- home
- Advanced Search
- Energy Research
- US
- CN
- EU
- Neuroscience
- Energy Research
- US
- CN
- EU
- Neuroscience
description Publicationkeyboard_double_arrow_right Article , Journal 2003Publisher:Wiley Authors: Don W. Walker; Jeffrey S. Thinschmidt; Michael A. King;doi: 10.1002/syn.10203
pmid: 12687638
AbstractHuman alcoholics and animals that have received chronic ethanol treatment (CET) display memory deficits. Previous work in our laboratory has shown that CET produces damage to the hippocampus and a reduction in the magnitude of hippocampal long‐term synaptic potentiation. In the present report we examined the effects of CET on hippocampal long‐term depression (LTD). We used in vitro hippocampal slices to examine LTD after rats received 38–41 weeks of paired feeding on liquid diets containing ethanol or isocaloric sucrose. Stimulation delivered through electrodes in the CA3‐CA1 Schaffer collateral pathway activated synaptic population responses in CA1. LTD of CA1 stratum radiatum evoked field potential slope was not induced by 900 single pulses at 1 Hz, but was elicited by 900 pulse pairs separated by 50 or 200 msec delivered at 1 Hz (pLFS50, pLFS200). LTD evoked by pLFS200, but not by pLFS50, was significantly reduced in slices from ethanol‐treated rats. The N‐methyl D‐aspartate (NMDA) receptor antagonist 2‐amino‐5‐phosphonopentanoic acid (AP5) (50 μM) blocked LTD induced by pLFS50 and pLFS200 equally, but the L‐type calcium channel blocker nimodipine (10 μM) had no effect on either type of LTD. Thus, direct effects on these channels cannot explain how CET selectively reduces the magnitude of pLFS200 LTD. Finally, we describe a novel and robust LTD of the presynaptic afferent volley that is resistant to CET, NMDAR antagonists, GABA‐A receptor blockade, and blockade of L‐type calcium channels. Synapse 48:189–197, 2003. © 2003 Wiley‐Liss, Inc.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/syn.10203&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu30 citations 30 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/syn.10203&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1995Publisher:Elsevier BV J Carlton; Haruo Mizuma; Chandan Prasad; Rikhab C. Srimal; S.I Khan; K.B. Mathur; Rakesh Shukla; Wahajul Haq; F.A Ragan;pmid: 7666954
Acute administration of cyclo (His-Pro) to rats cause a dose-dependent decrease in ethanol-induced hypothermia. Bromination of the imidazole moiety of histidine in cyclo (His-Pro) resulted in a significant increase in its potency to attenuate ethanol hypothermia. In contrast, benzylation of the imidazole moiety of histidine or the substitution of one or both of the amino acids in cyclo(His-Pro) led to a total loss of its thermomodulatory activity. In conclusion, it appears from these preliminary data that it may be possible to design analogs of CHP that may be effective antagonists for ethanol hypothermia.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0143-4179(95)90100-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0143-4179(95)90100-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2004Publisher:Elsevier BV Yuri A. Blednov; Laura Peden; R. Adron Harris; Stephen L. Boehm; Nobuhiko Kojima; Andrew W. Jennings;pmid: 15531078
Our previous work indicated a role for fyn-kinase in mediating several ethanol- and GABA(A) agonist-mediated behaviors. In the present work we investigate behavioral sensitivity to ethanol and several GABA(A) compounds in mice that over-express fyn-kinase in forebrain to further characterize the role of this non-receptor tyrosine kinase in the mediation of ethanol sensitivity. Transgenic mice over-expressing fyn-kinase were tested for sensitivity to ethanol-induced loss of righting reflex and ethanol preference drinking using a two-bottle choice drinking paradigm. Loss of righting reflex induced by 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP; GABA(A) agonist) and etomidate (GABA(A) positive allosteric modulator) were also assessed. Fyn over-expressing mice exhibited shorter durations of ethanol-induced loss of righting reflex in the absence of differences in the rate of blood ethanol clearance, and exhibited reduced ethanol preference drinking. The genotypes did not differ in initial sensitivity to ethanol-induced loss of righting reflex suggesting development of greater acute tolerance to this ethanol action. Fyn over-expressing and wild-type mice also did not differ in sensitivity to loss of righting reflex induced by THIP and etomidate. The present results suggest regional specificity for fyn-kinase in the modulation of ethanol and GABAergic behavioral sensitivity. Fyn-kinase over-expression in forebrain structures modulates ethanol's hypnotic actions, as well as ethanol preference and consumption. Moreover, fyn over-expression in forebrain does not alter hypnotic sensitivity to THIP or etomidate, supporting data from fyn null mutant mice suggesting that cerebellar structures mediate the hypnotic actions of these GABAergic compounds.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.neulet.2004.08.028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu20 citations 20 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.neulet.2004.08.028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2005Publisher:Ovid Technologies (Wolters Kluwer Health) Authors: Bruce P. Bryant; Takashi Inoue;pmid: 16043294
