Advanced search in Research products
Research products
arrow_drop_down
unfold_less Compact
1and
Any field
arrow_drop_down
includes
arrow_drop_down
or
  • Access
    Clear
  • Type
  • Year range
  • Field of Science
  • Funder
  • Country
    Clear
  • Language
  • Source
  • Research community
    Clear
  • Subcommunity
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
56 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • Restricted
  • IT
  • NL
  • CA
  • Neuroscience

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid bw Ferretti, Guido;
    Ferretti, Guido
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Ferretti, Guido in OpenAIRE
    orcid Fagoni, Nazzareno;
    Fagoni, Nazzareno
    ORCID
    Harvested from ORCID Public Data File

    Fagoni, Nazzareno in OpenAIRE
    orcid Taboni, Anna;
    Taboni, Anna
    ORCID
    Harvested from ORCID Public Data File

    Taboni, Anna in OpenAIRE
    orcid BRUSEGHINI, Paolo;
    BRUSEGHINI, Paolo
    ORCID
    Harvested from ORCID Public Data File

    BRUSEGHINI, Paolo in OpenAIRE
    +1 Authors

    The steady state concept implies that the oxygen flow is invariant and equal at each level along the respiratory system. The same is the case with the carbon dioxide flow. This condition has several physiological consequences, which are analysed. First, we briefly discuss the mechanical efficiency of exercise and the energy cost of human locomotion, as well as the roles played by aerodynamic work and frictional work. Then we analyse the equations describing the oxygen flow in lungs and in blood, the effects of ventilation and of the ventilation - perfusion inequality, and the interaction between diffusion and perfusion in the lungs. The cardiovascular responses sustaining gas flow increase in blood are finally presented. An equation linking ventilation, circulation and metabolism is developed, on the hypothesis of constant oxygen flow in mixed venous blood. This equation tells that, if the pulmonary respiratory quotient stays invariant, any increase in metabolic rate is matched by a proportional increase in ventilation, but by a less than proportional increase in cardiac output.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archive ouverte UNIG...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Respiratory Physiology & Neurobiology
    Article . 2017 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    PubliCatt
    Article . 2017
    Data sources: PubliCatt
    addClaim
    37
    citations37
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archive ouverte UNIG...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Respiratory Physiology & Neurobiology
      Article . 2017 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      PubliCatt
      Article . 2017
      Data sources: PubliCatt
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Giordano de Guglielmo;
    Giordano de Guglielmo
    ORCID
    Harvested from ORCID Public Data File

    Giordano de Guglielmo in OpenAIRE
    orcid bw Roberto Ciccocioppo;
    Roberto Ciccocioppo
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Roberto Ciccocioppo in OpenAIRE
    Hongwu Li; orcid Massimo Ubaldi;
    Massimo Ubaldi
    ORCID
    Harvested from ORCID Public Data File

    Massimo Ubaldi in OpenAIRE
    +7 Authors

    Environmental conditioning is a major trigger for relapse in abstinent addicts. We showed that activation of the neuropeptide S (NPS) system exacerbates reinstatement vulnerability to cocaine and alcohol via stimulation of the hypocretin-1/orexin-A (Hcrt-1/Ox-A) system.Combining pharmacologic manipulations with immunohistochemistry techniques, we sought to determine how NPS and Hcrt-1/Ox-A systems interact to modulate reinstatement of alcohol seeking in rats.Intrahypothalamic injection of NPS facilitated discriminative cue-induced reinstatement of alcohol seeking. This effect was blocked by the selective Hcrt-1/Ox-A antagonist SB334867 microinjected into the hypothalamic paraventricular nucleus (PVN) or into the bed nucleus of the stria terminalis (BNST) but not into the ventral tegmental area or the locus coeruleus. Combining double labeling and confocal microscopy analyses, we found that NPS-containing axons are in close apposition to hypothalamic Hcrt-1/Ox-A positive neurons, a significant proportion of which express NPS receptors, suggesting a direct interaction between the two systems. Retrograde tracing experiments showed that intra-PVN or intra-BNST red fluorobead unilateral injection labeled bilaterally Hcrt-1/Ox-A somata, suggesting that NPS could recruit two distinct neuronal pathways. Confirming this assumption, intra-BNST or PVN Hcrt-1/Ox-A injection enhanced alcohol seeking similarly to hypothalamic NPS injection but to a lesser degree.Results suggest that the Hcrt-1/Ox-A neurocircuitry mediating the facilitation of cue-induced reinstatement by NPS involves structures critically involved in stress regulation such as the PVN and the BNST. These findings open to the tempting hypothesis of a role of the NPS system in modulating the interactions between stress and environmental conditioning factors in drug relapse.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio istituziona...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Biological Psychiatry
    Article . 2016 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    42
    citations42
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Patel, Reesha R; Wolfe, Sarah A; Bajo, Michal; orcid Abeynaike, Shawn;
    Abeynaike, Shawn
    ORCID
    Harvested from ORCID Public Data File

