Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
64 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • Closed Access
  • Open Source
  • PL
  • AT
  • Neuroscience

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Przemys£aw Bieńkowski; Wojciech Kostowski;

    Generally, compounds discriminated by animals possess psychotropic effects in animals and humans. As with many other drugs of abuse, strength of the ethanol discriminative stimulus is dose related. The majority of studies show that doses close to 1.0 g/kg are close to the minimum at which the discrimination can be learned easily. Substitution studies suggest that anxiolytic, sedative, atactic, and myorelaxant effects of ethanol all play an important role in the formation of its intercoeptive stimulus. Low doses of ethanol produce more excitatory cues, similar to amphetamine-like subjective stimuli, whereas higher doses produce rather sedative/hypnotic stimuli similar to those elicited by barbiturates. Substitution studies have shown that the complete substitution for ethanol may be exerted by certain GABA-mimetic drugs acting through different sites within the GABA(A)-benzodiazepine receptor complex (e.g., diazepam, pentobarbital, certain neurosteroids), gamma-hydroxybutyrate, and antagonists of the glutamate NMDA receptor. Among the NMDA receptor antagonists both noncompetitive (e.g., dizocilpine) and competitive antagonists (e.g., CGP 40116) are capable of substituting for ethanol. Further, some antagonists of strychnine-insensitive glycine modulatory sites among the NMDA receptor complex (e.g., L-701,324) dose-dependently substitute for the ethanol discriminative stimulus. On the other hand, neither GABA-benzodiazepine antagonists nor NMDA receptor agonists produce contradictory effects (i.e., reduce the ethanol discriminative stimulus). There is influence of a particular training dose of ethanol on the substitution pattern of different compounds. For example, 5-HT(1B/2C) agonists substitute for intermediate (1.0 g/kg) but not higher (2.0 g/kg) ethanol training doses. Discrimination studies with ethanol and drugs acting on NMDA and GABA receptors consistently indicate asymmetrical generalization. For example, ethanol is able to generalize to barbiturates and benzodiazepines, but neither the benzodiazepine nor barbiturate response generalizes to ethanol. Only a few drugs are able to antagonize, at least to some extent, the discriminative stimulus of ethanol (e.g., partial inverse GABA-benzodiazepine receptor antagonist Ro 15-4513 and the opioid antagonist naloxone). The ethanol stimulus effect may be increased (i.e., stronger recognition) by N-cholinergic drugs (nicotine), dopaminergic drugs (apomorphine), and 5-HT3 receptor agonists (m-chlorophenylbiguanide). Thus, the ethanol stimulus is composed of the several components, with the NMDA receptor and GABA(A) receptor complex being of particular importance. This suggests that a drug mixture may be more capable of substituting for ethanol (or block its stimulus) than a single compound. The ability of drugs to substitute for the ethanol discriminative stimulus is frequently, although not preclusively, associated with the reduction of voluntary ethanol consumption. The examples of positive correlation are gamma-hydroxybutyrate, possibly memantine and certain serotonergic drugs such as fluoxetine. However, it remains uncertain to what extent the discriminative stimulus of ethanol can be seen as relevant in the understanding of the complex mechanisms of dependence.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Alcoholarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Alcohol
    Article . 1999 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    Alcohol
    Article . 1999
    addClaim
    92
    citations92
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Alcoholarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Alcohol
      Article . 1999 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      Alcohol
      Article . 1999
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Anton Hermann;
    Anton Hermann
    ORCID
    Harvested from ORCID Public Data File

    Anton Hermann in OpenAIRE
    E. Lahnsteiner;

    Ethanol has a concentration dependent dual effect on electrical activity of rat CA1 hippocampal neurons. Low concentrations of ethanol (0.001%) enhance whereas high concentrations (0.5%) suppress synaptic transmission. Ethanol has no effect on cell input resistance and orthodromic or somatic threshold of action potentials. Cholera toxin, an activator of stimulatory guanine nucleotide binding regulatory protein (Gs), prevented the ethanol effects on field excitatory postsynaptic potentials (EPSPs). Staurosporine, an inhibitor of protein kinases, bisindolylmaleimide, an inhibitor of protein kinase C, and phorbol-12,13-dibutyrate (PDBu), an activator of protein kinase C, blocked the effect of ethanol on field EPSPs. Our results show that ethanol at extremely low concentrations is able to affect synaptic transmission and suggest that the molecular mechanism of ethanol action involves the activation of Gs protein and protein kinase C.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Neuroscience Lettersarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Neuroscience Letters
    Article . 1995 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    13
    citations13
    popularityAverage
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Neuroscience Lettersarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Neuroscience Letters
      Article . 1995 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Bogusława Pietrzak;
    Bogusława Pietrzak
    ORCID
    Harvested from ORCID Public Data File

    Bogusława Pietrzak in OpenAIRE
    Elżbieta Kubik-Bogucka;

    The interaction of mianserin with ethanol in central nervous system (CNS) was investigated. Mianserin was administered at a single dose of 5 or 20 mgkg(-1) i.p. or as daily injections in a dose of 2.5 mgkg(-1) given for 14 days. The influence of mianserin on acute ethanol toxicity (LD(50)), on ED(50) of ethanol in rota-rod test, on the duration of ethanol sleeping time as well as on spontaneous locomotor activity and ethanol-induced hypothermia was investigated. Moreover, the influence of mianserin administered in a dose of 10 mgkg(-1) i.p. on post-ethanol changes in the bioelectric brain activity (EEG) recordings in rabbits was also investigated. The electrodes were implanted into midbrain reticular formation (MRF), dorsal hippocampus (Hp) and frontal cortex (C). Mianserin administered as a single dose of 5 mgkg(-1) was found to decrease LD(50) of ethanol and its ED(50) in rota-rod test. Mianserin administered as a single dose of 5 or 20 mgkg(-1) prolongs ethanol sleeping time in mice but given daily for 14 days has no influence on this time. Mianserin-induced hypothermia was observed after administration of single dose as well as increase of ethanol-induced hypothermia after administration of higher dose (20 mgkg(-1)). Mianserin administered daily for 14 days had no influence on post-ethanol changes in body temperature. Single dose of mianserin 20 mgkg(-1) decreases locomotor activity in mice while repeated administration has no influence on locomotor activity. In contrast, both single dose and repeated administration of mianserin prevents increased locomotor activity of animals observed after ethanol (2.5 mgkg(-1)). Mianserin administered to rabbits (10 mgkg(-1)) induces increase of share of low frequency 0.5-4 cps and decrease of share of frequencies 4-7 and 7-10 cps in EEG recordings from MRF and Hp. The recordings from frontal cortex show increase of share of frequencies 10-13 cps. Ethanol increases the share of low frequencies in EEG recordings and decreases the share of fast frequencies. Mianserin increases its influence on fast frequencies.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Pharmacological Rese...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Pharmacological Research
    Article . 2002 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    10
    citations10
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Pharmacological Rese...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Pharmacological Research
      Article . 2002 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Elzbieta Czarnecka; orcid Bogusława Pietrzak;
    Bogusława Pietrzak
    ORCID
    Harvested from ORCID Public Data File

    Bogusława Pietrzak in OpenAIRE

    In this study we have decided to examine acute interaction of ethanol with some drugs that belong to selective serotonin inhibitor (SSRI) group. Therefore, the influence of sertraline, fluoxetine and citalopram on the effect of ethanol on EEG of rabbits (frontal cortex, hippocampus, MRF) was tested. Sertraline (10mg/kg i.p.), fluoxetine (10mg/kg i.p.) and citalopram (5mg/kg i.p.) were given 30min before ethanol injection in a dose 0.8g/kg i.v. Ethanol caused the increase of the slow frequencies (0.5-4cps) in the recording, as well as a marked decrease of the fastest frequencies (13-30 and 30-45cps). Sertraline, fluoxetine and citalopram (given before ethanol) prevented the increase in the slow frequencies (0.5-4cps) in the recordings from the frontal cortex and hippocampus, which indicates on antagonism inhibitory action of ethanol. These drugs administered together with ethanol may increase its influence on fast frequencies. This effect depends on brain structure and drug.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Pharmacological Rese...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Pharmacological Research
    Article . 2003 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    8
    citations8
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Pharmacological Rese...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Pharmacological Research
      Article . 2003 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Stanislaw Glazewski; Wojciech Kostowski; Ewa Jankowska; orcid Wanda Dyr;
    Wanda Dyr
    ORCID
    Harvested from ORCID Public Data File

    Wanda Dyr in OpenAIRE
    +1 Authors

    Recent evidence indicates involvement of excitatory amino acid receptors sensitive to N‐methyl‐d‐aspartate (NMDA) in the action of ethanol (EtOH). Pronounced inhibition of NMDA receptor function is seen in vitro with concentrations of EtOH corresponding to those present during alcohol intoxication in humans. The present study was devoted to investigate the role of NMDA receptors in the action of EtOH in rats. Acute experiments showed antagonism by EtOH of convulsions induced by intracerebroventricular injection of NMDA. A similar effect was seen with a high dose of diazepam. Convulsions induced by an agonist of another excitatory amino acid receptor subtype, kainate, were also inhibited by EtOH. An uncompetitive antagonist of NMDA receptors, 5‐methyl‐10, 11‐dihydro‐5H‐dibenzo‐cyclohepten‐5, 10‐imine maleate (MK‐801), potentiated EtOH‐induced loss of righting, but attenuated the hypothermic action of EtOH. Moreover, MK‐801 inhibited audiogenic convulsions in EtOH withdrawn rats. At the same time the effect of a proconvulsive dose of NMDA was not enhanced. Tolerance to the myorelaxant action of both EtOH and MK‐801 upon repetitive administration was seen. Also some degree of cross‐tolerance was observed. Moreover, MK‐801 failed to modify EtOH preference in rats. The present results support involvement of NMDA receptors in expression of some acute and subchronic actions of EtOH and in expression of EtOH withdrawal.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Alcoholism Clinical ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Alcoholism Clinical and Experimental Research
    Article . 1992 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim
    88
    citations88
    popularityAverage
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Alcoholism Clinical ...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Alcoholism Clinical and Experimental Research
      Article . 1992 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Jerzy Piasecki; Eliza Koros; orcid Przemyslaw Bienkowski;
    Przemyslaw Bienkowski
    ORCID
    Harvested from ORCID Public Data File

    Przemyslaw Bienkowski in OpenAIRE
    Wojciech Kostowski; +2 Authors

    Ethanol has been reported to alter NMDA receptor-mediated biochemical and electrophysiological responses in vitro. The aim of the present study was to evaluate the effects of an uncompetitive NMDA receptor antagonist memantine, in animal models of alcoholism. Male Wistar rats were trained to drink 8% ethanol in a free-choice, limited access procedure. A separate group of animals was trained to lever press for 8% ethanol in an operant procedure where ethanol was introduced in the presence of sucrose. The selectivity of memantine's actions was assessed by studying its effects on food or water consumption in separate control experiments. Memantine (4.5-24 mg/kg) significantly, but not dose dependently, affected ethanol drinking in the limited access procedure. However, only 6 mg/kg memantine selectively decreased ethanol drinking. Memantine did not alter ethanol intake in rats trained to lever press for ethanol in the operant procedure. Only 9 mg/kg memantine reduced operant responding in the extinction procedure in the rats trained to lever press for ethanol. The same dose of memantine significantly reduced the operant behaviour of rats trained to respond for water. These results indicate that: (i) single doses of memantine only moderately and not dose dependently reduce alcohol drinking in the limited access procedure; (ii) memantine produces non-selective effects on operant behaviour in rats trained to lever press for ethanol in an oral self-administration procedure.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao European Journal of ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    European Journal of Pharmacology
    Article . 1998 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    Behavioural Pharmacology
    Article . 1998 . Peer-reviewed
    Data sources: Crossref
    Behavioural Pharmacology
    Article . 1998 . Peer-reviewed
    Data sources: Crossref
    Behavioural Pharmacology
    Article . 1998 . Peer-reviewed
    Data sources: Crossref
    addClaim
    48
    citations48
    popularityAverage
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao European Journal of ...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      European Journal of Pharmacology
      Article . 1998 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      Behavioural Pharmacology
      Article . 1998 . Peer-reviewed
      Data sources: Crossref
      Behavioural Pharmacology
      Article . 1998 . Peer-reviewed
      Data sources: Crossref
      Behavioural Pharmacology
      Article . 1998 . Peer-reviewed
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Malgorzata M. Brzóska; Ilona Dzwilewska; Malgorzata Galazyn-Sidorczuk;

