- home
- Advanced Search
Filters
Clear All- Energy Research
- Restricted
- FR
- IT
- Neuroscience
- Energy Research
- Restricted
- FR
- IT
- Neuroscience
description Publicationkeyboard_double_arrow_right Article , Journal 2018 ItalyPublisher:American Chemical Society (ACS) Authors: Emilia Bramanti; Massimo Onor; Laura Colombaioni;pmid: 30346713
The heavy metal thallium is an emerging pollutant among the most potentially toxic species to which human populations are exposed. Its harmful effects on living organisms are well-known at high doses, typical of acute intoxication. Its harmful effects at low doses are by far less known. In a previous paper, we reported a TlCl-induced metabolic shift to lactate and ethanol production in living hippocampal HN9.10e neurons that appeared after a single short exposure (48 h) at low doses (1-100 μg/L). This metabolic shift to lactate and ethanol suggests a marked impairment of cell bioenergetics. In this work, we provide detailed evidence for TlCl-induced changes of neuronal morphology and mitochondrial activity. Confocal microscopy and fluorescent probes were used to qualitatively and quantitatively analyze, at the subcellular level, living HN9.10e neurons during and after TlCl exposure. An early onset mitochondrial dysfunction appeared, associated with signs of cellular deregulation such as neurite shortening, loss of substrate adhesion, and increase of cytoplasmic calcium. The dose-dependent alteration of mitochondrial ROS (mtROS) level and of transmembrane mitochondrial potential (ΔΨm) has been observed also for very low TlCl doses (1 μg/L). The treatment with the ATP synthase inhibitor oligomycin revealed a severe impairment of the mitochondrial function, more significant than that measured by the simple quantification of the tetramethylrhodamine methyl ester (TMRM) fluorescence. These results highlight that mitochondria are a key subcellular target of TlCl neurotoxicity. The transmembrane mitochondrial potential was significantly correlated with the ethanol concentration in cell culture medium ( P < 0.001, r = -0.817), suggesting that ethanol could be potentially used as a biomarker of mitochondrial impairment.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acschemneuro.8b00343&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acschemneuro.8b00343&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 ItalyPublisher:Wiley Rosanna Migliore; Michele Migliore; Xavier Leinekugel; Xavier Leinekugel; Giada De Simone;doi: 10.1111/ejn.13325
pmid: 27374169
AbstractThe possible effects on cognitive processes of external electric fields, such as those generated by power line pillars and household appliances are of increasing public concern. They are difficult to study experimentally, and the relatively scarce and contradictory evidence make it difficult to clearly assess these effects. In this study, we investigate how, why and to what extent external perturbations of the intrinsic neuronal activity, such as those that can be caused by generation, transmission and use of electrical energy can affect neuronal activity during cognitive processes. For this purpose, we used a morphologically and biophysically realistic three‐dimensional model of CA1 pyramidal neurons. The simulation findings suggest that an electric field oscillating at power lines frequency, and environmentally measured strength, can significantly alter both the average firing rate and temporal spike distribution properties of a hippocampal CA1 pyramidal neuron. This effect strongly depends on the specific and instantaneous relative spatial location of the neuron with respect to the field, and on the synaptic input properties. The model makes experimentally testable predictions on the possible functional consequences for normal hippocampal functions such as object recognition and spatial navigation. The results suggest that, although EF effects on cognitive processes may be difficult to occur in everyday life, their functional consequences deserve some consideration, especially when they constitute a systematic presence in living environments.
CNR ExploRA arrow_drop_down European Journal of NeuroscienceArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ejn.13325&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert CNR ExploRA arrow_drop_down European Journal of NeuroscienceArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ejn.13325&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Authors: Elbert A.J. Joosten; Tianhe C. Zhang; Koen P.V. Meuwissen; Jianwen Wendy Gu;doi: 10.1111/ner.12731
pmid: 29178358
Various spinal cord stimulation (SCS) modes are used in the treatment of chronic neuropathic pain disorders. Conventional (Con) and Burst-SCS are hypothesized to exert analgesic effects through different stimulation-induced mechanisms. Preclinical electrophysiological findings suggest that stimulation intensity is correlated with the effectiveness of Burst-SCS. Therefore, we aimed to investigate the relation between amplitude (charge per second) and behavioral effects in a rat model of chronic neuropathic pain, for both Conventional Spinal Cord Stimulation (Con-SCS) and biphasic Burst-SCS.Animals (n = 12 rats) received a unilateral partial sciatic nerve ligation, after which they were implanted with quadripolar electrodes in the epidural space at thoracic level 13. Mechanical hypersensitivity was assessed using paw withdrawal thresholds (WTs) to von Frey monofilaments, at various SCS intensities (amplitudes) and multiple time points during 60 minutes of stimulation and 30 minutes post stimulation.Increasing amplitude was shown to improve the efficacy of Con-SCS, whereas the efficacy of Burst-SCS showed a non-monotonic relation with amplitude. Con-SCS at 66% MT (n = 5) and Burst-SCS at 50% MT (n = 6) were found to be equally effective in normalizing mechanical hypersensitivity. However, in the assessed time period Burst-SCS required significantly more mean charge per second to do so (p < 0.01). When applied at comparable mean charge per second, Con-SCS resulted in a superior behavioral outcome (p < 0.01), compared with Burst-SCS.Biphasic Burst-SCS requires significantly more mean charge per second in order to achieve similar pain relief, as compared with Con-SCS, in an experimental model of chronic neuropathic pain.
Neuromodulation Tech... arrow_drop_down Neuromodulation Technology at the Neural InterfaceArticle . 2018Data sources: DANS (Data Archiving and Networked Services)Neuromodulation Technology at the Neural InterfaceArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefNeuromodulation Technology at the Neural InterfaceArticle . 2018Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ner.12731&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Neuromodulation Tech... arrow_drop_down Neuromodulation Technology at the Neural InterfaceArticle . 2018Data sources: DANS (Data Archiving and Networked Services)Neuromodulation Technology at the Neural InterfaceArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefNeuromodulation Technology at the Neural InterfaceArticle . 2018Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ner.12731&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010 DenmarkPublisher:IOP Publishing Authors: Jezernik, Saso; Sinkjær, Thomas; Morari, Manfred;pmid: 20551509
In this work we address the problem of stimulating nervous tissue with the minimal necessary energy at reduced/minimal charge. Charge minimization is related to a valid safety concern (avoidance and reduction of stimulation-induced tissue and electrode damage). Energy minimization plays a role in battery-driven electrical or magnetic stimulation systems (increased lifetime, repetition rates, reduction of power requirements, thermal management). Extensive new theoretical results are derived by employing an optimal control theory framework. These results include derivation of the optimal electrical stimulation waveform for a mixed energy/charge minimization problem, derivation of the charge-balanced energy-minimal electrical stimulation waveform, solutions of a pure charge minimization problem with and without a constraint on the stimulation amplitude, and derivation of the energy-minimal magnetic stimulation waveform. Depending on the set stimulus pulse duration, energy and charge reductions of up to 80% are deemed possible. Results are verified in simulations with an active, mammalian-like nerve fiber model.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1741-2560/7/4/046004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 18 citations 18 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1741-2560/7/4/046004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2018 ItalyPublisher:American Chemical Society (ACS) Authors: Emilia Bramanti; Massimo Onor; Laura Colombaioni;pmid: 30346713
The heavy metal thallium is an emerging pollutant among the most potentially toxic species to which human populations are exposed. Its harmful effects on living organisms are well-known at high doses, typical of acute intoxication. Its harmful effects at low doses are by far less known. In a previous paper, we reported a TlCl-induced metabolic shift to lactate and ethanol production in living hippocampal HN9.10e neurons that appeared after a single short exposure (48 h) at low doses (1-100 μg/L). This metabolic shift to lactate and ethanol suggests a marked impairment of cell bioenergetics. In this work, we provide detailed evidence for TlCl-induced changes of neuronal morphology and mitochondrial activity. Confocal microscopy and fluorescent probes were used to qualitatively and quantitatively analyze, at the subcellular level, living HN9.10e neurons during and after TlCl exposure. An early onset mitochondrial dysfunction appeared, associated with signs of cellular deregulation such as neurite shortening, loss of substrate adhesion, and increase of cytoplasmic calcium. The dose-dependent alteration of mitochondrial ROS (mtROS) level and of transmembrane mitochondrial potential (ΔΨm) has been observed also for very low TlCl doses (1 μg/L). The treatment with the ATP synthase inhibitor oligomycin revealed a severe impairment of the mitochondrial function, more significant than that measured by the simple quantification of the tetramethylrhodamine methyl ester (TMRM) fluorescence. These results highlight that mitochondria are a key subcellular target of TlCl neurotoxicity. The transmembrane mitochondrial potential was significantly correlated with the ethanol concentration in cell culture medium ( P < 0.001, r = -0.817), suggesting that ethanol could be potentially used as a biomarker of mitochondrial impairment.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acschemneuro.8b00343&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acschemneuro.8b00343&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 ItalyPublisher:Wiley Rosanna Migliore; Michele Migliore; Xavier Leinekugel; Xavier Leinekugel; Giada De Simone;doi: 10.1111/ejn.13325
pmid: 27374169
AbstractThe possible effects on cognitive processes of external electric fields, such as those generated by power line pillars and household appliances are of increasing public concern. They are difficult to study experimentally, and the relatively scarce and contradictory evidence make it difficult to clearly assess these effects. In this study, we investigate how, why and to what extent external perturbations of the intrinsic neuronal activity, such as those that can be caused by generation, transmission and use of electrical energy can affect neuronal activity during cognitive processes. For this purpose, we used a morphologically and biophysically realistic three‐dimensional model of CA1 pyramidal neurons. The simulation findings suggest that an electric field oscillating at power lines frequency, and environmentally measured strength, can significantly alter both the average firing rate and temporal spike distribution properties of a hippocampal CA1 pyramidal neuron. This effect strongly depends on the specific and instantaneous relative spatial location of the neuron with respect to the field, and on the synaptic input properties. The model makes experimentally testable predictions on the possible functional consequences for normal hippocampal functions such as object recognition and spatial navigation. The results suggest that, although EF effects on cognitive processes may be difficult to occur in everyday life, their functional consequences deserve some consideration, especially when they constitute a systematic presence in living environments.
CNR ExploRA arrow_drop_down European Journal of NeuroscienceArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ejn.13325&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert CNR ExploRA arrow_drop_down European Journal of NeuroscienceArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ejn.13325&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Authors: Elbert A.J. Joosten; Tianhe C. Zhang; Koen P.V. Meuwissen; Jianwen Wendy Gu;doi: 10.1111/ner.12731
pmid: 29178358
Various spinal cord stimulation (SCS) modes are used in the treatment of chronic neuropathic pain disorders. Conventional (Con) and Burst-SCS are hypothesized to exert analgesic effects through different stimulation-induced mechanisms. Preclinical electrophysiological findings suggest that stimulation intensity is correlated with the effectiveness of Burst-SCS. Therefore, we aimed to investigate the relation between amplitude (charge per second) and behavioral effects in a rat model of chronic neuropathic pain, for both Conventional Spinal Cord Stimulation (Con-SCS) and biphasic Burst-SCS.Animals (n = 12 rats) received a unilateral partial sciatic nerve ligation, after which they were implanted with quadripolar electrodes in the epidural space at thoracic level 13. Mechanical hypersensitivity was assessed using paw withdrawal thresholds (WTs) to von Frey monofilaments, at various SCS intensities (amplitudes) and multiple time points during 60 minutes of stimulation and 30 minutes post stimulation.Increasing amplitude was shown to improve the efficacy of Con-SCS, whereas the efficacy of Burst-SCS showed a non-monotonic relation with amplitude. Con-SCS at 66% MT (n = 5) and Burst-SCS at 50% MT (n = 6) were found to be equally effective in normalizing mechanical hypersensitivity. However, in the assessed time period Burst-SCS required significantly more mean charge per second to do so (p < 0.01). When applied at comparable mean charge per second, Con-SCS resulted in a superior behavioral outcome (p < 0.01), compared with Burst-SCS.Biphasic Burst-SCS requires significantly more mean charge per second in order to achieve similar pain relief, as compared with Con-SCS, in an experimental model of chronic neuropathic pain.
Neuromodulation Tech... arrow_drop_down Neuromodulation Technology at the Neural InterfaceArticle . 2018Data sources: DANS (Data Archiving and Networked Services)Neuromodulation Technology at the Neural InterfaceArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefNeuromodulation Technology at the Neural InterfaceArticle . 2018Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ner.12731&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Neuromodulation Tech... arrow_drop_down Neuromodulation Technology at the Neural InterfaceArticle . 2018Data sources: DANS (Data Archiving and Networked Services)Neuromodulation Technology at the Neural InterfaceArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefNeuromodulation Technology at the Neural InterfaceArticle . 2018Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ner.12731&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010 DenmarkPublisher:IOP Publishing Authors: Jezernik, Saso; Sinkjær, Thomas; Morari, Manfred;pmid: 20551509
In this work we address the problem of stimulating nervous tissue with the minimal necessary energy at reduced/minimal charge. Charge minimization is related to a valid safety concern (avoidance and reduction of stimulation-induced tissue and electrode damage). Energy minimization plays a role in battery-driven electrical or magnetic stimulation systems (increased lifetime, repetition rates, reduction of power requirements, thermal management). Extensive new theoretical results are derived by employing an optimal control theory framework. These results include derivation of the optimal electrical stimulation waveform for a mixed energy/charge minimization problem, derivation of the charge-balanced energy-minimal electrical stimulation waveform, solutions of a pure charge minimization problem with and without a constraint on the stimulation amplitude, and derivation of the energy-minimal magnetic stimulation waveform. Depending on the set stimulus pulse duration, energy and charge reductions of up to 80% are deemed possible. Results are verified in simulations with an active, mammalian-like nerve fiber model.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1741-2560/7/4/046004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 18 citations 18 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1741-2560/7/4/046004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu