- home
- Advanced Search
Filters
Clear All- Energy Research
- 2021-2025
- PL
- US
- KG
- Neuroscience
- Energy Research
- 2021-2025
- PL
- US
- KG
- Neuroscience
description Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Authors: Sarah E. Winchester; Marvin R. Diaz;Individuals with prenatal alcohol exposure (PAE) are at a higher risk for developing alcohol use disorder (AUD). Using a rat model of moderate PAE (mPAE) on gestational day 12 (G12; ∼2nd trimesters in humans), a critical period for amygdala development, we have shown disruptions in medial central amygdala (CeM) function, an important brain region associated with the development of AUD. In addition to this, acute ethanol (EtOH) increases GABA transmission in the CeM of rodents in a sex-dependent manner, a mechanism that potentially contributes to alcohol misuse. How mPAE alters acute alcohol's effects within the CeM is unknown. Given these findings, we investigated how mPAE may interact with acute alcohol to alter neuronal and synaptic mechanisms in the CeM of adolescent rats in order to understand PAE-induced alcohol-related behaviors. Under basal conditions, mPAE males showed reduced rheobase, indicative of reduced excitability, and females showed a reduction in GABA transmission, indicated by lower spontaneous inhibitory postsynaptic currents (sIPSCs). We found that acute EtOH increased sIPSCs in control males at the middle concentration (66 mM), while mPAE males showed increased sIPSCs only at the highest tested concentration (88 mM). Adolescent females, regardless of PAE status, were largely insensitive to EtOH's effects at all tested concentrations. However, mPAE females showed a significant increase in sIPSCs at the highest tested concentration (88 mM). Overall, these findings support the hypothesis that mPAE leads to sex-specific changes in synaptic activity and neuronal function. Future research is needed to better understand the specific mechanisms by which acute EtOH affects neurotransmission in the adolescent brain of individuals with a history of PAE.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Wiley Funded by:NIH | MULTI-DISCIPLINARY TRAINI..., NIH | Wake Forest Translational...NIH| MULTI-DISCIPLINARY TRAINING IN THE BIOLOGY OF ALCOHOLISM ,NIH| Wake Forest Translational Alcohol Research Center (WF-TARC)L. B. Kuiper; J. B. Roberts; P. M. Estave; D. Leo; R. R. Gainetdinov; S. R. Jones;AbstractMesolimbic dopamine signaling plays a major role in alcohol and substance use disorders as well as comorbidities such as anxiety and depression. Growing evidence suggests that alcohol drinking is modulated by the function of the dopamine transporter (DAT), which tightly regulates extracellular dopamine concentrations. Adult male rats on a Wistar Han background (DAT+/+) and rats with a partial DAT deletion (DAT+/−) were used in this study. First, using fast‐scan cyclic voltammetry in brain slices containing the nucleus accumbens core from ethanol‐naïve subjects, we measured greater evoked dopamine concentrations and slower dopamine reuptake in DAT+/− rats, consistent with increased dopamine signaling. Next, we measured ethanol drinking using the intermittent access two‐bottle choice paradigm (20% v/v ethanol vs. water) across 5 weeks. DAT+/− rats voluntarily consumed less ethanol during its initial availability (the first 30 min), especially after longer periods of deprivation. In addition, DAT+/− males consumed less ethanol that was adulterated with the bitter tastant quinine. These findings suggest that partial DAT blockade and concomitant increase in brain dopamine levels has potential to reduce drinking and ameliorate alcohol use disorder (AUD).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen hybrid 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2021Publisher:Ovid Technologies (Wolters Kluwer Health) Authors: William E. Fantegrossi; Michael D. Berquist;The objectives of this study were to determine alcohol consumption after administration of (R)(-)-2,5-dimethoxy-4-iodoamphetamine (DOI) or naltrexone in Long–Evans rats, and to assess the effectiveness of these treatments based on individual differences in alcohol consumption. Adult male Long–Evans rats (N = 16) were given opportunities to orally self-administer a 20% (v/v) ethanol (EtOH) solution using an intermittent access, two-bottle (vs. tap water) choice procedure in their home cages. EtOH consumption and preference, total fluid consumption and food intake were measured. Last, we assessed the effects of naltrexone (1 mg/kg; subcutaneous) and (R)(-)-DOI (0.1–1 mg/kg; subcutaneous) on EtOH intake and preference using a quartile analysis. Rats showed stable EtOH (20%) intake and preference after 15 EtOH access sessions. Naltrexone produced a transient decrease in EtOH intake, but an inconsistent effect on EtOH preference, whereas DOI dose-dependently reduced EtOH intake and preference for at least 24 h. Subsequent quartile analyses revealed that rats with the highest EtOH intake during the first 60 min of access to EtOH showed greater reductions in EtOH intake and preference after DOI treatment. This is the first report to show that DOI-elicited reductions in EtOH intake and preference in rats depend on baseline EtOH intake, perhaps supporting a ‘baseline dependency’ hypothesis of effectiveness with phenethylamine psychedelics on EtOH consumption. If so, individuals with greater potential to develop severe AUDs may be particularly responsive to the positive motivational changes produced by treatment with psychedelics that target the 5-HT2 receptor family.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2021Publisher:Elsevier BV Avani Dholakia Rao; Kai Sun; Mingyao Zhu; Sina Mossahebi; Pouya Sabouri; Thomas Houser; Jenna Jatczak; Mark Zakhary; William F. Regine; Robert C. Miller; Søren Bentzen; Mark V. Mishra;pmid: 33753157
With reports of CNS toxicity in patients treated with proton therapy at doses lower than would be expected based on photon data, it has been proposed that heavy monitor unit (MU) weighting of pencil beam scanning (PBS) proton therapy spots may potentially increase the risk of toxicity. We evaluated the impact of maximum MU weighting per spot (maxMU/spot) restrictions on PBS plan quality, prior to implementing clinic-wide maxMU/spot restrictions.PBS plans of 11 patients, of which 3 plans included boosts, for a total of 14 PBS sample cases were included. Per sample case, a single dosimetrist created 4 test plans, gradually reducing the maxMU/spot in the plan. Test Plan 1, unrestricted in maxMU/spot, was the reference for all restricted plan comparisons (comparison sets 2 vs. 1; 3 vs. 1; and 4 vs. 1). The impact of MU/spot restrictions on plan quality metrics were analyzed with Wilcoxon signed rank test analyses. Treatment delivery time was modeled for a representative case.A total of 14 PBS sample cases, 7 (50%) single-field optimized, 7 (50%) multi-field optimized, 9 (64%) delivering > 3500 cGy, 9 (64%) with 3 beams, and 7 (50%) without a range shifter were included. There were no differences in plan quality metrics of target coverage (V95% and V100% prescription), conformality and gradient indices, hot spot volume (V105% prescription), and dose to normal brain (V10%/30%/50%/70%/90%/100% prescription) with reductions of allowable maxMU/spot across all comparison sets (p > 0.05). Max MU/spot restrictions did not increase treatment delivery time when analyzed for a representative case.MaxMU/spot restrictions within the thresholds evaluated in this study did not degrade overall plan quality metrics. Future studies should evaluate spot weighting with linear energy transfer/relative biologic effectiveness-informed planning to determine if spot weighting manipulation impacts clinical outcomes and mitigates toxicity.
Radiotherapy and Onc... arrow_drop_down Radiotherapy and OncologyArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Radiotherapy and Onc... arrow_drop_down Radiotherapy and OncologyArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Springer Science and Business Media LLC Funded by:NIH | Prenatal Ethanol Exposure..., NIH | Prenatal Ethanol Exposure...NIH| Prenatal Ethanol Exposure on Executive Function ,NIH| Prenatal Ethanol Exposure and Nitric Oxide Signaling in Serotonin NeuronsSaida Oubraim; Ruixiang Wang; Kathryn Hausknecht; Martin Kaczocha; Roh-Yu Shen; Samir Haj-Dahmane;AbstractMood disorders, including anxiety and depression caused by prenatal ethanol exposure (PE) are prevalent conditions in fetal alcohol spectrum disorders (FASDs). Prenatal ethanol exposure is associated with persistent dysfunctions of several neurotransmitter systems, including the serotonin (5-HT) system, which plays a major role in mood regulation and stress homeostasis. While PE is known to disrupt the development of the 5-HT system, the cellular mechanisms by which it alters the function of dorsal raphe nucleus (DRn) 5-HT neurons and their synaptic inputs remain unknown. Here, we used a second-trimester binge-drinking pattern PE (two daily gavages of 15% w/v ethanol at 3 g/kg, 5–6 h apart) during gestational days 8 - 20 and measured anxiety-like behaviors of adult male rats using the elevated plus (EPM) and zero (ZM) mazes. We also employed ex-vivo electrophysiological and pharmacological approaches to unravel the mechanisms by which PE alters the excitability and synaptic transmission onto DRn 5-HT neurons. We found that PE enhanced anxiety-like behaviors in adult male rats and induced a persistent activation of DRn 5-HT neurons. The PE-induced activation of DRn 5-HT neurons was largely mediated by potentiation of DRn glutamate synapses, which was caused by activation of the nitrergic system and impaired endocannabinoid signaling. As such, the present study reveals “push-pull” effects of PE on nitrergic and eCB signaling, respectively, which mediate the enhanced activity of DRn 5-HT neurons and could contribute to anxiety-like behaviors observed in animal model of FASD.
Translational Psychi... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Translational Psychi... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Funded by:NIH | Cerebellar Contributions ...NIH| Cerebellar Contributions to Alcohol Use DisordersChloe M. Erikson; Kevin T. Douglas; Talia O. Thuet; Ben D. Richardson; Claudia Mohr; Hiroko Shiina; Josh S. Kaplan; David J. Rossi;Genetic differences in cerebellar sensitivity to alcohol (EtOH) influence EtOH consumption phenotype in animal models and contribute to risk for developing an alcohol use disorder in humans. We previously determined that EtOH enhances cerebellar granule cell (GC) tonic GABAAR currents in low EtOH consuming rodent genotypes, but suppresses it in high EtOH consuming rodent genotypes. Moreover, pharmacologically counteracting EtOH suppression of GC tonic GABAAR currents reduces EtOH consumption in high alcohol consuming C57BL/6J (B6J) mice, suggesting a causative role. In the low EtOH consuming rodent models tested to date, EtOH enhancement of GC tonic GABAAR currents is mediated by inhibition of neuronal nitric oxide synthase (nNOS) which drives increased vesicular GABA release onto GCs and a consequent enhancement of tonic GABAAR currents. Consequently, genetic variation in nNOS expression across rodent genotypes is a key determinant of whether EtOH enhances or suppresses tonic GABAAR currents, and thus EtOH consumption. We used behavioral, electrophysiological, and immunocytochemical techniques to further explore the relationship between EtOH consumption and GC GABAAR current responses in C57BL/6N (B6N) mice. B6N mice consume significantly less EtOH and achieve significantly lower blood EtOH concentrations than B6J mice, an outcome not mediated by differences in taste. In voltage-clamped GCs, EtOH enhanced the GC tonic current in B6N mice but suppressed it in B6J mice. Immunohistochemical and electrophysiological studies revealed significantly higher nNOS expression and function in the GC layer of B6N mice compared to B6Js. Collectively, our data demonstrate that despite being genetically similar, B6N mice consume significantly less EtOH than B6J mice, a behavioral difference paralleled by increased cerebellar nNOS expression and opposite EtOH action on GC tonic GABAAR currents in each genotype.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:Springer Science and Business Media LLC Funded by:NSF | CNH-L: Interactive Dynami..., NIH | TRAINING GRANT IN ACADEMI...NSF| CNH-L: Interactive Dynamics of Reef Fisheries and Human Health ,NIH| TRAINING GRANT IN ACADEMIC NUTRITIONHeather Kelahan; Stefania Vannuccini; Daniel F. Viana; Daniel F. Viana; Simone Passarelli; Ling Cao; Pierre Charlebois; Abigail J. Lynch; Sabri Bromage; Jessica Fanzo; Christopher M. Free; Edward H. Allison; Jacob G. Eurich; Christopher D. Golden; Alon Shepon; Alon Shepon; Alon Shepon; Etienne Fluet-Chouinard; Camille DeSisto; Goodarz Danaei; Holger Matthey; Kristin M. Kleisner; Kathryn J. Fiorella; Manuel Barange; J. Zachary Koehn; David C. Little; Shakuntala H. Thilsted; Eric B. Rimm; Marian Kjellevold; Elizabeth A. Nyboer; Jessica A. Gephart;Despite contributing to healthy diets for billions of people, aquatic foods are often undervalued as a nutritional solution because their diversity is often reduced to the protein and energy value of a single food type (‘seafood’ or ‘fish’)1–4. Here we create a cohesive model that unites terrestrial foods with nearly 3,000 taxa of aquatic foods to understand the future impact of aquatic foods on human nutrition. We project two plausible futures to 2030: a baseline scenario with moderate growth in aquatic animal-source food (AASF) production, and a high-production scenario with a 15-million-tonne increased supply of AASFs over the business-as-usual scenario in 2030, driven largely by investment and innovation in aquaculture production. By comparing changes in AASF consumption between the scenarios, we elucidate geographic and demographic vulnerabilities and estimate health impacts from diet-related causes. Globally, we find that a high-production scenario will decrease AASF prices by 26% and increase their consumption, thereby reducing the consumption of red and processed meats that can lead to diet-related non-communicable diseases5,6 while also preventing approximately 166 million cases of inadequate micronutrient intake. This finding provides a broad evidentiary basis for policy makers and development stakeholders to capitalize on the potential of aquatic foods to reduce food and nutrition insecurity and tackle malnutrition in all its forms.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2021Full-Text: https://escholarship.org/uc/item/5k9293p7Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of CaliforniaHarvard University: DASH - Digital Access to Scholarship at HarvardArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen bronze 444 citations 444 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2021Full-Text: https://escholarship.org/uc/item/5k9293p7Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of CaliforniaHarvard University: DASH - Digital Access to Scholarship at HarvardArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:Springer Science and Business Media LLC Funded by:NIH | CSF/ISF highways for tau ..., NIH | Atlas of CSF tau clearan..., UKRI | Demonstrator for robotic ... +1 projectsNIH| CSF/ISF highways for tau brain clearance ,NIH| Atlas of CSF tau clearance pathways in the aging brain and in Alzheimer's disease ,UKRI| Demonstrator for robotic inspection and maintenance of offshore wind turbine blades ,NIH| Overall: The University of Rochester Resource-Based Center for Musculoskeletal Biology and MedicineMolly Brady; Conor McQuaid; Alexander Solorzano; Angelique Johnson; Abigail Combs; Chethana Venkatraman; Akib Rahman; Hannah Leyva; Wing-Chi Edmund Kwok; Ronald W. Wood; Rashid Deane;AbstractWhile there is SARS-CoV-2 multiorgan tropism in severely infected COVID-19 patients, it’s unclear if this occurs in healthy young individuals. In addition, for antibodies that target the spike protein (SP), it’s unclear if these reduce SARS-CoV-2/SP multiorgan tropism equally. We used fluorescently labeled SP-NIRF to study viral behavior, using an in vivo dynamic imaging system and ex in vivo tissue analysis, in young mice. We found a SP body-wide biodistribution followed by a slow regional elimination, except for the liver, which showed an accumulation. SP uptake was highest for the lungs, and this was followed by kidney, heart and liver, but, unlike the choroid plexus, it was not detected in the brain parenchyma or CSF. Thus, the brain vascular barriers were effective in restricting the entry of SP into brain parenchyma in young healthy mice. While both anti-ACE2 and anti-SP antibodies suppressed SP biodistribution and organ uptake, anti-SP antibody was more effective. By extension, our data support the efficacy of these antibodies on SARS-CoV-2 multiorgan tropism, which could determine COVID-19 organ-specific outcomes.
Communications Biolo... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Communications Biolo... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:Frontiers Media SA Funded by:UKRI | Autonomous, robotic and A...UKRI| Autonomous, robotic and AI enabled biofouling monitoring, cleaning and management systerm for offshore wind turbine monopile foundations - RoBFMSMohammad Reza Asadi; Mohammad Reza Asadi; Mehdi Hassani; Shiva Kiani; Hani Sabaie; Hani Sabaie; Marziyeh Sadat Moslehian; Mohammad Kazemi; Soudeh Ghafouri-Fard; Mohammad Taheri; Maryam Rezazadeh; Maryam Rezazadeh;LncRNAs act as part of non-coding RNAs at high levels of complex and stimulatory configurations in basic molecular mechanisms. Their extensive regulatory activity in the CNS continues on a small scale, from the functions of synapses to large-scale neurodevelopment and cognitive functions, aging, and can be seen in both health and disease situations. One of the vast consequences of the pathological role of dysregulated lncRNAs in the CNS due to their role in a network of regulatory pathways can be manifested in Alzheimer's as a neurodegenerative disease. The disease is characterized by two main hallmarks: amyloid plaques due to the accumulation of β-amyloid components and neurofibrillary tangles (NFT) resulting from the accumulation of phosphorylated tau. Numerous studies in humans, animal models, and various cell lines have revealed the role of lncRNAs in the pathogenesis of Alzheimer's disease. This scoping review was performed with a six-step strategy and based on the Prisma guideline by systematically searching the publications of seven databases. Out of 1,591 records, 69 articles were utterly aligned with the specified inclusion criteria and were summarized in the relevant table. Most of the studies were devoted to BACE1-AS, NEAT1, MALAT1, and SNHG1 lncRNAs, respectively, and about one-third of the studies investigated a unique lncRNA. About 56% of the studies reported up-regulation, and 7% reported down-regulation of lncRNAs expressions. Overall, this study was conducted to investigate the association between lncRNAs and Alzheimer's disease to make a reputable source for further studies and find more molecular therapeutic goals for this disease.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 32 citations 32 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Kati L, Healey; Sandra, Kibble; Kira, Dubester; Amelia, Bell; H S, Swartzwelder;Binge patterns of alcohol use, prevalent among adolescents, are associated with a higher probability of developing alcohol use disorders (AUD) and other psychiatric disorders, like anxiety and depression. Additionally, adverse life events strongly predict AUD and other psychiatric disorders. As such, the combined fields of stress and AUD have been well established, and animal models indicate that both binge-like alcohol exposure and stress exposure elevate anxiety-like behaviors. However, few have investigated the interaction of adolescent intermittent ethanol (AIE) and adult stressors. We hypothesized that AIE would increase vulnerability to restraint-induced stress (RS), manifested as increased anxiety-like behavior. After AIE exposure, in adulthood, animals were tested on forced swim (FST) and saccharin preference (SP) and then exposed to either RS (90 min/5 days) or home-cage control. Twenty-four hours after the last RS session, animals began testing on the elevated plus maze (EPM), and were re-tested on FST and SP. A separate group of animals were sacrificed in adulthood after AIE and RS, and brains were harvested for immunoblot analysis of dorsal and ventral hippocampus. Consistent with previous reports, AIE had no significant effect on closed arm time in the EPM (anxiety-like behavior). However, in male rats the interaction of AIE and adult RS increased time spent in the closed arms. No effect was observed among female animals. AIE and RS-specific alterations were found in glial and synaptic markers (GLT-1, FMRP and PSD-95) in male animals. These findings indicate AIE has sex-specific effects on both SP and the interaction of AIE and adult RS, which induces a propensity toward anxiety-like behavior in males. Also, AIE produces persistent hippocampal deficits that may interact with adult RS to cause increased anxiety-like behaviors. Understanding the mechanisms behind this AIE-induced increase in stress vulnerability may provide insight into treatment and prevention strategies for alcohol use disorders.
Pharmacology Biochem... arrow_drop_down Pharmacology Biochemistry and BehaviorArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Pharmacology Biochem... arrow_drop_down Pharmacology Biochemistry and BehaviorArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
description Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Authors: Sarah E. Winchester; Marvin R. Diaz;Individuals with prenatal alcohol exposure (PAE) are at a higher risk for developing alcohol use disorder (AUD). Using a rat model of moderate PAE (mPAE) on gestational day 12 (G12; ∼2nd trimesters in humans), a critical period for amygdala development, we have shown disruptions in medial central amygdala (CeM) function, an important brain region associated with the development of AUD. In addition to this, acute ethanol (EtOH) increases GABA transmission in the CeM of rodents in a sex-dependent manner, a mechanism that potentially contributes to alcohol misuse. How mPAE alters acute alcohol's effects within the CeM is unknown. Given these findings, we investigated how mPAE may interact with acute alcohol to alter neuronal and synaptic mechanisms in the CeM of adolescent rats in order to understand PAE-induced alcohol-related behaviors. Under basal conditions, mPAE males showed reduced rheobase, indicative of reduced excitability, and females showed a reduction in GABA transmission, indicated by lower spontaneous inhibitory postsynaptic currents (sIPSCs). We found that acute EtOH increased sIPSCs in control males at the middle concentration (66 mM), while mPAE males showed increased sIPSCs only at the highest tested concentration (88 mM). Adolescent females, regardless of PAE status, were largely insensitive to EtOH's effects at all tested concentrations. However, mPAE females showed a significant increase in sIPSCs at the highest tested concentration (88 mM). Overall, these findings support the hypothesis that mPAE leads to sex-specific changes in synaptic activity and neuronal function. Future research is needed to better understand the specific mechanisms by which acute EtOH affects neurotransmission in the adolescent brain of individuals with a history of PAE.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Wiley Funded by:NIH | MULTI-DISCIPLINARY TRAINI..., NIH | Wake Forest Translational...NIH| MULTI-DISCIPLINARY TRAINING IN THE BIOLOGY OF ALCOHOLISM ,NIH| Wake Forest Translational Alcohol Research Center (WF-TARC)L. B. Kuiper; J. B. Roberts; P. M. Estave; D. Leo; R. R. Gainetdinov; S. R. Jones;AbstractMesolimbic dopamine signaling plays a major role in alcohol and substance use disorders as well as comorbidities such as anxiety and depression. Growing evidence suggests that alcohol drinking is modulated by the function of the dopamine transporter (DAT), which tightly regulates extracellular dopamine concentrations. Adult male rats on a Wistar Han background (DAT+/+) and rats with a partial DAT deletion (DAT+/−) were used in this study. First, using fast‐scan cyclic voltammetry in brain slices containing the nucleus accumbens core from ethanol‐naïve subjects, we measured greater evoked dopamine concentrations and slower dopamine reuptake in DAT+/− rats, consistent with increased dopamine signaling. Next, we measured ethanol drinking using the intermittent access two‐bottle choice paradigm (20% v/v ethanol vs. water) across 5 weeks. DAT+/− rats voluntarily consumed less ethanol during its initial availability (the first 30 min), especially after longer periods of deprivation. In addition, DAT+/− males consumed less ethanol that was adulterated with the bitter tastant quinine. These findings suggest that partial DAT blockade and concomitant increase in brain dopamine levels has potential to reduce drinking and ameliorate alcohol use disorder (AUD).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen hybrid 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2021Publisher:Ovid Technologies (Wolters Kluwer Health) Authors: William E. Fantegrossi; Michael D. Berquist;The objectives of this study were to determine alcohol consumption after administration of (R)(-)-2,5-dimethoxy-4-iodoamphetamine (DOI) or naltrexone in Long–Evans rats, and to assess the effectiveness of these treatments based on individual differences in alcohol consumption. Adult male Long–Evans rats (N = 16) were given opportunities to orally self-administer a 20% (v/v) ethanol (EtOH) solution using an intermittent access, two-bottle (vs. tap water) choice procedure in their home cages. EtOH consumption and preference, total fluid consumption and food intake were measured. Last, we assessed the effects of naltrexone (1 mg/kg; subcutaneous) and (R)(-)-DOI (0.1–1 mg/kg; subcutaneous) on EtOH intake and preference using a quartile analysis. Rats showed stable EtOH (20%) intake and preference after 15 EtOH access sessions. Naltrexone produced a transient decrease in EtOH intake, but an inconsistent effect on EtOH preference, whereas DOI dose-dependently reduced EtOH intake and preference for at least 24 h. Subsequent quartile analyses revealed that rats with the highest EtOH intake during the first 60 min of access to EtOH showed greater reductions in EtOH intake and preference after DOI treatment. This is the first report to show that DOI-elicited reductions in EtOH intake and preference in rats depend on baseline EtOH intake, perhaps supporting a ‘baseline dependency’ hypothesis of effectiveness with phenethylamine psychedelics on EtOH consumption. If so, individuals with greater potential to develop severe AUDs may be particularly responsive to the positive motivational changes produced by treatment with psychedelics that target the 5-HT2 receptor family.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2021Publisher:Elsevier BV Avani Dholakia Rao; Kai Sun; Mingyao Zhu; Sina Mossahebi; Pouya Sabouri; Thomas Houser; Jenna Jatczak; Mark Zakhary; William F. Regine; Robert C. Miller; Søren Bentzen; Mark V. Mishra;pmid: 33753157
With reports of CNS toxicity in patients treated with proton therapy at doses lower than would be expected based on photon data, it has been proposed that heavy monitor unit (MU) weighting of pencil beam scanning (PBS) proton therapy spots may potentially increase the risk of toxicity. We evaluated the impact of maximum MU weighting per spot (maxMU/spot) restrictions on PBS plan quality, prior to implementing clinic-wide maxMU/spot restrictions.PBS plans of 11 patients, of which 3 plans included boosts, for a total of 14 PBS sample cases were included. Per sample case, a single dosimetrist created 4 test plans, gradually reducing the maxMU/spot in the plan. Test Plan 1, unrestricted in maxMU/spot, was the reference for all restricted plan comparisons (comparison sets 2 vs. 1; 3 vs. 1; and 4 vs. 1). The impact of MU/spot restrictions on plan quality metrics were analyzed with Wilcoxon signed rank test analyses. Treatment delivery time was modeled for a representative case.A total of 14 PBS sample cases, 7 (50%) single-field optimized, 7 (50%) multi-field optimized, 9 (64%) delivering > 3500 cGy, 9 (64%) with 3 beams, and 7 (50%) without a range shifter were included. There were no differences in plan quality metrics of target coverage (V95% and V100% prescription), conformality and gradient indices, hot spot volume (V105% prescription), and dose to normal brain (V10%/30%/50%/70%/90%/100% prescription) with reductions of allowable maxMU/spot across all comparison sets (p > 0.05). Max MU/spot restrictions did not increase treatment delivery time when analyzed for a representative case.MaxMU/spot restrictions within the thresholds evaluated in this study did not degrade overall plan quality metrics. Future studies should evaluate spot weighting with linear energy transfer/relative biologic effectiveness-informed planning to determine if spot weighting manipulation impacts clinical outcomes and mitigates toxicity.
Radiotherapy and Onc... arrow_drop_down Radiotherapy and OncologyArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Radiotherapy and Onc... arrow_drop_down Radiotherapy and OncologyArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Springer Science and Business Media LLC Funded by:NIH | Prenatal Ethanol Exposure..., NIH | Prenatal Ethanol Exposure...NIH| Prenatal Ethanol Exposure on Executive Function ,NIH| Prenatal Ethanol Exposure and Nitric Oxide Signaling in Serotonin NeuronsSaida Oubraim; Ruixiang Wang; Kathryn Hausknecht; Martin Kaczocha; Roh-Yu Shen; Samir Haj-Dahmane;AbstractMood disorders, including anxiety and depression caused by prenatal ethanol exposure (PE) are prevalent conditions in fetal alcohol spectrum disorders (FASDs). Prenatal ethanol exposure is associated with persistent dysfunctions of several neurotransmitter systems, including the serotonin (5-HT) system, which plays a major role in mood regulation and stress homeostasis. While PE is known to disrupt the development of the 5-HT system, the cellular mechanisms by which it alters the function of dorsal raphe nucleus (DRn) 5-HT neurons and their synaptic inputs remain unknown. Here, we used a second-trimester binge-drinking pattern PE (two daily gavages of 15% w/v ethanol at 3 g/kg, 5–6 h apart) during gestational days 8 - 20 and measured anxiety-like behaviors of adult male rats using the elevated plus (EPM) and zero (ZM) mazes. We also employed ex-vivo electrophysiological and pharmacological approaches to unravel the mechanisms by which PE alters the excitability and synaptic transmission onto DRn 5-HT neurons. We found that PE enhanced anxiety-like behaviors in adult male rats and induced a persistent activation of DRn 5-HT neurons. The PE-induced activation of DRn 5-HT neurons was largely mediated by potentiation of DRn glutamate synapses, which was caused by activation of the nitrergic system and impaired endocannabinoid signaling. As such, the present study reveals “push-pull” effects of PE on nitrergic and eCB signaling, respectively, which mediate the enhanced activity of DRn 5-HT neurons and could contribute to anxiety-like behaviors observed in animal model of FASD.
Translational Psychi... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Translational Psychi... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Funded by:NIH | Cerebellar Contributions ...NIH| Cerebellar Contributions to Alcohol Use DisordersChloe M. Erikson; Kevin T. Douglas; Talia O. Thuet; Ben D. Richardson; Claudia Mohr; Hiroko Shiina; Josh S. Kaplan; David J. Rossi;Genetic differences in cerebellar sensitivity to alcohol (EtOH) influence EtOH consumption phenotype in animal models and contribute to risk for developing an alcohol use disorder in humans. We previously determined that EtOH enhances cerebellar granule cell (GC) tonic GABAAR currents in low EtOH consuming rodent genotypes, but suppresses it in high EtOH consuming rodent genotypes. Moreover, pharmacologically counteracting EtOH suppression of GC tonic GABAAR currents reduces EtOH consumption in high alcohol consuming C57BL/6J (B6J) mice, suggesting a causative role. In the low EtOH consuming rodent models tested to date, EtOH enhancement of GC tonic GABAAR currents is mediated by inhibition of neuronal nitric oxide synthase (nNOS) which drives increased vesicular GABA release onto GCs and a consequent enhancement of tonic GABAAR currents. Consequently, genetic variation in nNOS expression across rodent genotypes is a key determinant of whether EtOH enhances or suppresses tonic GABAAR currents, and thus EtOH consumption. We used behavioral, electrophysiological, and immunocytochemical techniques to further explore the relationship between EtOH consumption and GC GABAAR current responses in C57BL/6N (B6N) mice. B6N mice consume significantly less EtOH and achieve significantly lower blood EtOH concentrations than B6J mice, an outcome not mediated by differences in taste. In voltage-clamped GCs, EtOH enhanced the GC tonic current in B6N mice but suppressed it in B6J mice. Immunohistochemical and electrophysiological studies revealed significantly higher nNOS expression and function in the GC layer of B6N mice compared to B6Js. Collectively, our data demonstrate that despite being genetically similar, B6N mice consume significantly less EtOH than B6J mice, a behavioral difference paralleled by increased cerebellar nNOS expression and opposite EtOH action on GC tonic GABAAR currents in each genotype.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:Springer Science and Business Media LLC Funded by:NSF | CNH-L: Interactive Dynami..., NIH | TRAINING GRANT IN ACADEMI...NSF| CNH-L: Interactive Dynamics of Reef Fisheries and Human Health ,NIH| TRAINING GRANT IN ACADEMIC NUTRITIONHeather Kelahan; Stefania Vannuccini; Daniel F. Viana; Daniel F. Viana; Simone Passarelli; Ling Cao; Pierre Charlebois; Abigail J. Lynch; Sabri Bromage; Jessica Fanzo; Christopher M. Free; Edward H. Allison; Jacob G. Eurich; Christopher D. Golden; Alon Shepon; Alon Shepon; Alon Shepon; Etienne Fluet-Chouinard; Camille DeSisto; Goodarz Danaei; Holger Matthey; Kristin M. Kleisner; Kathryn J. Fiorella; Manuel Barange; J. Zachary Koehn; David C. Little; Shakuntala H. Thilsted; Eric B. Rimm; Marian Kjellevold; Elizabeth A. Nyboer; Jessica A. Gephart;Despite contributing to healthy diets for billions of people, aquatic foods are often undervalued as a nutritional solution because their diversity is often reduced to the protein and energy value of a single food type (‘seafood’ or ‘fish’)1–4. Here we create a cohesive model that unites terrestrial foods with nearly 3,000 taxa of aquatic foods to understand the future impact of aquatic foods on human nutrition. We project two plausible futures to 2030: a baseline scenario with moderate growth in aquatic animal-source food (AASF) production, and a high-production scenario with a 15-million-tonne increased supply of AASFs over the business-as-usual scenario in 2030, driven largely by investment and innovation in aquaculture production. By comparing changes in AASF consumption between the scenarios, we elucidate geographic and demographic vulnerabilities and estimate health impacts from diet-related causes. Globally, we find that a high-production scenario will decrease AASF prices by 26% and increase their consumption, thereby reducing the consumption of red and processed meats that can lead to diet-related non-communicable diseases5,6 while also preventing approximately 166 million cases of inadequate micronutrient intake. This finding provides a broad evidentiary basis for policy makers and development stakeholders to capitalize on the potential of aquatic foods to reduce food and nutrition insecurity and tackle malnutrition in all its forms.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2021Full-Text: https://escholarship.org/uc/item/5k9293p7Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of CaliforniaHarvard University: DASH - Digital Access to Scholarship at HarvardArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen bronze 444 citations 444 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2021Full-Text: https://escholarship.org/uc/item/5k9293p7Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of CaliforniaHarvard University: DASH - Digital Access to Scholarship at HarvardArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:Springer Science and Business Media LLC Funded by:NIH | CSF/ISF highways for tau ..., NIH | Atlas of CSF tau clearan..., UKRI | Demonstrator for robotic ... +1 projectsNIH| CSF/ISF highways for tau brain clearance ,NIH| Atlas of CSF tau clearance pathways in the aging brain and in Alzheimer's disease ,UKRI| Demonstrator for robotic inspection and maintenance of offshore wind turbine blades ,NIH| Overall: The University of Rochester Resource-Based Center for Musculoskeletal Biology and MedicineMolly Brady; Conor McQuaid; Alexander Solorzano; Angelique Johnson; Abigail Combs; Chethana Venkatraman; Akib Rahman; Hannah Leyva; Wing-Chi Edmund Kwok; Ronald W. Wood; Rashid Deane;AbstractWhile there is SARS-CoV-2 multiorgan tropism in severely infected COVID-19 patients, it’s unclear if this occurs in healthy young individuals. In addition, for antibodies that target the spike protein (SP), it’s unclear if these reduce SARS-CoV-2/SP multiorgan tropism equally. We used fluorescently labeled SP-NIRF to study viral behavior, using an in vivo dynamic imaging system and ex in vivo tissue analysis, in young mice. We found a SP body-wide biodistribution followed by a slow regional elimination, except for the liver, which showed an accumulation. SP uptake was highest for the lungs, and this was followed by kidney, heart and liver, but, unlike the choroid plexus, it was not detected in the brain parenchyma or CSF. Thus, the brain vascular barriers were effective in restricting the entry of SP into brain parenchyma in young healthy mice. While both anti-ACE2 and anti-SP antibodies suppressed SP biodistribution and organ uptake, anti-SP antibody was more effective. By extension, our data support the efficacy of these antibodies on SARS-CoV-2 multiorgan tropism, which could determine COVID-19 organ-specific outcomes.
Communications Biolo... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Communications Biolo... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:Frontiers Media SA Funded by:UKRI | Autonomous, robotic and A...UKRI| Autonomous, robotic and AI enabled biofouling monitoring, cleaning and management systerm for offshore wind turbine monopile foundations - RoBFMSMohammad Reza Asadi; Mohammad Reza Asadi; Mehdi Hassani; Shiva Kiani; Hani Sabaie; Hani Sabaie; Marziyeh Sadat Moslehian; Mohammad Kazemi; Soudeh Ghafouri-Fard; Mohammad Taheri; Maryam Rezazadeh; Maryam Rezazadeh;LncRNAs act as part of non-coding RNAs at high levels of complex and stimulatory configurations in basic molecular mechanisms. Their extensive regulatory activity in the CNS continues on a small scale, from the functions of synapses to large-scale neurodevelopment and cognitive functions, aging, and can be seen in both health and disease situations. One of the vast consequences of the pathological role of dysregulated lncRNAs in the CNS due to their role in a network of regulatory pathways can be manifested in Alzheimer's as a neurodegenerative disease. The disease is characterized by two main hallmarks: amyloid plaques due to the accumulation of β-amyloid components and neurofibrillary tangles (NFT) resulting from the accumulation of phosphorylated tau. Numerous studies in humans, animal models, and various cell lines have revealed the role of lncRNAs in the pathogenesis of Alzheimer's disease. This scoping review was performed with a six-step strategy and based on the Prisma guideline by systematically searching the publications of seven databases. Out of 1,591 records, 69 articles were utterly aligned with the specified inclusion criteria and were summarized in the relevant table. Most of the studies were devoted to BACE1-AS, NEAT1, MALAT1, and SNHG1 lncRNAs, respectively, and about one-third of the studies investigated a unique lncRNA. About 56% of the studies reported up-regulation, and 7% reported down-regulation of lncRNAs expressions. Overall, this study was conducted to investigate the association between lncRNAs and Alzheimer's disease to make a reputable source for further studies and find more molecular therapeutic goals for this disease.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 32 citations 32 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Kati L, Healey; Sandra, Kibble; Kira, Dubester; Amelia, Bell; H S, Swartzwelder;Binge patterns of alcohol use, prevalent among adolescents, are associated with a higher probability of developing alcohol use disorders (AUD) and other psychiatric disorders, like anxiety and depression. Additionally, adverse life events strongly predict AUD and other psychiatric disorders. As such, the combined fields of stress and AUD have been well established, and animal models indicate that both binge-like alcohol exposure and stress exposure elevate anxiety-like behaviors. However, few have investigated the interaction of adolescent intermittent ethanol (AIE) and adult stressors. We hypothesized that AIE would increase vulnerability to restraint-induced stress (RS), manifested as increased anxiety-like behavior. After AIE exposure, in adulthood, animals were tested on forced swim (FST) and saccharin preference (SP) and then exposed to either RS (90 min/5 days) or home-cage control. Twenty-four hours after the last RS session, animals began testing on the elevated plus maze (EPM), and were re-tested on FST and SP. A separate group of animals were sacrificed in adulthood after AIE and RS, and brains were harvested for immunoblot analysis of dorsal and ventral hippocampus. Consistent with previous reports, AIE had no significant effect on closed arm time in the EPM (anxiety-like behavior). However, in male rats the interaction of AIE and adult RS increased time spent in the closed arms. No effect was observed among female animals. AIE and RS-specific alterations were found in glial and synaptic markers (GLT-1, FMRP and PSD-95) in male animals. These findings indicate AIE has sex-specific effects on both SP and the interaction of AIE and adult RS, which induces a propensity toward anxiety-like behavior in males. Also, AIE produces persistent hippocampal deficits that may interact with adult RS to cause increased anxiety-like behaviors. Understanding the mechanisms behind this AIE-induced increase in stress vulnerability may provide insight into treatment and prevention strategies for alcohol use disorders.
Pharmacology Biochem... arrow_drop_down Pharmacology Biochemistry and BehaviorArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Pharmacology Biochem... arrow_drop_down Pharmacology Biochemistry and BehaviorArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