    ABSTRACTEthanol (Et) abusers may also be exposed to excessive amounts of cadmium (Cd). Thus, the study was aimed at estimating the influence of Et on the body turnover of Cd in a rat model reflecting excessive alcohol consumption in humans chronically exposed to moderate and relatively high levels of this metal. For this purpose, Cd apparent absorption, retention in the body and concentration in the blood, stomach, duodenum, liver, kidney, spleen, brain, heart, testis and femur as well as its fecal and urinary excretion in the rats exposed to 5 and 50mg Cd l−1 (in drinking water; for 16 weeks from the fifth week of the animal's life) and/or Et (5 g kg−1 b.w. per 24 h, by oral gavage; for 12 weeks from the ninth week of life) were estimated. Moreover, the duodenal, liver and kidney pool of the nonmetallothionein (Mt)‐bound Cd was evaluated. The administration of Et during the exposure to 5 or 50mg Cd l−1 increased Cd accumulation in the gastrointestinal tract and its urinary excretion, and decreased Cd concentration in the blood, femur and numerous soft tissues (including liver and kidney) as well as the total pool of this metal in internal organs. Et modified or not the pool of the non‐Mt‐bound Cd, depending on the level of treatment with this metal. The results show that excessive Et consumption during Cd exposure may decrease the body burden of this metal, at least partly, by its lower absorption and increased urinary excretion. Based on this study, it can be concluded that Cd concentration in the blood and tissues of alcohol abusers chronically exposed to moderate and relatively high levels of this metal may be lower, whereas its urinary excretion is higher than in their nondrinking counterparts. However, since Et is toxic itself, the decreased body burden of Cd owing to alcohol consumption does not allow for the conclusion that the risk of health damage may be lower at co‐exposure to these xenobiotics. In a further study, it will be investigated how the Et‐induced changes in the body status of Cd influence the effects of its toxic action. Copyright © 2012 John Wiley & Sons, Ltd.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Applied T...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Applied Toxicology
    Article . 2012 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim
    25
    citations25
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Applied T...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Applied Toxicology
      Article . 2012 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Wanda Dyr;
    Wanda Dyr
    ORCID
    Harvested from ORCID Public Data File

    Wanda Dyr in OpenAIRE
    Wojciech Kostowski;

    The Warsaw High Preferring (WHP) and Warsaw Low Preferring (WLP) lines were bred from Wistar foundation stock to obtain lines of rats that differ in their preference for ethanol solutions. The WHP line has met several major criteria for an animal model of alcoholism. The WHP rats voluntarily drink excessive amounts of ethanol while the WLP rats consume negligible amounts of ethanol. The WHP rats attain physiologically active blood ethanol concentrations with chronic free-choice drinking. They also develop subtle but visible signs of physical dependence (the withdrawal signs). The patterns of ethanol consumption in WHP and WLP lines are stable in time and independent of the manner of access to ethanol solutions. Notably, when exposed to the increasing ethanol concentrations WHP rats gradually increased total ethanol intake whereas the WLP rats consumed invariably very low amounts of ethanol. Furthermore, the WHP rats show an increased responsiveness to the stimulatory effects of low dose of ethanol.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Alcoholarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Alcohol
    Article . 2008 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    Alcohol
    Article . 2008
    addClaim
    31
    citations31
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Alcoholarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Alcohol
      Article . 2008 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      Alcohol
      Article . 2008
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Bogusława Pietrzak;
    Bogusława Pietrzak
    ORCID
    Harvested from ORCID Public Data File

    Bogusława Pietrzak in OpenAIRE
    Elzbieta Czarnecka;

    Abstract: The central effect of ethanol is mainly connected with the effect on GABAergic, glutamatergic, serotonergic and opioid transmission. The mechanism of gabapentin effect suggests that it may alleviate the rewarding effect of ethanol, which may be used in the treatment of addiction. We decided to examine the interaction of ethanol with gabapentin by a pharmaco‐electroencephalographic (EEG) method. The influence of gabapentin on the effect of ethanol on EEG of rabbits (midbrain reticular formation, hippocampus, frontal cortex) was tested. Gabapentin was administered at a single dose (25 and 100 mg/kg orally) or repeatedly twice a day at a total dose of 25 mg/kg for 14 days. Ethanol was injected at a dose of 0.8 g/kg 60 min. after gabapentin treatment. Ethanol caused an increase in the slow frequencies (0.5–4 Hz) in the recording, as well as a marked decrease of the fastest frequencies (13–30 and 30–45 Hz). Gabapentin lead to changes in rabbit EEG recording suggesting an depressant effect on the CNS (increase of slow and decrease of fast frequencies). The effects were less pronounced after repeated doses, which may indicate adaptative changes in the receptors. Gabapentin administered both in a single dose and for 7 days markedly enhanced the effect of ethanol on EEG recordings in rabbits. Repeated doses of gabapentin decrease the sensitivity of the hippocampus to the effect of ethanol.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Basic & Clinical Pha...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Basic & Clinical Pharmacology & Toxicology
    Article . 2006 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim
    7
    citations7
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Basic & Clinical Pha...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Basic & Clinical Pharmacology & Toxicology
      Article . 2006 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Elżbieta Skrzydlewska;
    Elżbieta Skrzydlewska
    ORCID
    Harvested from ORCID Public Data File

    Elżbieta Skrzydlewska in OpenAIRE
    Agnieszka Augustyniak;

    The brain is exceptionally susceptible to oxidative stress that may be caused by xenobiotics such as ethanol. Alcohol metabolism is accompanied by enhanced free radical formation and a decrease in antioxidant abilities. However, L-carnitine appears to have antioxidant properties and the ability to regulate ethanol metabolism. The present study was designed to estimate the effect of L-carnitine on the antioxidant capacity of the rat brain and blood serum. For 5 weeks during the study, L-carnitine was given to rats in the amount of 1.5 g/1 l of drinking water, and from the second week the rats were intragastrically treated with ethanol. A significant decrease in the activity of antioxidant enzymes (Cu,Zn-SOD, GSH-Px, GSSG-R and CAT) and in the level of non-enzymatic antioxidants (vitamin C, E, A, GSH and GSH-t) as well as a significant increase in the level of GSSG in the brain and blood serum of ethanol intoxicated rats have been demonstrated. It has also been shown that alcohol caused a significant increase in the level of lipid peroxidation products-lipid hydroperoxides, malondialdehyde and 4-hydroxynonenal-and an increase in dityrosine, as well as a decrease in tryptophan-markers of protein oxidative modifications. The administration of L-carnitine to ethanol intoxicated rats partially normalized the activity of the examined enzymes and the level of the above non-enzymatic antioxidants. Moreover, L-carnitine significantly protects lipids and proteins against oxidative modifications. In conclusion, it has been proved that L-carnitine protects rat brain and blood serum against oxidative stress formation and it is possible that this small molecular amine has a similar beneficial effect on the human CNS.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Metabolic Brain Dise...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Metabolic Brain Disease
    Article . 2010 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    addClaim
    29
    citations29
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Metabolic Brain Dise...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Metabolic Brain Disease
      Article . 2010 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      addClaim