Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
  • Access
    Clear
  • Type
  • Year range
  • Field of Science
    Clear
  • Funder
  • SDG [Beta]
  • Country
  • Language
  • Source
  • Research community
    Clear
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
3,665 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • Closed Access
  • clinical medicine
  • Neuroscience

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Richard L. Bell; Lawrence Lumeng; Zachary A. Rodd; Ting-Kai Li; +5 Authors

    Background:The ventral tegmental area (VTA) is involved in regulating ethanol drinking, and the posterior VTA seems to be a neuroanatomical substrate that mediates the reinforcing effects of ethanol in ethanol‐naïve Wistar and ethanol‐naïve alcohol‐preferring (P) rats. The objective of this study was to test the hypothesis that chronic ethanol drinking increases the sensitivity of the posterior VTA to the reinforcing effects of ethanol.Methods:Two groups of female P rats (one given water as its sole source of fluid and the other given 24‐hr free‐choice access to 15% ethanol and water for at least 8 weeks) were stereotaxically implanted with guide cannulae aimed at the posterior VTA. One week after surgery, rats were placed in standard two‐lever (active and inactive) operant chambers and connected to the microinfusion system. Depression of the active lever produced the infusion of 100 nl of artificial cerebrospinal fluid (CSF) or ethanol. The ethanol‐naïve and chronic ethanol‐drinking groups were assigned to subgroups to receive artificial CSF or 25, 50, 75, or 125 mg/dl of ethanol (n= 6–9/dose/group) to self‐infuse (FR1 schedule) during the 4‐hr sessions given every other day.Results:Compared with the infusions of artificial CSF, the control group reliably (p < 0.05) self‐infused 75 and 125 mg/dl of ethanol but not the lower concentrations. The ethanol‐drinking group had significantly (p < 0.05) higher self‐infusions of 50, 75, and 125 mg/dl of ethanol than artificial CSF during the four acquisition sessions; the number of infusions of all three doses was higher in the ethanol‐drinking group than in the ethanol‐naive group. Both groups decreased responding on the active lever when artificial CSF was substituted for ethanol, and both groups demonstrated robust reinstatement of responding on the active lever when ethanol was restored.Conclusions:Chronic ethanol drinking by P rats increased the sensitivity of the posterior VTA to the reinforcing effects of ethanol.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Alcoholism Clinical ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Alcoholism Clinical and Experimental Research
    Article . 2005 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim
    39
    citations39
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Alcoholism Clinical ...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Alcoholism Clinical and Experimental Research
      Article . 2005 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Richard L. Bell; Lawrence Lumeng; Zachary A. Rodd; Ting-Kai Li; +5 Authors

    Background:The ventral tegmental area (VTA) is involved in regulating ethanol drinking, and the posterior VTA seems to be a neuroanatomical substrate that mediates the reinforcing effects of ethanol in ethanol‐naïve Wistar and ethanol‐naïve alcohol‐preferring (P) rats. The objective of this study was to test the hypothesis that chronic ethanol drinking increases the sensitivity of the posterior VTA to the reinforcing effects of ethanol.Methods:Two groups of female P rats (one given water as its sole source of fluid and the other given 24‐hr free‐choice access to 15% ethanol and water for at least 8 weeks) were stereotaxically implanted with guide cannulae aimed at the posterior VTA. One week after surgery, rats were placed in standard two‐lever (active and inactive) operant chambers and connected to the microinfusion system. Depression of the active lever produced the infusion of 100 nl of artificial cerebrospinal fluid (CSF) or ethanol. The ethanol‐naïve and chronic ethanol‐drinking groups were assigned to subgroups to receive artificial CSF or 25, 50, 75, or 125 mg/dl of ethanol (n= 6–9/dose/group) to self‐infuse (FR1 schedule) during the 4‐hr sessions given every other day.Results:Compared with the infusions of artificial CSF, the control group reliably (p < 0.05) self‐infused 75 and 125 mg/dl of ethanol but not the lower concentrations. The ethanol‐drinking group had significantly (p < 0.05) higher self‐infusions of 50, 75, and 125 mg/dl of ethanol than artificial CSF during the four acquisition sessions; the number of infusions of all three doses was higher in the ethanol‐drinking group than in the ethanol‐naive group. Both groups decreased responding on the active lever when artificial CSF was substituted for ethanol, and both groups demonstrated robust reinstatement of responding on the active lever when ethanol was restored.Conclusions:Chronic ethanol drinking by P rats increased the sensitivity of the posterior VTA to the reinforcing effects of ethanol.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Alcoholism Clinical ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Alcoholism Clinical and Experimental Research
    Article . 2005 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim
    39
    citations39
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Alcoholism Clinical ...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Alcoholism Clinical and Experimental Research
      Article . 2005 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Ronald J.P. Rijnders; Ben A. Blansjaar; G. Jan Vielvoye; J. Gert van Dijk;

    MRI examination revealed similar brain lesions in 5 alcoholic Korsakoff patients and 5 chronic alcoholics without cognitive impairment. Not only cerebral atrophy and demyelination, but also lesions thought to be specific for the Wernicke-Korsakoff syndrome were equally prominent in both groups. The morphological abnormalities thought to be typical of Wernicke-Korsakoff syndrome are probably common features of chronic alcoholism and malnutrition. Marked atrophy of the operculae was found in all Korsakoff patients and in 3 out of 5 chronic alcoholics. Alcohol amnestic disorder may not exclusively result from diencephalic lesions, but also from temporal lesions.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Clinical Neurology a...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Clinical Neurology and Neurosurgery
    Article . 1992 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    35
    citations35
    popularityAverage
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Clinical Neurology a...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Clinical Neurology and Neurosurgery
      Article . 1992 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Ronald J.P. Rijnders; Ben A. Blansjaar; G. Jan Vielvoye; J. Gert van Dijk;

    MRI examination revealed similar brain lesions in 5 alcoholic Korsakoff patients and 5 chronic alcoholics without cognitive impairment. Not only cerebral atrophy and demyelination, but also lesions thought to be specific for the Wernicke-Korsakoff syndrome were equally prominent in both groups. The morphological abnormalities thought to be typical of Wernicke-Korsakoff syndrome are probably common features of chronic alcoholism and malnutrition. Marked atrophy of the operculae was found in all Korsakoff patients and in 3 out of 5 chronic alcoholics. Alcohol amnestic disorder may not exclusively result from diencephalic lesions, but also from temporal lesions.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Clinical Neurology a...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Clinical Neurology and Neurosurgery
    Article . 1992 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    35
    citations35
    popularityAverage
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Clinical Neurology a...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Clinical Neurology and Neurosurgery
      Article . 1992 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Mark E. Stanton; Kevin L. Brown; Lyngine H. Calizo; orcid Charles R. Goodlett;
    Charles R. Goodlett
    ORCID
    Harvested from ORCID Public Data File

    Charles R. Goodlett in OpenAIRE

    AbstractDiscrimination and reversal of the classically conditioned eyeblink response depends on cerebellar–brainstem interactions with the hippocampus. Neonatal “binge” exposure to alcohol at doses of 5 g/kg/day or more has been shown to impair single‐cue eyeblink conditioning in both weanling and adult rats. The present study exposed neonatal rats to acute alcohol intubations across different developmental periods (postnatal day [PND] 4‐9 or PND7‐9) and tested them from PND26‐31 on discriminative classical eyeblink conditioning and reversal. A high dose of alcohol (5 g/kg/day) dramatically impaired conditioning relative to controls when exposure occurred over PND4‐9, but produced mild or no impairments when delivered over PND7‐9. These findings support previous claims that developmental exposure period plays a critical role in determining the deleterious effects of alcohol on the developing brain. A lower dose of alcohol (4 g/kg/day) delivered from PND4‐9—lower than has previously been shown to affect single‐cue eyeblink conditioning—also produced deficits on the discrimination task, suggesting that discrimination learning and acquisition of responding to CS+ during reversal may be especially sensitive behavioral indicators of alcohol‐induced brain damage in this rat model. © 2007 Wiley Periodicals, Inc. Dev Psychobiol 49: 243–257, 2007.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Developmental Psycho...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Developmental Psychobiology
    Article . 2007 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim
    42
    citations42
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Developmental Psycho...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Developmental Psychobiology
      Article . 2007 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Mark E. Stanton; Kevin L. Brown; Lyngine H. Calizo; orcid Charles R. Goodlett;
    Charles R. Goodlett
    ORCID
    Harvested from ORCID Public Data File

    Charles R. Goodlett in OpenAIRE

    AbstractDiscrimination and reversal of the classically conditioned eyeblink response depends on cerebellar–brainstem interactions with the hippocampus. Neonatal “binge” exposure to alcohol at doses of 5 g/kg/day or more has been shown to impair single‐cue eyeblink conditioning in both weanling and adult rats. The present study exposed neonatal rats to acute alcohol intubations across different developmental periods (postnatal day [PND] 4‐9 or PND7‐9) and tested them from PND26‐31 on discriminative classical eyeblink conditioning and reversal. A high dose of alcohol (5 g/kg/day) dramatically impaired conditioning relative to controls when exposure occurred over PND4‐9, but produced mild or no impairments when delivered over PND7‐9. These findings support previous claims that developmental exposure period plays a critical role in determining the deleterious effects of alcohol on the developing brain. A lower dose of alcohol (4 g/kg/day) delivered from PND4‐9—lower than has previously been shown to affect single‐cue eyeblink conditioning—also produced deficits on the discrimination task, suggesting that discrimination learning and acquisition of responding to CS+ during reversal may be especially sensitive behavioral indicators of alcohol‐induced brain damage in this rat model. © 2007 Wiley Periodicals, Inc. Dev Psychobiol 49: 243–257, 2007.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Developmental Psycho...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Developmental Psychobiology
    Article . 2007 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim
    42
    citations42
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Developmental Psycho...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Developmental Psychobiology
      Article . 2007 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Fadda F.; Argiolas A.; Melis M. R.; SERRA, Gino; +1 Authors

    Acute oral administration of ethanol (3.2g/kg) to rats increased (DOPAC) levels in the caudate nucleus, but had no effect on DOPAC levels in the substantia nigra and frontal cortex and failed to modify dopamine content in any of the above areas. On the other hand, the administration of the same dose of ethanol to rats which had been chronically treated with ethanol (3.2g/kg daily for 60 days), produced a decrease of DA content and a parallel increase of DOPAC levels in all areas studied. In chronically treated rats, 24 hrs after last ethanol administration dopamine levels in the frontal cortex were 60% higher than in controls. The results suggest that ethanol administration causes dopamine release in different brain areas.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao UnissResearcharrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    UnissResearch
    Article . 1980
    Data sources: UnissResearch
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao UnissResearcharrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      UnissResearch
      Article . 1980
      Data sources: UnissResearch
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Fadda F.; Argiolas A.; Melis M. R.; SERRA, Gino; +1 Authors

    Acute oral administration of ethanol (3.2g/kg) to rats increased (DOPAC) levels in the caudate nucleus, but had no effect on DOPAC levels in the substantia nigra and frontal cortex and failed to modify dopamine content in any of the above areas. On the other hand, the administration of the same dose of ethanol to rats which had been chronically treated with ethanol (3.2g/kg daily for 60 days), produced a decrease of DA content and a parallel increase of DOPAC levels in all areas studied. In chronically treated rats, 24 hrs after last ethanol administration dopamine levels in the frontal cortex were 60% higher than in controls. The results suggest that ethanol administration causes dopamine release in different brain areas.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao UnissResearcharrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    UnissResearch
    Article . 1980
    Data sources: UnissResearch
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao UnissResearcharrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      UnissResearch
      Article . 1980
      Data sources: UnissResearch
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Sima Nusem-Horowitz; Jona Kronenberg; Michael Wolf;
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Oral and ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Oral and Maxillofacial Surgery
    Article . 1994 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    5
    citations5
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Oral and ...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Oral and Maxillofacial Surgery
      Article . 1994 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Sima Nusem-Horowitz; Jona Kronenberg; Michael Wolf;
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Oral and ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Oral and Maxillofacial Surgery
    Article . 1994 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    5
    citations5
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Oral and ...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Oral and Maxillofacial Surgery
      Article . 1994 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: J Turchan; Anna Borsodi; Ryszard Przewlocki; orcid W. Lason;
    W. Lason
    ORCID
    Harvested from ORCID Public Data File

    W. Lason in OpenAIRE
    +2 Authors

    The present study was carried out to evaluate the effect of morphine, cocaine and ethanol on the density of opioid receptors in the nucleus accumbens and striatum of rat brain. The animals were injected i.p. with morphine in a single dose 20 mg/kg, or twice daily for 10 days in increasing doses of 20-100 mg/kg. Cocaine was administered in a dose of 60 mg/kg/day following the "binge" paradigm, every hour for 3 h, one day (single treatment) or five days (chronic treatment). Ethanol was administered in drinking water at increasing concentrations of 1-6% v/v, for one month. As shown by receptor autoradiography, single morphine and cocaine administration did not influence the binding density of the selective ligand of delta2 receptors [3H]Ile5,6deltorphin b, but single administration of cocaine decreased binding density of a highly selective antagonist of delta receptors, [3H]H-Tyr-Tic psi[CH2-NH]Phe-Phe-OH. Repeated morphine administration decreased the receptor density after both ligands of the delta receptor in the nucleus accumbens after 3, 24 and 48 h, and in the striatum after 24 and 48 h. The density of [3H]Ile5,6deltorphin b binding remained unchanged in both structures following repeated cocaine administration. After repeated cocaine administration either no changes (3 h) or a decrease in the binding of [3H]H-Tyr-Tic psi[CH2-NH]Phe-Phe-OH in the nucleus accumbens and striatum were observed after 24 and 48 h. Ethanol did not influence the binding density of [3H]H-Tyr-Tic psi[CH2-NH]Phe-Phe-OH and [3H]Ile5,6deltorphin b in the nucleus accumbens and striatum at any time-point studied. In the nucleus accumbens and striatum, no changes were found in the binding density of [3H]Tyr-D-Ala-Gly-MePhe-Gly-ol following single or repeated morphine administration. At 3 h after single or repeated "binge" cocaine administration, the binding of [3H]Tyr-D-Ala-Gly-MePhe-Gly-ol was not changed in either structure, but after 24 h the density of mu opioid receptors was decreased in both structures. Ethanol given to rats in drinking water decreased the binding of [3H]Tyr-D-Ala-Gly-MePhe-Gly-ol at the time of exposure to ethanol, yet in the nucleus accumbens only. Ethanol withdrawal decreased the density of the mu receptor in both structures after 24, 48 and 96 h. The above data indicate that repeated administration of morphine evokes a long-lasting down-regulation of the density of delta1 and delta2 opioid receptors, whereas cocaine affects in a similar way only the delta1 subtype in the nucleus accumbens, and to a lesser extent in the striatum. A long-term intake of ethanol solution down-regulates mu opioid receptors in both structures, but has no effect on any type of delta receptors. Thus changes in the particular opioid receptor depend on the type of drug used. Furthermore, the most profound changes are observed after late withdrawal, which may play some role in maintaining the state of dependence.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Neurosciencearrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Neuroscience
    Article . 1999 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    Neuroscience
    Article . 1999
    addClaim
    104
    citations104
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Neurosciencearrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Neuroscience
      Article . 1999 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      Neuroscience
      Article . 1999
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: J Turchan; Anna Borsodi; Ryszard Przewlocki; orcid W. Lason;
    W. Lason
    ORCID
    Harvested from ORCID Public Data File

    W. Lason in OpenAIRE
    +2 Authors

    The present study was carried out to evaluate the effect of morphine, cocaine and ethanol on the density of opioid receptors in the nucleus accumbens and striatum of rat brain. The animals were injected i.p. with morphine in a single dose 20 mg/kg, or twice daily for 10 days in increasing doses of 20-100 mg/kg. Cocaine was administered in a dose of 60 mg/kg/day following the "binge" paradigm, every hour for 3 h, one day (single treatment) or five days (chronic treatment). Ethanol was administered in drinking water at increasing concentrations of 1-6% v/v, for one month. As shown by receptor autoradiography, single morphine and cocaine administration did not influence the binding density of the selective ligand of delta2 receptors [3H]Ile5,6deltorphin b, but single administration of cocaine decreased binding density of a highly selective antagonist of delta receptors, [3H]H-Tyr-Tic psi[CH2-NH]Phe-Phe-OH. Repeated morphine administration decreased the receptor density after both ligands of the delta receptor in the nucleus accumbens after 3, 24 and 48 h, and in the striatum after 24 and 48 h. The density of [3H]Ile5,6deltorphin b binding remained unchanged in both structures following repeated cocaine administration. After repeated cocaine administration either no changes (3 h) or a decrease in the binding of [3H]H-Tyr-Tic psi[CH2-NH]Phe-Phe-OH in the nucleus accumbens and striatum were observed after 24 and 48 h. Ethanol did not influence the binding density of [3H]H-Tyr-Tic psi[CH2-NH]Phe-Phe-OH and [3H]Ile5,6deltorphin b in the nucleus accumbens and striatum at any time-point studied. In the nucleus accumbens and striatum, no changes were found in the binding density of [3H]Tyr-D-Ala-Gly-MePhe-Gly-ol following single or repeated morphine administration. At 3 h after single or repeated "binge" cocaine administration, the binding of [3H]Tyr-D-Ala-Gly-MePhe-Gly-ol was not changed in either structure, but after 24 h the density of mu opioid receptors was decreased in both structures. Ethanol given to rats in drinking water decreased the binding of [3H]Tyr-D-Ala-Gly-MePhe-Gly-ol at the time of exposure to ethanol, yet in the nucleus accumbens only. Ethanol withdrawal decreased the density of the mu receptor in both structures after 24, 48 and 96 h. The above data indicate that repeated administration of morphine evokes a long-lasting down-regulation of the density of delta1 and delta2 opioid receptors, whereas cocaine affects in a similar way only the delta1 subtype in the nucleus accumbens, and to a lesser extent in the striatum. A long-term intake of ethanol solution down-regulates mu opioid receptors in both structures, but has no effect on any type of delta receptors. Thus changes in the particular opioid receptor depend on the type of drug used. Furthermore, the most profound changes are observed after late withdrawal, which may play some role in maintaining the state of dependence.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Neurosciencearrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Neuroscience
    Article . 1999 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    Neuroscience
    Article . 1999
    addClaim
    104
    citations104
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Neurosciencearrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Neuroscience
      Article . 1999 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      Neuroscience
      Article . 1999
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Wallace B. Mendelson;

    Previous studies have shown that a wide range of sedative/hypnotic agents, including ethanol, induce sleep when microinjected into the medial preoptic area (MPA) of the anterior hypothalamus. The mechanism by which ethanol acts at this site to induce sleep has not been clear, though possibilities include alterations of chloride channel function in the GABA(A)-benzodiazepine receptor complex, or increases in neuronal membrane fluidity. In order to explore the former possibility, we have microinjected into the MPA ethanol 0.24 and 0.47 microM, alone and in combination with the benzodiazepine receptor antagonist flumazenil, which has no effects on membrane fluidity or voltage-dependent calcium channel function. Ethanol microinjections significantly reduced sleep latency, and tended (P<0.06) to increase total sleep time. Flumazenil given by itself had no significant effects on sleep, but when given in combination with both doses of ethanol, blocked its hypnotic effects. These data suggest that the sleep-inducing action of ethanol microinjections into the MPA is mediated by ethanol-induced alteration of GABA(A)-benzodiazepine receptor function.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Brain Researcharrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Brain Research
    Article . 2001 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    Brain Research
    Article . 2001
    addClaim
    13
    citations13
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Brain Researcharrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Brain Research
      Article . 2001 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      Brain Research
      Article . 2001
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Wallace B. Mendelson;

    Previous studies have shown that a wide range of sedative/hypnotic agents, including ethanol, induce sleep when microinjected into the medial preoptic area (MPA) of the anterior hypothalamus. The mechanism by which ethanol acts at this site to induce sleep has not been clear, though possibilities include alterations of chloride channel function in the GABA(A)-benzodiazepine receptor complex, or increases in neuronal membrane fluidity. In order to explore the former possibility, we have microinjected into the MPA ethanol 0.24 and 0.47 microM, alone and in combination with the benzodiazepine receptor antagonist flumazenil, which has no effects on membrane fluidity or voltage-dependent calcium channel function. Ethanol microinjections significantly reduced sleep latency, and tended (P<0.06) to increase total sleep time. Flumazenil given by itself had no significant effects on sleep, but when given in combination with both doses of ethanol, blocked its hypnotic effects. These data suggest that the sleep-inducing action of ethanol microinjections into the MPA is mediated by ethanol-induced alteration of GABA(A)-benzodiazepine receptor function.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Brain Researcharrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Brain Research
    Article . 2001 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    Brain Research
    Article . 2001
    addClaim
    13
    citations13
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Brain Researcharrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Brain Research
      Article . 2001 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      Brain Research
      Article . 2001
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Albert Adell;
    Albert Adell
    ORCID
    Harvested from ORCID Public Data File

    Albert Adell in OpenAIRE
    R.D. Myers;

    1. The effect of 10 g 5,7-dihydroxytryptamine (5,7-DHT) micro-injected into both the dorsal (DRN) and the median raphe nuclei (MRN) on the intake of ethanol in the low alcohol drinking (LAD) rat was measured using a standard 3-30% ethanol preference test. 2. The combined lesion of both midbrain structures depleted the levels of serotonin (5-HT) and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) significantly in each of eight major regions of the brain. The levels of norepinephrine, dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) remained unchanged after the lesion. 3. The effects of the neurotoxin lesions on the intakes of ethanol, food, water and total amount of fluid consumed were not significant. 4. The results corroborate our previous findings with the Sprague-Dawley strain of rat and suggest that although brain 5-HT may play a role in the maintenance of basal patterns of ethanol drinking, this monoamine may not be able to modify further the consumption of this fluid after lesioning with 5,7-DHT.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Progress in Neuro-Ps...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Progress in Neuro-Psychopharmacology and Biological Psychiatry
    Article . 1996 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    4
    citations4
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Progress in Neuro-Ps...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Progress in Neuro-Psychopharmacology and Biological Psychiatry
      Article . 1996 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Albert Adell;
    Albert Adell
    ORCID
    Harvested from ORCID Public Data File

    Albert Adell in OpenAIRE
    R.D. Myers;

    1. The effect of 10 g 5,7-dihydroxytryptamine (5,7-DHT) micro-injected into both the dorsal (DRN) and the median raphe nuclei (MRN) on the intake of ethanol in the low alcohol drinking (LAD) rat was measured using a standard 3-30% ethanol preference test. 2. The combined lesion of both midbrain structures depleted the levels of serotonin (5-HT) and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) significantly in each of eight major regions of the brain. The levels of norepinephrine, dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) remained unchanged after the lesion. 3. The effects of the neurotoxin lesions on the intakes of ethanol, food, water and total amount of fluid consumed were not significant. 4. The results corroborate our previous findings with the Sprague-Dawley strain of rat and suggest that although brain 5-HT may play a role in the maintenance of basal patterns of ethanol drinking, this monoamine may not be able to modify further the consumption of this fluid after lesioning with 5,7-DHT.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Progress in Neuro-Ps...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Progress in Neuro-Psychopharmacology and Biological Psychiatry
    Article . 1996 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    4
    citations4
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Progress in Neuro-Ps...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Progress in Neuro-Psychopharmacology and Biological Psychiatry
      Article . 1996 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: William A. Banks; Abba J. Kastin;

    Brain-to-blood transport, or efflux, systems play important roles in brain functions and can affect the CNS uptake and activity of endogenous and exogenous blood-borne substances. Several efflux systems have been described for peptides. These efflux systems may play important roles in communication between the CNS and peripheral tissues and may be important in conditions such as alcoholism.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Annals of the New Yo...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Annals of the New York Academy of Sciences
    Article . 1994 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim
    11
    citations11
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Annals of the New Yo...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Annals of the New York Academy of Sciences
      Article . 1994 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: William A. Banks; Abba J. Kastin;

    Brain-to-blood transport, or efflux, systems play important roles in brain functions and can affect the CNS uptake and activity of endogenous and exogenous blood-borne substances. Several efflux systems have been described for peptides. These efflux systems may play important roles in communication between the CNS and peripheral tissues and may be important in conditions such as alcoholism.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Annals of the New Yo...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Annals of the New York Academy of Sciences
    Article . 1994 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim
    11
    citations11
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Annals of the New Yo...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Annals of the New York Academy of Sciences
      Article . 1994 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid bw BASSAREO, VALENTINA;
    BASSAREO, VALENTINA
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    BASSAREO, VALENTINA in OpenAIRE
    orcid DE LUCA, MARIA ANTONIETTA;
    DE LUCA, MARIA ANTONIETTA
    ORCID
    Harvested from ORCID Public Data File

    DE LUCA, MARIA ANTONIETTA in OpenAIRE
    ARESU M; ASTE A; +2 Authors

    AbstractNon‐adaptive activation of dopamine transmission in the nucleus accumbens shell by drugs of abuse has been attributed a fundamental role in the mechanism of drug addiction. In order to test this hypothesis, we compared in the same subject the effect of an addictive drug (ethanol) and of taste stimuli, including ethanol's own taste, on dialysate dopamine in the nucleus accumbens shell as an estimate of dopamine transmission and on taste reactivity as an expression of motivational valence. Ethanol was also monitored in the dialysates. In naive rats, intraoral infusion of a 20% sucrose + chocolate solution elicited a monophasic increase of dialysate dopamine immediately after the intraoral infusion. In contrast, intraoral infusion of 10% ethanol, 10% ethanol + 20% sucrose or 10% ethanol + 20% sucrose + chocolate solutions elicited a biphasic increase of nucleus accumbens dopamine with an early taste‐related rise and a late rise related to dialysate ethanol. Pre‐exposure to the ethanol solutions 24 h before resulted in the absence of the early dopamine rise and permanence of the late dopamine rise. This late dopamine rise was actually increased as compared with that of the nonpre‐exposed group when sucrose‐containing ethanol solutions were tested. The results indicate that single trial pre‐exposure to the ethanol solutions differentially affects the responsiveness of nucleus accumbens shell dopamine to the direct intracerebral action of ethanol and to the effect of its taste with potentiation, or no change of the first and abolition of the second. These observations point to the existence of major differences in the adaptive regulation of nucleus accumbens dopamine transmission in the shell after drug as compared with taste reward. These differences, in turn, are consistent with a role of nucleus accumbens shell dopamine in the mechanism of the behavioural effects of addictive drugs.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao European Journal of ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    European Journal of Neuroscience
    Article . 2003 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim
    52
    citations52
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao European Journal of ...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      European Journal of Neuroscience
      Article . 2003 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid bw BASSAREO, VALENTINA;
    BASSAREO, VALENTINA
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    BASSAREO, VALENTINA in OpenAIRE
    orcid DE LUCA, MARIA ANTONIETTA;
    DE LUCA, MARIA ANTONIETTA
    ORCID
    Harvested from ORCID Public Data File

    DE LUCA, MARIA ANTONIETTA in OpenAIRE
    ARESU M; ASTE A; +2 Authors

    AbstractNon‐adaptive activation of dopamine transmission in the nucleus accumbens shell by drugs of abuse has been attributed a fundamental role in the mechanism of drug addiction. In order to test this hypothesis, we compared in the same subject the effect of an addictive drug (ethanol) and of taste stimuli, including ethanol's own taste, on dialysate dopamine in the nucleus accumbens shell as an estimate of dopamine transmission and on taste reactivity as an expression of motivational valence. Ethanol was also monitored in the dialysates. In naive rats, intraoral infusion of a 20% sucrose + chocolate solution elicited a monophasic increase of dialysate dopamine immediately after the intraoral infusion. In contrast, intraoral infusion of 10% ethanol, 10% ethanol + 20% sucrose or 10% ethanol + 20% sucrose + chocolate solutions elicited a biphasic increase of nucleus accumbens dopamine with an early taste‐related rise and a late rise related to dialysate ethanol. Pre‐exposure to the ethanol solutions 24 h before resulted in the absence of the early dopamine rise and permanence of the late dopamine rise. This late dopamine rise was actually increased as compared with that of the nonpre‐exposed group when sucrose‐containing ethanol solutions were tested. The results indicate that single trial pre‐exposure to the ethanol solutions differentially affects the responsiveness of nucleus accumbens shell dopamine to the direct intracerebral action of ethanol and to the effect of its taste with potentiation, or no change of the first and abolition of the second. These observations point to the existence of major differences in the adaptive regulation of nucleus accumbens dopamine transmission in the shell after drug as compared with taste reward. These differences, in turn, are consistent with a role of nucleus accumbens shell dopamine in the mechanism of the behavioural effects of addictive drugs.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao European Journal of ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    European Journal of Neuroscience
    Article . 2003 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim
    52
    citations52
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao European Journal of ...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      European Journal of Neuroscience
      Article . 2003 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right
Powered by OpenAIRE graph