    Abeynaike, Shawn in OpenAIRE
    +8 Authors

    Alcohol elicits a neuroimmune response in the brain contributing to the development and maintenance of alcohol use disorder (AUD). While pro-inflammatory mediators initiate and drive the neuroimmune response, anti-inflammatory mediators provide an important homeostatic mechanism to limit inflammation and prevent pathological damage. However, our understanding of the role of anti-inflammatory signaling on neuronal physiology in critical addiction-related brain regions and pathological alcohol-dependence induced behaviors is limited, precluding our ability to identify promising therapeutic targets. Here, we hypothesized that chronic alcohol exposure compromises anti-inflammatory signaling in the central amygdala, a brain region implicated in anxiety and addiction, consequently perpetuating a pro-inflammatory state driving aberrant neuronal activity underlying pathological behaviors. We found that alcohol dependence alters the global brain immune landscape increasing IL-10 producing microglia and T-regulatory cells but decreasing local amygdala IL-10 levels. Amygdala IL-10 overexpression decreases anxiety-like behaviors, suggesting its local role in regulating amygdala-mediated behaviors. Mechanistically, amygdala IL-10 signaling through PI3K and p38 MAPK modulates GABA transmission directly at presynaptic terminals and indirectly through alterations in spontaneous firing. Alcohol dependence-induces neuroadaptations in IL-10 signaling leading to an overall IL-10-induced decrease in GABA transmission, which normalizes dependence-induced elevated amygdala GABA transmission. Notably, amygdala IL-10 overexpression abolishes escalation of alcohol intake, a diagnostic criterion of AUD, in dependent mice. This highlights the importance of amygdala IL-10 signaling in modulating neuronal activity and underlying anxiety-like behavior and aberrant alcohol intake, providing a new framework for therapeutic intervention.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Usiena air - Univers...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Progress in Neurobiology
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    54
    citations54
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Laurino A;
    Laurino A
    ORCID
    Harvested from ORCID Public Data File

    Laurino A in OpenAIRE
    orcid Landucci E;
    Landucci E
    ORCID
    Harvested from ORCID Public Data File

    Landucci E in OpenAIRE
    orcid Resta F;
    Resta F
    ORCID
    Harvested from ORCID Public Data File

    Resta F in OpenAIRE
    De Siena G; +3 Authors

    3-iodothyroacetic acid (TA1) is among the by-products of thyroid hormone metabolism suspected to mediate the non-genomic effects of the hormone (T3). We aim to investigate whether TA1 systemically administered to mice stimulated mice wakefulness, an effect already described for T3 and for another T3 metabolite (i.e. 3-iodothryonamine; T1AM), and whether TA1 interacted at GABA-A receptors (GABA-AR). Mice were pre-treated with either saline (vehicle) or TA1 (1.32, 4 and 11 μg/kg) and, after 10 min, they received ethanol (3.5 g/kg, i.p.). In another set of experiments, TA1 was administered 5 min after ethanol. The latency of sleep onset and the time of sleep duration were recorded. Voltage-clamp experiments to evaluate the effect of 1 μM TA1 on bicuculline-sensitive currents in acute rat hippocampal slice neurons and binding experiments evaluating the capacity of 1, 10, 100 μM TA1 to displace [3H]flumazenil from mice brain membranes were also performed. 4 μg/kg TA1 increases the latency of onset and at 1.32 and 4 μg/kg it reduces the duration of ethanol-induced sleep only if administered before ethanol. TA1 does not functionally interact at GABA-AR. Overall these results indicate a further similarity between the pharmacological profile of TA1 and that of T1AM.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IRIS Cnrarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Neurochemistry International
    Article . 2018 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    6
    citations6
    popularityAverage
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid CALABRESE, Vittorio;
    CALABRESE, Vittorio
    ORCID
    Harvested from ORCID Public Data File

    CALABRESE, Vittorio in OpenAIRE
    orcid RENIS, Marcella;
    RENIS, Marcella
    ORCID
    Harvested from ORCID Public Data File

    RENIS, Marcella in OpenAIRE
    Calderone A; orcid RUSSO, Alessandra;
    RUSSO, Alessandra
    ORCID
    Harvested from ORCID Public Data File

    RUSSO, Alessandra in OpenAIRE
    +3 Authors

    It is generally agreed that lipid peroxides play an important role in the pathogenesis of ethanol-induced cellular injury and that free sulfhydryl groups are vital in cellular defense against endogenous or exogenous oxidants. It has been observed that oxidative stress induces the synthesis of the 70-kDa family of heat-shock proteins (HSPs). Induction of HSPs represents an essential and highly conserved cellular response to a variety of stressful stimuli. In the present study we measured in various brain areas and in liver the intracellular levels of HSP70 proteins, sulfhydryl groups and the antioxidant enzyme status after chronic administration of mild intoxicating doses of ethanol to rats. Expression of HSP70 in response to alcohol administration was particularly high in the hippocampus and striatum. In these brain areas, the increase in HSP70 protein levels occurred in absence of significant changes of antioxidant enzyme activities and was correlated with a marked depletion of intracellular bound thiols and with a decreased susceptibility to lipid peroxidation. Lower levels of HSP70 induction were found in cortex and cerebellum and were associated to decreases in SOD and CAT enzyme activities, with a lower depletion of protein bound thiols and with an increased susceptibility to lipid peroxidation. This study agrees with our previous results performed on acute alcohol intoxication and supports the hypothesis that HSP70 induction protects the different brain areas against oxidative stress.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IRIS - Università de...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Free Radical Biology and Medicine
    Article . 1998 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    99
    citations99
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Jost, C.R.; Zee, C.E.E.M. van der; Zandt, H.J.A. in 't; Oerlemans, F.T.J.J.; +7 Authors

    AbstractCreatine kinases are important in maintaining cellular‐energy homeostasis, and neuroprotective effects have been attributed to the administration of creatine and creatine‐like compounds. Herein we examine whether ablation of the cytosolic brain‐type creatine kinase (B‐CK) in mice has detrimental effects on brain development, physiological integrity or task performance. Mice deficient in B‐CK (B‐CK–/–) showed no gross abnormalities in brain anatomy or mitochondrial ultrastructure, but had a larger intra‐ and infrapyramidal mossy fibre area. Nuclear magnetic resonance spectroscopy revealed that adenosine triphosphate (ATP) and phosphocreatine (PCr) levels were unaffected, but demonstrated an apparent reduction of the PCr ⇆ ATP phosphorus exchange capacity in these mice. When assessing behavioural characteristics B‐CK–/– animals showed diminished open‐field habituation. In the water maze, adult B‐CK–/– mice were slower to learn, but acquired the spatial task. This task performance deficit persisted in 24‐month‐old, aged B‐CK–/– mice, on top of the age‐related memory decline normally seen in old animals. Finally, a delayed development of pentylenetetrazole‐induced seizures (creating a high‐energy demand) was observed in B‐CK–/– mice. It is suggested that the persistent expression of the mitochondrial isoform ubiquitous mitochondrial CK (UbCKmit) in the creatine/phospho‐creatine shuttle provides compensation for the loss of B‐CK in the brain. Our studies indicate a role for the creatine–phosphocreatine/CK circuit in the formation or maintenance of hippocampal mossy fibre connections, and processes that involve habituation, spatial learning and seizure susceptibility. However, for fuelling of basic physiological activities the role of B‐CK can be compensated for by other systems in the versatile and robust metabolic‐energy network of the brain.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Radboud Repositoryarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Radboud Repository
    Article . 2002
    Data sources: Radboud Repository
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    European Journal of Neuroscience
    Article . 2002 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim
    145
    citations145
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Radboud Repositoryarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Radboud Repository
      Article . 2002
      Data sources: Radboud Repository
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      European Journal of Neuroscience
      Article . 2002 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Seyed Hossein Daneshvar;
    Seyed Hossein Daneshvar
    ORCID
    Harvested from ORCID Public Data File

    Seyed Hossein Daneshvar in OpenAIRE
    Mohammad Maymandi-Nejad; Manoj Sachdev; orcid Jean-Michel Redoute;
    Jean-Michel Redoute
    ORCID
    Harvested from ORCID Public Data File

    Jean-Michel Redoute in OpenAIRE

    Micro-scale generators are becoming more popular for harvesting energy to power bio-implantable devices and sensor networks. Most electrostatic generators (ESGs) use constant capacitors as storage or reservoir components in conjunction with a variable capacitor. The main issue with some existing ESG topologies is that these capacitors deplete and discharge over time. This paper studies a typical ESG and derives the charge depletion problem mathematically. Subsequently, a new ESG capable of circumventing this problem is proposed. Closed-form formulas expressing the output voltage and generated power are derived and validated. The proposed ESG harvests 25% of the power that the mechanical energy source generates by actuating the variable capacitor when the maximum-to-minimum capacitance ratio of the variable capacitor is optimized. In the presented case study, the ESG generates 9.75 mW optimally when a variable capacitor with a maximum/minimum capacitance ratio of 39/ $9.75~\mu \text{F}$ is used for energy harvesting from a 1-Hz knee joint movement of a walking person. The overall volume of the ESG is estimated to be 125 mm3, and the variable capacitor is charged to 5 V at its maximum capacitance. A control mechanism and a self-starting circuit are presented for this ESG architecture, which allows it to generate any desired output voltage. This capability can be used to harvest the maximum available kinetic energy and compensate load variations.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Open Repository and ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    IEEE Sensors Journal
    Article . 2019 . Peer-reviewed
    License: IEEE Copyright
    Data sources: Crossref
    addClaim
    9
    citations9
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Open Repository and ...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      IEEE Sensors Journal
      Article . 2019 . Peer-reviewed
      License: IEEE Copyright
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Pap, E.H.W.; Bastiaens, P.I.H.; orcid bw Borst, J.W.;
    Borst, J.W.
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Borst, J.W. in OpenAIRE
    van den Berg, P.A.W.; +4 Authors

    Quantitative studies of the binding of protein kinase C (PKC) to lipid cofactors were performed by monitoring resonance energy transfer with time-resolved fluorescence techniques. For that purpose, diacylglycerol (DG), phosphatidylinositol 4,5-biphosphate (PIP2), phosphatidylinositol 4-phosphate (PIP), phosphatidylinositol (PI), phosphatidylcholine (PC), and phosphatidylserine (PS) were labeled with a pyrenyl decanoyl moiety at the sn-2 position of the lipid glycerol. These labeled lipids proved excellent energy acceptors of light-excited tryptophan residues in PKC. The quenching efficiency of the tryptophan fluorescence was determined as function of lipid probe concentration in mixed micelles consisting of poly(oxyethylene)-9-lauryl ether, PS, and various mole fractions of probe lipid. The experimental conditions and method of data analysis allowed the estimation of binding constants of single or multiple pyrene lipids to PKC. The affinity of PKC for inositide lipids increases in the order PI < PIP < PIP2. The affinity of PKC for PIP and PIP2 is higher than that for DG. Determination of PKC activity in the presence of labeled lipids and PS showed that only PIP2 and DG activate PKC. Double-labeling experiments suggest that PIP2 and DG are not able to bind simultaneously to PKC, indicating a reciprocal binding relationship of both cofactors. The results support the notion that, besides DG, PIP2 can be a primary activator of PKC.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Research@WURarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Research@WUR
    Article . 1993
    Data sources: Research@WUR
    Biochemistry
    Article . 1993 . Peer-reviewed
    Data sources: Crossref
    Biochemistry
    Article . 1994
    addClaim
    38
    citations38
    popularityAverage
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Research@WURarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Research@WUR
      Article . 1993
      Data sources: Research@WUR
      Biochemistry
      Article . 1993 . Peer-reviewed
      Data sources: Crossref
      Biochemistry
      Article . 1994
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Nestby, P; Vanderschuren, Louk J M J; DeVries, TJ; Hogenboom, F; +3 Authors

    Repeated treatment of rats with ethanol (1 g/kg, once daily for 15 days) enhanced the locomotor effect of morphine, 3 weeks post-treatment. This ethanol-induced long-term behavioural sensitization to morphine was associated with an increase in the electrically evoked release of [3H]dopamine (DA) and [14C]acetylcholine (ACh) from nucleus accumbens slices. A similar enhanced responsiveness of accumbal dopaminergic and cholinergic neurons to depolarization was apparent 3 weeks after repeated morphine, amphetamine or cocaine administration. Prior ethanol exposure also caused a long-term enhancement of electrically evoked release of [3H]DA and [14C]ACh from slices of the caudate-putamen. Unlike the locomotor effect of morphine, that of amphetamine was not enhanced in ethanol-pretreated rats. These data indicate that ethanol administration may cause long-term behavioural sensitization associated with adaptive changes in dopaminergic and cholinergic neurons of rat nucleus accumbens and caudate-putamen. Furthermore, an enhanced reactivity of nucleus accumbens dopaminergic nerve terminals and dopamine-sensitive cholinergic neurons appears to be a common long-term neuroadaptive effect of distinct types of addictive drugs. However, since repeated ethanol exposure did not cause a long-term increase in the locomotor effect of amphetamine, these neuroadaptations may not always be sufficient to cause long-lasting behavioural (cross-)sensitization.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Amsterdam UMC (VU Am...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Psychopharmacology
    Article . 1997 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Psychopharmacology
    Article . 1997
    Data sources: Pure Amsterdam UMC
    addClaim
    123
    citations123
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Amsterdam UMC (VU Am...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Psychopharmacology
      Article . 1997 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Psychopharmacology
      Article . 1997
      Data sources: Pure Amsterdam UMC
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Fernandez M. S.; orcid Bellia F.;
    Bellia F.
    ORCID
    Harvested from ORCID Public Data File

    Bellia F. in OpenAIRE
    Ferreyra A.; Chiner F.; +3 Authors

    Ethanol use is widespread in adolescents, yet only some transition to problematic drinking. It is important to understand why the risk for problematic drinking varies across sub-groups of adolescents. This study reports a short-term selection program to generate Wistar rat lines (high and low adolescent ethanol drinking, ADHI and ADLO lines, respectively) that significantly differ in ethanol drinking at adolescence. The S0 generation and filial generations 1 (S1), S2, and S3 of ADHI and ADLO offspring were tested for basal or stress-induced ethanol intake at adulthood, or for shelter-seeking and risk-taking in the multivariate concentric square field test (MSCF). The study generated lines with significant differences in free-choice ethanol drinking at adolescence. The effects of the selection were observed at adulthood, beyond the stage in which the selection was conducted: S1-ADHI but not S1-ADLO adult male rats exhibited stress-induced drinking. These effects were associated with significant alterations in shelter-seeking and risk-taking behaviors. ADHI rats spent significantly less time in areas of the MSCF whose exploration entails risk-taking and significantly more time in dark, sheltered areas. Some of these effects were normalized by the administration of 0.5 g/kg ethanol. There were no line differences in ethanol-induced latency to lose the righting reflex or sleep time. These findings indicate that genetic risk of enhanced ethanol intake at adolescence is still present at adulthood, long after the developmental window when the selective breeding occurred. Exposure to stress at adulthood triggers the vulnerability associated with this genetic risk, an effect associated with enhanced anxiety.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CONICET Digitalarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CONICET Digital
    Article . 2019
    License: CC BY NC SA
    Data sources: CONICET Digital
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Behavioural Brain Research
    Article . 2020 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    8
    citations8
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CONICET Digitalarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CONICET Digital
      Article . 2019
      License: CC BY NC SA
      Data sources: CONICET Digital
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Behavioural Brain Research
      Article . 2020 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right
Powered by OpenAIRE graph
We use cookies
This website uses essential cookies to ensure its proper operation and tracking cookies to understand how you interact with it. The latter will be set only upon approval.

Read more about our Cookies policy.