Many volatile organic compounds (VOCs) are significant environmental irritants that stimulate somatosensory nerve endings to produce pain and irritation. We measured intracellular calcium in cultured trigeminal ganglion neurons to characterize the cellular mechanisms and chemical structural determinants underlying sensitivity to VOCs. Trigeminal neurons responded to homologous series of alcohols (C4-C7) as well as saturated and unsaturated aldehydes in a concentration dependent manner. Ranked in terms of threshold to recruit neurons by compounds of the same carbon chain length, enaldehyde
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pain.2005.06.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pain.2005.06.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Springer Science and Business Media LLC Funded by:NIH | Sex Differences in Autono..., NIH | Alcohol, Sleep, and Auton...NIH| Sex Differences in Autonomic Nervous System Function and Depression Across Adolescence ,NIH| Alcohol, Sleep, and Autonomic Nervous System FunctionAuthors: George F. Koob; Ian M. Colrain;The development of alcohol use disorder (AUD) involves binge or heavy drinking to high levels of intoxication that leads to compulsive intake, the loss of control in limiting intake, and a negative emotional state when alcohol is removed. This cascade of events occurs over an extended period within a three-stage cycle: binge/intoxication, withdrawal/negative affect, and preoccupation/anticipation. These three heuristic stages map onto the dysregulation of functional domains of incentive salience/habits, negative emotional states, and executive function, mediated by the basal ganglia, extended amygdala, and frontal cortex, respectively. Sleep disturbances, alterations of sleep architecture, and the development of insomnia are ubiquitous in AUD and also map onto the three stages of the addiction cycle. During the binge/intoxication stage, alcohol intoxication leads to a faster sleep onset, but sleep quality is poor relative to nights when no alcohol is consumed. The reduction of sleep onset latency and increase in wakefulness later in the night may be related to the acute effects of alcohol on GABAergic systems that are associated with sleep regulation and the effects on brain incentive salience systems, such as dopamine. During the withdrawal/negative affect stage, there is a decrease in slow-wave sleep and some limited recovery in REM sleep when individuals with AUD stop drinking. Limited recovery of sleep disturbances is seen in AUD within the first 30 days of abstinence. The effects of withdrawal on sleep may be related to the loss of alcohol as a positive allosteric modulator of GABAA receptors, a decrease in dopamine function, and the overactivation of stress neuromodulators, including hypocretin/orexin, norepinephrine, corticotropin-releasing factor, and cytokines. During the preoccupation/anticipation stage, individuals with AUD who are abstinent long-term present persistent sleep disturbances, including a longer latency to fall asleep, more time awake during the night, a decrease in slow-wave sleep, decreases in delta electroencephalogram power and evoked delta activity, and an increase in REM sleep. Glutamatergic system dysregulation that is observed in AUD is a likely substrate for some of these persistent sleep disturbances. Sleep pathology contributes to AUD pathology, and vice versa, possibly as a feed-forward drive to an unrecognized allostatic load that drives the addiction process.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41386-019-0446-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 178 citations 178 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41386-019-0446-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Preprint , Report 2021 Netherlands, Austria, AustriaPublisher:American Chemical Society (ACS) Funded by:EC | Smartphon, EC | REWIRE, EC | BORGES +1 projectsEC| Smartphon ,EC| REWIRE ,EC| BORGES ,EC| PLASMMONSAuthors: Vasileiadis, Thomas; Marchesi D’Alvise, Tommaso; Saak, Clara-Magdalena; Pochylski, Mikolaj; +7 AuthorsVasileiadis, Thomas; Marchesi D’Alvise, Tommaso; Saak, Clara-Magdalena; Pochylski, Mikolaj; Harvey, Sean; Synatschke, Christopher V.; Gapinski, Jacek; Fytas, George; Backus, Ellen H. G.; Weil, Tanja; Graczykowski, Bartlomiej;pmid: 34904831
pmc: PMC8796235
The actuation of micro- and nanostructures controlled by external stimuli remains one of the exciting challenges in nanotechnology due to the wealth of fundamental questions and potential applications in energy harvesting, robotics, sensing, biomedicine, and tunable metamaterials. Photoactuation utilizes the conversion of light into motion through reversible chemical and physical processes and enables remote and spatiotemporal control of the actuation. Here, we report a fast light-to-motion conversion in few-nanometer thick bare polydopamine (PDA) membranes stimulated by visible light. Light-induced heating of PDA leads to desorption of water molecules and contraction of membranes in less than 140 μs. Switching off the light leads to a spontaneous expansion in less than 20 ms due to heat dissipation and water adsorption. Our findings demonstrate that pristine PDA membranes are multiresponsive materials that can be harnessed as robust building blocks for soft, micro-, and nanoscale actuators stimulated by light, temperature, and moisture level.
Nano Letters arrow_drop_down AMUR - Adam Mickiewicz University Repository, PoznanReport . 2021Full-Text: https://hdl.handle.net/10593/27226Data sources: Bielefeld Academic Search Engine (BASE)Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Nano LettersArticle . 2021License: CC BYData sources: Universiteit van Amsterdam Digital Academic RepositoryAdam Mickiewicz University RepositoryPreprint . 2021Data sources: Adam Mickiewicz University Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.nanolett.1c03165&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 28 citations 28 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 4visibility views 4 download downloads 12 Powered bymore_vert Nano Letters arrow_drop_down AMUR - Adam Mickiewicz University Repository, PoznanReport . 2021Full-Text: https://hdl.handle.net/10593/27226Data sources: Bielefeld Academic Search Engine (BASE)Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Nano LettersArticle . 2021License: CC BYData sources: Universiteit van Amsterdam Digital Academic RepositoryAdam Mickiewicz University RepositoryPreprint . 2021Data sources: Adam Mickiewicz University Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.nanolett.1c03165&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 United StatesPublisher:MDPI AG Sheketha R. Hauser; Patrick J. Mulholland; William A. Truitt; R. Aaron Waeiss; Eric A. Engleman; Richard L. Bell; Zachary A. Rodd;A consistent preclinical finding is that exposure to alcohol during adolescence produces a persistent hyperdopaminergic state during adulthood. The current experiments determine that effects of Adolescent Intermittent Ethanol (AIE) on the adult neurochemical response to EtOH administered directly into the mesolimbic dopamine system, alterations in dendritic spine and gene expression within the nucleus accumbens shell (AcbSh), and if treatment with the HDACII inhibitor TSA could normalize the consequences of AIE. Rats were exposed to the AIE (4 g/kg ig; 3 days a week) or water (CON) during adolescence, and all testing occurred during adulthood. CON and AIE rats were microinjected with EtOH directly into the posterior VTA and dopamine and glutamate levels were recorded in the AcbSh. Separate groups of AIE and CON rats were sacrificed during adulthood and Taqman arrays and dendritic spine morphology assessments were performed. The data indicated that exposure to AIE resulted in a significant leftward and upward shift in the dose-response curve for an increase in dopamine in the AcbSh following EtOH microinjection into the posterior VTA. Taqman array indicated that AIE exposure affected the expression of target genes (Chrna7, Impact, Chrna5). The data indicated no alterations in dendritic spine morphology in the AcbSh or any alteration in AIE effects by TSA administration. Binge-like EtOH exposure during adolescence enhances the response to acute ethanol challenge in adulthood, demonstrating that AIE produces a hyperdopaminergic mesolimbic system in both male and female Wistar rats. The neuroadaptations induced by AIE in the AcbSh could be part of the biological basis of the observed negative consequences of adolescent binge-like alcohol exposure on adult drug self-administration behaviors.
International Journa... arrow_drop_down International Journal of Molecular SciencesOther literature type . 2021License: CC BYData sources: Multidisciplinary Digital Publishing InstituteIndiana University - Purdue University Indianapolis: IUPUI Scholar WorksArticle . 2021License: CC BYFull-Text: https://hdl.handle.net/1805/32082Data sources: Bielefeld Academic Search Engine (BASE)International Journal of Molecular SciencesArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/ijms222111733&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Molecular SciencesOther literature type . 2021License: CC BYData sources: Multidisciplinary Digital Publishing InstituteIndiana University - Purdue University Indianapolis: IUPUI Scholar WorksArticle . 2021License: CC BYFull-Text: https://hdl.handle.net/1805/32082Data sources: Bielefeld Academic Search Engine (BASE)International Journal of Molecular SciencesArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/ijms222111733&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Authors: Patricia H. Janak; Laura H. Corbit; Laura H. Corbit; Hong Nie;Addictions are defined by a loss of flexible control over behavior. The development of response habits might reflect early changes in behavioral control. The following experiments examined the flexibility of alcohol-seeking after different durations of self-administration training and tested the role of the dorsal striatum in the control of flexible and habitual alcohol self-administration.Rats were trained to lever-press to earn unsweetened ethanol (EtOH) (10%). The sensitivity of the lever-press response to devaluation was assessed by prefeeding the rats either EtOH or sucrose before an extinction test after different amounts of training (1, 2, 4, and 8 weeks). We subsequently tested the role of the dorsomedial striatum (DMS) and dorsolateral striatum (DLS) in controlling alcohol seeking with reversible inactivation techniques (baclofen/muscimol: 1.0/.1 mmol/L, .3 μL/side).We find that operant responding for EtOH early in training is goal-directed and reduced by devaluation, but after 8 weeks of daily operant training, control has shifted to a habit-based system no longer sensitive to devaluation. Furthermore, after relatively limited training, when responding is sensitive to devaluation, inactivation of the DMS greatly attenuates the alcohol-seeking response, whereas inactivation of the DLS is without effect. In contrast, responding that is insensitive to devaluation after 8 weeks of training becomes sensitive to devaluation after inactivation of the DLS but is unaffected by inactivation of the DMS.These experiments demonstrate that extended alcohol self-administration produces habit-like responding and that response control shifts from the DMS to the DLS across the course of training.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biopsych.2012.02.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 438 citations 438 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biopsych.2012.02.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Springer Science and Business Media LLC Funded by:NIH | Ventral Prefrontal Networ..., NIH | Genetic Mechanisms of Cha..., NIH | Dissecting Responses to A... +1 projectsNIH| Ventral Prefrontal Network Connectivity and Alcohol Sensitivity in Bipolar Disorder and Typically Developing Young Adults ,NIH| Genetic Mechanisms of Change in Trajectories of Drinking and Deviant Behaviors ,NIH| Dissecting Responses to Alcohol in Individuals with Familial Risk for Bipolar Disorder ,NIH| Subjective Response to Alcohol and Associated Neural Systems in Bipolar DisorderDylan E. Kirsch; Raquel Kosted; Vanessa Le; Jorge R. C. Almeida; Kim Fromme; Stephen M. Strakowski; Elizabeth T. C. Lippard;Bipolar disorder co-occurs with alcohol use disorder at a rate 3-5 times higher than the general population. We recently reported that individuals with bipolar disorder differ in the positive stimulating and anxiolytic effects of alcohol compared with healthy peers. This study used a randomized, placebo-controlled, cross-over, within-subject alcohol administration design to investigate neurobiological mechanisms within ventral prefrontal cortical (vPFC) systems that may underlie altered sensitivity to alcohol in bipolar disorder (NCT04063384). Forty-seven young adults (n = 23 with bipolar disorder, 64% women) completed clinical assessment and two beverage administration sessions (alcohol and placebo, counter-balanced). Participants were dosed to 0.08 g% breath alcohol concentration during the alcohol condition and completed measures of subjective response to alcohol and an emotional processing fMRI task during the ascending limb. Timing during the placebo condition mirrored the alcohol session. Acute alcohol was associated with reduced functional connectivity between the insula - subcallosal cingulate cortex, and increased connectivity between the left nucleus accumbens - ventromedial PFC in bipolar disorder, but with no change in functional connectivity between these regions in healthy peers. Alcohol-related increases in nucleus accumbens - ventromedial PFC functional connectivity was associated with greater positive stimulating effects of alcohol in bipolar disorder and heavier recent alcohol use. Results suggest vPFC brain systems respond differently to acute alcohol during emotional processing in young adults with bipolar disorder compared with healthy peers, and that vPFC system responses relate to the subjective experience of intoxication and recent alcohol use.
Neuropsychopharmacol... arrow_drop_down NeuropsychopharmacologyArticle . 2023 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41386-023-01657-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Neuropsychopharmacol... arrow_drop_down NeuropsychopharmacologyArticle . 2023 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41386-023-01657-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Boris Tabakoff; Katerina Kechris; Kelsey Barcomb; Takao Ishii; Laura Saba; Paula L. Hoffman; Beth Bennett;Genetic influences on the predisposition to complex behavioral or physiological traits can reflect genetic polymorphisms that lead to altered gene product function, and/or variations in gene expression levels. We have explored quantitative variations in an animal's alcohol consumption, using a genetical genomic/phenomic approach. In our studies, gene expression is correlated with amount of alcohol consumed, and genomic regions that regulate the alcohol consumption behavior and the quantitative levels of gene expression (behavioral and expression quantitative trait loci [QTL]) are determined and used as a filter to identify candidate genes predisposing the behavior. We determined QTLs for alcohol consumption using the LXS panel of recombinant inbred mice. We then identified genes that were: 1) differentially expressed between five high and five low alcohol-consuming lines or strains of mice; and 2) were physically located in, or had an expression QTL (eQTL) within the alcohol consumption QTLs. Comparison of mRNA and protein levels in brains of high and low alcohol consuming mice led us to a bioinformatic examination of potential regulation by microRNAs of an identified candidate transcript, Gnb1 (G protein beta subunit 1). We combined our current analysis with our earlier work identifying candidate genes for the alcohol consumption trait in mice, rats and humans. Our overall analysis leads us to postulate that the activity of the GABAergic system, and in particular GABA release and GABA receptor trafficking and signaling, which involves G protein function, contributes significantly to genetic variation in the predisposition to varying levels of alcohol consumption. This article is part of a Special Issue entitled 'Trends in neuropharmacology: in memory of Erminio Costa'.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.neuropharm.2010.12.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.neuropharm.2010.12.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2003Publisher:Wiley Authors: Don W. Walker; Jeffrey S. Thinschmidt; Michael A. King;doi: 10.1002/syn.10203
pmid: 12687638
AbstractHuman alcoholics and animals that have received chronic ethanol treatment (CET) display memory deficits. Previous work in our laboratory has shown that CET produces damage to the hippocampus and a reduction in the magnitude of hippocampal long‐term synaptic potentiation. In the present report we examined the effects of CET on hippocampal long‐term depression (LTD). We used in vitro hippocampal slices to examine LTD after rats received 38–41 weeks of paired feeding on liquid diets containing ethanol or isocaloric sucrose. Stimulation delivered through electrodes in the CA3‐CA1 Schaffer collateral pathway activated synaptic population responses in CA1. LTD of CA1 stratum radiatum evoked field potential slope was not induced by 900 single pulses at 1 Hz, but was elicited by 900 pulse pairs separated by 50 or 200 msec delivered at 1 Hz (pLFS50, pLFS200). LTD evoked by pLFS200, but not by pLFS50, was significantly reduced in slices from ethanol‐treated rats. The N‐methyl D‐aspartate (NMDA) receptor antagonist 2‐amino‐5‐phosphonopentanoic acid (AP5) (50 μM) blocked LTD induced by pLFS50 and pLFS200 equally, but the L‐type calcium channel blocker nimodipine (10 μM) had no effect on either type of LTD. Thus, direct effects on these channels cannot explain how CET selectively reduces the magnitude of pLFS200 LTD. Finally, we describe a novel and robust LTD of the presynaptic afferent volley that is resistant to CET, NMDAR antagonists, GABA‐A receptor blockade, and blockade of L‐type calcium channels. Synapse 48:189–197, 2003. © 2003 Wiley‐Liss, Inc.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/syn.10203&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu30 citations 30 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/syn.10203&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1995Publisher:Elsevier BV J Carlton; Haruo Mizuma; Chandan Prasad; Rikhab C. Srimal; S.I Khan; K.B. Mathur; Rakesh Shukla; Wahajul Haq; F.A Ragan;pmid: 7666954
Acute administration of cyclo (His-Pro) to rats cause a dose-dependent decrease in ethanol-induced hypothermia. Bromination of the imidazole moiety of histidine in cyclo (His-Pro) resulted in a significant increase in its potency to attenuate ethanol hypothermia. In contrast, benzylation of the imidazole moiety of histidine or the substitution of one or both of the amino acids in cyclo(His-Pro) led to a total loss of its thermomodulatory activity. In conclusion, it appears from these preliminary data that it may be possible to design analogs of CHP that may be effective antagonists for ethanol hypothermia.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0143-4179(95)90100-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0143-4179(95)90100-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2004Publisher:Elsevier BV Yuri A. Blednov; Laura Peden; R. Adron Harris; Stephen L. Boehm; Nobuhiko Kojima; Andrew W. Jennings;pmid: 15531078
Our previous work indicated a role for fyn-kinase in mediating several ethanol- and GABA(A) agonist-mediated behaviors. In the present work we investigate behavioral sensitivity to ethanol and several GABA(A) compounds in mice that over-express fyn-kinase in forebrain to further characterize the role of this non-receptor tyrosine kinase in the mediation of ethanol sensitivity. Transgenic mice over-expressing fyn-kinase were tested for sensitivity to ethanol-induced loss of righting reflex and ethanol preference drinking using a two-bottle choice drinking paradigm. Loss of righting reflex induced by 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP; GABA(A) agonist) and etomidate (GABA(A) positive allosteric modulator) were also assessed. Fyn over-expressing mice exhibited shorter durations of ethanol-induced loss of righting reflex in the absence of differences in the rate of blood ethanol clearance, and exhibited reduced ethanol preference drinking. The genotypes did not differ in initial sensitivity to ethanol-induced loss of righting reflex suggesting development of greater acute tolerance to this ethanol action. Fyn over-expressing and wild-type mice also did not differ in sensitivity to loss of righting reflex induced by THIP and etomidate. The present results suggest regional specificity for fyn-kinase in the modulation of ethanol and GABAergic behavioral sensitivity. Fyn-kinase over-expression in forebrain structures modulates ethanol's hypnotic actions, as well as ethanol preference and consumption. Moreover, fyn over-expression in forebrain does not alter hypnotic sensitivity to THIP or etomidate, supporting data from fyn null mutant mice suggesting that cerebellar structures mediate the hypnotic actions of these GABAergic compounds.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.neulet.2004.08.028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu20 citations 20 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.neulet.2004.08.028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2005Publisher:Ovid Technologies (Wolters Kluwer Health) Authors: Bruce P. Bryant; Takashi Inoue;pmid: 16043294
Many volatile organic compounds (VOCs) are significant environmental irritants that stimulate somatosensory nerve endings to produce pain and irritation. We measured intracellular calcium in cultured trigeminal ganglion neurons to characterize the cellular mechanisms and chemical structural determinants underlying sensitivity to VOCs. Trigeminal neurons responded to homologous series of alcohols (C4-C7) as well as saturated and unsaturated aldehydes in a concentration dependent manner. Ranked in terms of threshold to recruit neurons by compounds of the same carbon chain length, enaldehyde
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pain.2005.06.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pain.2005.06.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Springer Science and Business Media LLC Funded by:NIH | Sex Differences in Autono..., NIH | Alcohol, Sleep, and Auton...NIH| Sex Differences in Autonomic Nervous System Function and Depression Across Adolescence ,NIH| Alcohol, Sleep, and Autonomic Nervous System FunctionAuthors: George F. Koob; Ian M. Colrain;The development of alcohol use disorder (AUD) involves binge or heavy drinking to high levels of intoxication that leads to compulsive intake, the loss of control in limiting intake, and a negative emotional state when alcohol is removed. This cascade of events occurs over an extended period within a three-stage cycle: binge/intoxication, withdrawal/negative affect, and preoccupation/anticipation. These three heuristic stages map onto the dysregulation of functional domains of incentive salience/habits, negative emotional states, and executive function, mediated by the basal ganglia, extended amygdala, and frontal cortex, respectively. Sleep disturbances, alterations of sleep architecture, and the development of insomnia are ubiquitous in AUD and also map onto the three stages of the addiction cycle. During the binge/intoxication stage, alcohol intoxication leads to a faster sleep onset, but sleep quality is poor relative to nights when no alcohol is consumed. The reduction of sleep onset latency and increase in wakefulness later in the night may be related to the acute effects of alcohol on GABAergic systems that are associated with sleep regulation and the effects on brain incentive salience systems, such as dopamine. During the withdrawal/negative affect stage, there is a decrease in slow-wave sleep and some limited recovery in REM sleep when individuals with AUD stop drinking. Limited recovery of sleep disturbances is seen in AUD within the first 30 days of abstinence. The effects of withdrawal on sleep may be related to the loss of alcohol as a positive allosteric modulator of GABAA receptors, a decrease in dopamine function, and the overactivation of stress neuromodulators, including hypocretin/orexin, norepinephrine, corticotropin-releasing factor, and cytokines. During the preoccupation/anticipation stage, individuals with AUD who are abstinent long-term present persistent sleep disturbances, including a longer latency to fall asleep, more time awake during the night, a decrease in slow-wave sleep, decreases in delta electroencephalogram power and evoked delta activity, and an increase in REM sleep. Glutamatergic system dysregulation that is observed in AUD is a likely substrate for some of these persistent sleep disturbances. Sleep pathology contributes to AUD pathology, and vice versa, possibly as a feed-forward drive to an unrecognized allostatic load that drives the addiction process.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41386-019-0446-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 178 citations 178 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41386-019-0446-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Preprint , Report 2021 Netherlands, Austria, AustriaPublisher:American Chemical Society (ACS) Funded by:EC | Smartphon, EC | REWIRE, EC | BORGES +1 projectsEC| Smartphon ,EC| REWIRE ,EC| BORGES ,EC| PLASMMONSAuthors: Vasileiadis, Thomas; Marchesi D’Alvise, Tommaso; Saak, Clara-Magdalena; Pochylski, Mikolaj; +7 AuthorsVasileiadis, Thomas; Marchesi D’Alvise, Tommaso; Saak, Clara-Magdalena; Pochylski, Mikolaj; Harvey, Sean; Synatschke, Christopher V.; Gapinski, Jacek; Fytas, George; Backus, Ellen H. G.; Weil, Tanja; Graczykowski, Bartlomiej;pmid: 34904831
pmc: PMC8796235
The actuation of micro- and nanostructures controlled by external stimuli remains one of the exciting challenges in nanotechnology due to the wealth of fundamental questions and potential applications in energy harvesting, robotics, sensing, biomedicine, and tunable metamaterials. Photoactuation utilizes the conversion of light into motion through reversible chemical and physical processes and enables remote and spatiotemporal control of the actuation. Here, we report a fast light-to-motion conversion in few-nanometer thick bare polydopamine (PDA) membranes stimulated by visible light. Light-induced heating of PDA leads to desorption of water molecules and contraction of membranes in less than 140 μs. Switching off the light leads to a spontaneous expansion in less than 20 ms due to heat dissipation and water adsorption. Our findings demonstrate that pristine PDA membranes are multiresponsive materials that can be harnessed as robust building blocks for soft, micro-, and nanoscale actuators stimulated by light, temperature, and moisture level.
Nano Letters arrow_drop_down AMUR - Adam Mickiewicz University Repository, PoznanReport . 2021Full-Text: https://hdl.handle.net/10593/27226Data sources: Bielefeld Academic Search Engine (BASE)Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Nano LettersArticle . 2021License: CC BYData sources: Universiteit van Amsterdam Digital Academic RepositoryAdam Mickiewicz University RepositoryPreprint . 2021Data sources: Adam Mickiewicz University Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.nanolett.1c03165&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 28 citations 28 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 4visibility views 4 download downloads 12 Powered bymore_vert Nano Letters arrow_drop_down AMUR - Adam Mickiewicz University Repository, PoznanReport . 2021Full-Text: https://hdl.handle.net/10593/27226Data sources: Bielefeld Academic Search Engine (BASE)Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Nano LettersArticle . 2021License: CC BYData sources: Universiteit van Amsterdam Digital Academic RepositoryAdam Mickiewicz University RepositoryPreprint . 2021Data sources: Adam Mickiewicz University Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.nanolett.1c03165&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 United StatesPublisher:MDPI AG Sheketha R. Hauser; Patrick J. Mulholland; William A. Truitt; R. Aaron Waeiss; Eric A. Engleman; Richard L. Bell; Zachary A. Rodd;A consistent preclinical finding is that exposure to alcohol during adolescence produces a persistent hyperdopaminergic state during adulthood. The current experiments determine that effects of Adolescent Intermittent Ethanol (AIE) on the adult neurochemical response to EtOH administered directly into the mesolimbic dopamine system, alterations in dendritic spine and gene expression within the nucleus accumbens shell (AcbSh), and if treatment with the HDACII inhibitor TSA could normalize the consequences of AIE. Rats were exposed to the AIE (4 g/kg ig; 3 days a week) or water (CON) during adolescence, and all testing occurred during adulthood. CON and AIE rats were microinjected with EtOH directly into the posterior VTA and dopamine and glutamate levels were recorded in the AcbSh. Separate groups of AIE and CON rats were sacrificed during adulthood and Taqman arrays and dendritic spine morphology assessments were performed. The data indicated that exposure to AIE resulted in a significant leftward and upward shift in the dose-response curve for an increase in dopamine in the AcbSh following EtOH microinjection into the posterior VTA. Taqman array indicated that AIE exposure affected the expression of target genes (Chrna7, Impact, Chrna5). The data indicated no alterations in dendritic spine morphology in the AcbSh or any alteration in AIE effects by TSA administration. Binge-like EtOH exposure during adolescence enhances the response to acute ethanol challenge in adulthood, demonstrating that AIE produces a hyperdopaminergic mesolimbic system in both male and female Wistar rats. The neuroadaptations induced by AIE in the AcbSh could be part of the biological basis of the observed negative consequences of adolescent binge-like alcohol exposure on adult drug self-administration behaviors.
International Journa... arrow_drop_down International Journal of Molecular SciencesOther literature type . 2021License: CC BYData sources: Multidisciplinary Digital Publishing InstituteIndiana University - Purdue University Indianapolis: IUPUI Scholar WorksArticle . 2021License: CC BYFull-Text: https://hdl.handle.net/1805/32082Data sources: Bielefeld Academic Search Engine (BASE)International Journal of Molecular SciencesArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/ijms222111733&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Molecular SciencesOther literature type . 2021License: CC BYData sources: Multidisciplinary Digital Publishing InstituteIndiana University - Purdue University Indianapolis: IUPUI Scholar WorksArticle . 2021License: CC BYFull-Text: https://hdl.handle.net/1805/32082Data sources: Bielefeld Academic Search Engine (BASE)International Journal of Molecular SciencesArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/ijms222111733&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Authors: Patricia H. Janak; Laura H. Corbit; Laura H. Corbit; Hong Nie;Addictions are defined by a loss of flexible control over behavior. The development of response habits might reflect early changes in behavioral control. The following experiments examined the flexibility of alcohol-seeking after different durations of self-administration training and tested the role of the dorsal striatum in the control of flexible and habitual alcohol self-administration.Rats were trained to lever-press to earn unsweetened ethanol (EtOH) (10%). The sensitivity of the lever-press response to devaluation was assessed by prefeeding the rats either EtOH or sucrose before an extinction test after different amounts of training (1, 2, 4, and 8 weeks). We subsequently tested the role of the dorsomedial striatum (DMS) and dorsolateral striatum (DLS) in controlling alcohol seeking with reversible inactivation techniques (baclofen/muscimol: 1.0/.1 mmol/L, .3 μL/side).We find that operant responding for EtOH early in training is goal-directed and reduced by devaluation, but after 8 weeks of daily operant training, control has shifted to a habit-based system no longer sensitive to devaluation. Furthermore, after relatively limited training, when responding is sensitive to devaluation, inactivation of the DMS greatly attenuates the alcohol-seeking response, whereas inactivation of the DLS is without effect. In contrast, responding that is insensitive to devaluation after 8 weeks of training becomes sensitive to devaluation after inactivation of the DLS but is unaffected by inactivation of the DMS.These experiments demonstrate that extended alcohol self-administration produces habit-like responding and that response control shifts from the DMS to the DLS across the course of training.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biopsych.2012.02.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 438 citations 438 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biopsych.2012.02.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Springer Science and Business Media LLC Funded by:NIH | Ventral Prefrontal Networ..., NIH | Genetic Mechanisms of Cha..., NIH | Dissecting Responses to A... +1 projectsNIH| Ventral Prefrontal Network Connectivity and Alcohol Sensitivity in Bipolar Disorder and Typically Developing Young Adults ,NIH| Genetic Mechanisms of Change in Trajectories of Drinking and Deviant Behaviors ,NIH| Dissecting Responses to Alcohol in Individuals with Familial Risk for Bipolar Disorder ,NIH| Subjective Response to Alcohol and Associated Neural Systems in Bipolar DisorderDylan E. Kirsch; Raquel Kosted; Vanessa Le; Jorge R. C. Almeida; Kim Fromme; Stephen M. Strakowski; Elizabeth T. C. Lippard;Bipolar disorder co-occurs with alcohol use disorder at a rate 3-5 times higher than the general population. We recently reported that individuals with bipolar disorder differ in the positive stimulating and anxiolytic effects of alcohol compared with healthy peers. This study used a randomized, placebo-controlled, cross-over, within-subject alcohol administration design to investigate neurobiological mechanisms within ventral prefrontal cortical (vPFC) systems that may underlie altered sensitivity to alcohol in bipolar disorder (NCT04063384). Forty-seven young adults (n = 23 with bipolar disorder, 64% women) completed clinical assessment and two beverage administration sessions (alcohol and placebo, counter-balanced). Participants were dosed to 0.08 g% breath alcohol concentration during the alcohol condition and completed measures of subjective response to alcohol and an emotional processing fMRI task during the ascending limb. Timing during the placebo condition mirrored the alcohol session. Acute alcohol was associated with reduced functional connectivity between the insula - subcallosal cingulate cortex, and increased connectivity between the left nucleus accumbens - ventromedial PFC in bipolar disorder, but with no change in functional connectivity between these regions in healthy peers. Alcohol-related increases in nucleus accumbens - ventromedial PFC functional connectivity was associated with greater positive stimulating effects of alcohol in bipolar disorder and heavier recent alcohol use. Results suggest vPFC brain systems respond differently to acute alcohol during emotional processing in young adults with bipolar disorder compared with healthy peers, and that vPFC system responses relate to the subjective experience of intoxication and recent alcohol use.
Neuropsychopharmacol... arrow_drop_down NeuropsychopharmacologyArticle . 2023 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41386-023-01657-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Neuropsychopharmacol... arrow_drop_down NeuropsychopharmacologyArticle . 2023 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41386-023-01657-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Boris Tabakoff; Katerina Kechris; Kelsey Barcomb; Takao Ishii; Laura Saba; Paula L. Hoffman; Beth Bennett;Genetic influences on the predisposition to complex behavioral or physiological traits can reflect genetic polymorphisms that lead to altered gene product function, and/or variations in gene expression levels. We have explored quantitative variations in an animal's alcohol consumption, using a genetical genomic/phenomic approach. In our studies, gene expression is correlated with amount of alcohol consumed, and genomic regions that regulate the alcohol consumption behavior and the quantitative levels of gene expression (behavioral and expression quantitative trait loci [QTL]) are determined and used as a filter to identify candidate genes predisposing the behavior. We determined QTLs for alcohol consumption using the LXS panel of recombinant inbred mice. We then identified genes that were: 1) differentially expressed between five high and five low alcohol-consuming lines or strains of mice; and 2) were physically located in, or had an expression QTL (eQTL) within the alcohol consumption QTLs. Comparison of mRNA and protein levels in brains of high and low alcohol consuming mice led us to a bioinformatic examination of potential regulation by microRNAs of an identified candidate transcript, Gnb1 (G protein beta subunit 1). We combined our current analysis with our earlier work identifying candidate genes for the alcohol consumption trait in mice, rats and humans. Our overall analysis leads us to postulate that the activity of the GABAergic system, and in particular GABA release and GABA receptor trafficking and signaling, which involves G protein function, contributes significantly to genetic variation in the predisposition to varying levels of alcohol consumption. This article is part of a Special Issue entitled 'Trends in neuropharmacology: in memory of Erminio Costa'.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.neuropharm.2010.12.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.neuropharm.2010.12.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu