muscle and cutaneous blood flow in either PAF or MSA; BP fell further during head-up tilt with no changes in levels of plasma catecholamines. After placebo, there were no changes while supine. We conclude that alcohol lowers supine BP and dilates the SMA with no change in muscle or cutaneous blood flow. Alcohol also enhances the fall in BP during head-up tilt. This may explain the symptoms experienced by PAF and MSA patients after alcohol.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Neurologyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Neurology
    Article . 1993 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Neurologyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Neurology
      Article . 1993 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Michael G. Gore; Peter J. Greasley; Lawrence G. Hunt;

    Inositol monophosphatase can be modified at two sites by pyrene maleimide. These sites have been identified as Cys141 and Cys218. Stoichiometric addition of pyrene maleimide allows the sole modification of Cys218. The fluorescence of the pyrene moiety on the modified protein can be excited directly or by resonance energy transfer. The fluorescence properties of the pyrene group on Cys218 allows the interaction of ligands with the enzyme to be monitored. This feature has allowed dissociation constants for various metal ions to be determined and allowed the formation of various enzyme/ligand complexes to be observed. These studies have demonstrated that Mg2+ is required to support Pi binding and that Li+ interacts with a post‐catalytic complex which is only formed in the forward reaction.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao European Journal of ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    European Journal of Biochemistry
    Article . 1994 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao European Journal of ...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      European Journal of Biochemistry
      Article . 1994 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Chandrasekhar Ramanathan; Martin Bencsik;

    The storage and transport of gases in coal is of tremendous importance in the utilisation of coalbeds, and in particular the recovery of methane. There is also increasing interest in the use of coal mines as sites for carbon dioxide sequestration to alleviate the potentially harmful effects of global warming. This paper demonstrates the use of magnetic resonance imaging to investigate the spatiotemporal dynamics of gas transport in coal. The presence of significant structural heterogeneities in the coal was observed. Dynamical effects displayed a broad range of time constants ranging from minutes to days.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Magnetic Resonance I...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Magnetic Resonance Imaging
    Article . 2001 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Magnetic Resonance I...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Magnetic Resonance Imaging
      Article . 2001 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Kerstin Genz; Tatyana Tenkova; Ursula Felderhoff-Mueser; Petra Bittigau; +5 Authors

    In the immature mammalian brain during a period of rapid growth (brain growth spurt/synaptogenesis period), neuronal apoptosis can be triggered by the transient blockade of glutamate N-methyl-d-aspartate (NMDA) receptors, or the excessive activation of gamma-aminobutyric acid (GABA(A)) receptors. Apoptogenic agents include anesthetics (ketamine, nitrous oxide, isoflurane, propofol, halothane), anticonvulsants (benzodiazepines, barbiturates), and drugs of abuse (phencyclidine, ketamine, ethanol). In humans, the brain growth spurt period starts in the sixth month of pregnancy and extends to the third year after birth. Ethanol, which has both NMDA antagonist and GABA(A) agonist properties, is particularly effective in triggering widespread apoptotic neurodegeneration during this vulnerable period. Thus, maternal ingestion of ethanol during the third trimester of pregnancy can readily explain the dysmorphogenic changes in the fetal brain and consequent neurobehavioral disturbances that characterize the human fetal alcohol syndrome. In addition, there is basis for concern that agents used in pediatric and obstetrical medicine for purposes of sedation, anesthesia, and seizure management may cause apoptotic neuronal death in the developing human brain.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochemical Pharmaco...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Biochemical Pharmacology
    Article . 2001 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochemical Pharmaco...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Biochemical Pharmacology
      Article . 2001 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid bw Patrick Bach;
    Patrick Bach
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Patrick Bach in OpenAIRE
    Judith Zaiser; orcid Sina Zimmermann;
    Sina Zimmermann
    ORCID
    Harvested from ORCID Public Data File

    Sina Zimmermann in OpenAIRE
    Tatjana Gessner; +13 Authors

    Stress and alcohol cues trigger alcohol consumption and relapse in alcohol use disorder. However, the neurobiological processes underlying their interaction are not well understood. Thus, we conducted a randomized, controlled neuroimaging study to investigate the effects of psychosocial stress on neural cue reactivity and addictive behaviors.Neural alcohol cue reactivity was assessed in 91 individuals with alcohol use disorder using a validated functional magnetic resonance imaging (fMRI) task. Activation patterns were measured twice, at baseline and during a second fMRI session, prior to which participants were assigned to psychosocial stress (experimental condition) or a matched control condition or physical exercise (control conditions). Together with fMRI data, alcohol craving and cortisol levels were assessed, and alcohol use data were collected during a 12-month follow-up. Analyses tested the effects of psychosocial stress on neural cue reactivity and associations with cortisol levels, craving, and alcohol use.Compared with both control conditions, psychosocial stress elicited higher alcohol cue-induced activation in the left anterior insula (familywise error-corrected p < .05) and a stress- and cue-specific dynamic increase in insula activation over time (F22,968 = 2.143, p = .007), which was predicted by higher cortisol levels during the experimental intervention (r = 0.310, false discovery rate-corrected p = .016). Cue-induced insula activation was positively correlated with alcohol craving during fMRI (r = 0.262, false discovery rate-corrected p = .032) and alcohol use during follow-up (r = 0.218, false discovery rate-corrected p = .046).Results indicate a stress-induced sensitization of cue-induced activation in the left insula as a neurobiological correlate of the effects of psychosocial stress on alcohol craving and alcohol use in alcohol use disorder, which likely reflects changes in salience attribution and goal-directed behavior.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biological Psychiatr...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Biological Psychiatry
    Article . 2024 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biological Psychiatr...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Biological Psychiatry
      Article . 2024 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: M. Lader; V. Christensen; G. Frcka; A. Melhuish; +1 Authors

    Citalopram, a selective 5-HT uptake inhibitor with antidepressant properties, was assessed in three studies in 12 healthy subjects using a battery of EEG, psychological, subjective and symptomatic measures. Study A involved the administration of citalopram, 20 mg and 40 mg, amitriptyline 50 mg and placebo in single dose using a balanced cross-over design. The test battery was applied before, and 1 and 3 h after each drug. Citalopram decreased slow-wave EEG activity whereas amitriptyline increased power in most EEG wavebands. Citalopram increased tapping rate and symbol copying whereas amitriptyline impaired these and other psychomotor tasks. Subjectively, amitriptyline was much more sedative than citalopram and produced more complaints of dry mouth. Study B comprised the administration of citalopram in the usual clinical dose of 40 mg, amitriptyline in the low clinical dose of 75 mg and placebo, each given for 9 nights using a balanced cross-over design. The test battery was applied on the first morning (pre-drug) and on the morning after the last nightly dose. None of the physiological tests showed any drug effects. Subjectively, citalopram was associated with feelings of shaking, nausea, loss of appetite and physical tiredness; amitriptyline produced feelings of shaking, nausea, loss of appetite, dryness of mouth, irritability, dizziness and indigestion; in general, amitriptyline effects were more marked than those of citalopram. Plasma samples were taken on the last day and plasma concentrations of both drugs and their metabolites were found to be in the expected range for the regimens used.(ABSTRACT TRUNCATED AT 250 WORDS)

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao European Journal of ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    European Journal of Clinical Pharmacology
    Article . 1986 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    addClaim
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao European Journal of ...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      European Journal of Clinical Pharmacology
      Article . 1986 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Graziano Pinna; orcid Murat Eravci;
    Murat Eravci
    ORCID
    Harvested from ORCID Public Data File

    Murat Eravci in OpenAIRE
    Hans Prengel; Luis Hiedra; +6 Authors

    The effects of acute, low-dose administration of ethanol (1 g/kg bodyweight) and the mu-opioid receptor agonist etonitazene (30 microg/kg bodyweight) on the activities of the iodothyronine deiodinase isoenzymes were investigated in nine regions of the rat brain. The experiments were performed at three different times of the 24-h cycle (1300, 2100 and 0500 hours) and the rats were decapitated 30 and 120 min after administration of the respective drugs. Interest was focused on changes in the two enzymes that catalyze 1) 5'-deiodination of thyroxine (T4) to the biologically active triiodothyronine (T3), i.e. type II 5'-deiodinase (5'D-II) and 2) 5 (or inner-ring) deiodination of T3 to the biologically inactive 3'3-T2, i.e. type III deiodinase (5D-III). 120 min after administration of ethanol and etonitazene 5D-III activity was selectively inhibited in the frontal cortex (at 1300 and 1700 hours) and the amygdala (at all three measuring times). The 5'D-II activity was significantly enhanced 30 min after administration of etonitazene in the frontal cortex, amygdala and limbic forebrain, and after administration of ethanol in the amygdala alone. These effects on 5'D-II activity were seen at 2100 hours only. In conclusion, the two different addictive drugs both reduced the inactivation of the physiologically active thyroid hormone T3 and enhanced its production. These effects occurred almost exclusively in the brain regions which were most likely to be involved in the rewarding properties of addictive drugs. As thyroid hormones have stimulating and mood-elevating properties, an involvement of these hormones in the reinforcing effects of addictive drugs seems conceivable.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Psychopharmacologyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Psychopharmacology
    Article . 1998 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    addClaim
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Psychopharmacologyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Psychopharmacology
      Article . 1998 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Darstein, Melanie; Albrecht, Clemens; López‐Francos, Luis; orcid Knörle, Rainer;
    Knörle, Rainer
    ORCID
    Harvested from ORCID Public Data File

    Knörle, Rainer in OpenAIRE
    +3 Authors

    Release from and accumulation in tissue slices of some neurotransmitters under acute ethanol in naive rats and in long‐term voluntarily ethanol drinking rats were investigated. Slices of the rat caudatoputamen were prelabeled with [3H]choline and release of [3H]acetylcholine was stimulated through either N‐methyl‐d‐aspartate (NMDA) receptors or strychnine‐sensitive glycine receptors. Ethanol in vitro at 2%, 4%, and 6% (34 mM, 68 mM, and 102 mM, respectively) concentration‐dependently depressed the maximum effect of the concentration‐response curve of NMDA in naive rats. In contrast, voluntary ethanol consumption over months led to a significantly enhanced NMDA receptor response characterized by an increase in the maximum effect of the concentration‐response curve. The glycine receptor‐mediated release of [3H]acetylcholine, which is inhibited by acute ethanol in a competitive‐like fashion, was not changed in animals that ingested ethanol over months. Electrically evoked release of [3H]noradrenaline ([3H]NA) and its presynaptic modulation by morphine through μ‐opioid receptors in neocortical slices of the rat, preloaded with [3H]NA, was nearly identical in both ethanol‐naive rats and in ethanol drinking rats. The accumulation of [3H]γ‐aminobutyric acid in rat cerebellum tissue was neither affected by acute ethanol in vitro nor after chronic ethanol consumption. In summary, long‐term voluntary ethanol intake caused a significant increase in NMDA receptor function in the rat caudatoputamen, but did not result in changes in glycine‐evoked [3H]acetylcholine release of electrically evoked [3H]NA release modulated by morphine or cerebellar [3H]γ‐aminobutyric acid accumulation.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Alcoholism Clinical ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Alcoholism Clinical and Experimental Research
    Article . 1998 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Alcoholism Clinical and Experimental Research
    Article . 1998 . Peer-reviewed
    License: Wiley TDM
    Data sources: Crossref
    addClaim
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Alcoholism Clinical ...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Alcoholism Clinical and Experimental Research
      Article . 1998 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Alcoholism Clinical and Experimental Research
      Article . 1998 . Peer-reviewed
      License: Wiley TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Michael D. Mantle; Thoa T. M. Nguyen; orcid Andrew J. Sederman;
    Andrew J. Sederman
    ORCID
    Harvested from ORCID Public Data File

    Andrew J. Sederman in OpenAIRE
    Lynn F. Gladden;

    The dynamics of granular materials, particularly radial and axial segregation in horizontal rotating cylinders containing large and small particles, is studied by Magnetic Resonance Imaging (MRI). Stationary three-dimensional (3D) images and real-time two-dimensional (2D) structural images showing radial segregation, band formation, and band merging are reported. Quantitative local particle concentrations are measured in a noninvasive manner from the different magnetic resonance responses of the seeds throughout segregation. Data are acquired with sufficiently high temporal (300 ms for 2D images) and spatial resolutions (0.94 mm cubic voxels), to give insights into the underlying mechanisms of both radial and axial segregation. In particular, the increasing rate of the local particle concentration during radial segregation is quantified. Particle migration is observed in the bulk material of the 75% and 82% full cylinders during both radial and axial segregation, showing that this region beneath the avalanche layer does not behave as a solid body. We also provide direct experimental evidence to support recent numerical simulations of band merging.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Physical Review Earrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Physical Review E
    Article . 2011 . Peer-reviewed
    License: APS Licenses for Journal Article Re-use
    Data sources: Crossref
    addClaim
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Physical Review Earrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Physical Review E
      Article . 2011 . Peer-reviewed
      License: APS Licenses for Journal Article Re-use
      Data sources: Crossref
      addClaim
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right
Powered by OpenAIRE graph