- home
- Advanced Search
- Energy Research
- clinical medicine
- 7. Clean energy
- Neuroscience
- Energy Research
- clinical medicine
- 7. Clean energy
- Neuroscience
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 SpainPublisher:Frontiers Media SA Authors: Michaud, Florian; Mouzo, Francisco; Lugrís-Armesto, Urbano; Cuadrado, Javier;Determination of muscle energy expenditure by computer modeling and analysis is of great interest to estimate the whole body energy consumption, while avoiding the complex character of in vivo experimental measurements for some subjects or activities. In previous papers, the authors presented optimization methods for estimating muscle forces in spinal-cord-injured (SCI) subjects performing crutch-assisted gait. Starting from those results, this work addresses the estimation of the whole body energy consumption of a SCI subject during crutch-assisted gait using the models of human muscle energy expenditure proposed by Umberger and Bhargava. First, the two methods were applied to the gait of a healthy subject, and experimentally validated by means of a portable gas analyzer in several 5-min tests. Then, both methods were used for a SCI subject during crutch-assisted gait wearing either a passive or an active knee-ankle foot orthosis (KAFO), in order to compare the energetic efficiency of both gait-assistive devices. Improved gait pattern and reduced energy consumption were the results of using the actuated gait device. Computer modeling and analysis can provide valuable indicators, as energy consumption, to assess the impact of assistive devices in patients without the need for long and uncomfortable experimental tests.
Frontiers in Neuroro... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTARepositorio da Universidade da CoruñaArticle . 2019Data sources: Repositorio da Universidade da Coruñaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fnbot.2019.00055&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Frontiers in Neuroro... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTARepositorio da Universidade da CoruñaArticle . 2019Data sources: Repositorio da Universidade da Coruñaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fnbot.2019.00055&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008Publisher:Springer Science and Business Media LLC Claes Lindh; André Wennersten; Fabian Arnberg; Staffan Holmin; Tiit Mathiesen;pmid: 19015811
Traumatic brain damage is dependent on energy transfer to the brain at impact. Different injury mechanisms may cause different types of brain injury. It is, however, unknown if the relative distribution between apoptotic cell-death and necrotic cell- death in different populations of brain cells varies depending on energy transfer.Experimental contusions were produced with a modified weight drop onto the exposed dura of rats. Animals were divided into two groups. They received a weight drop from two different heights to vary energy transfer to be higher or lower. Animals were sacrificed at 24 hours post injury (1 DPI) or 6 days (6 DPI); brains were frozen and processed for TUNEL (TdT mediated dUTP nick end labelling), light microscopy and immunochemistry.The total number of TUNEL positive cells was higher in the higher energy group on the first day after the injury. At the same time point, relatively fewer cells were apoptotic than necrotic, while relatively more glial cells than neurons were TUNEL-positive in higher energy trauma. At 6 day after the injury fewer cells were TUNEL positive and there were no longer significant differences between the high and low energy groups.Increasing energy transfer in a model for brain contusion demonstrated qualitative and quantitative changes in the pattern of cell death. This complexity must be considered when evaluating brain-protection as treatment results may vary depending on which cellular population and which mechanism of cell death is treated under the exact experimental and clinical conditions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00701-008-0147-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00701-008-0147-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Springer Science and Business Media LLC Z. V. Petrova; E. A. Yanovskaya; V. V. Udut; Yu. G. Zyuz’kova; D. A. Korshunov; G. A. Stykon; V. A. Slepichev;pmid: 21113493
We studied the effects of ethanol on the energy production system in the brain and liver in acute and chronic intoxications. Ethanol was found to inhibit mitochondrial respiratory chain in the liver. Acute ethanol intoxication results in uncoupling of oxidative phosphorylation. NAD-dependent respiration prevails in chronic intoxication. In the brain, ethanol exposure induces a compensated low-energy shift with activation of fast mitochondrial metabolic cluster and uncoupling of oxidative phosphorylation.
Bulletin of Experime... arrow_drop_down Bulletin of Experimental Biology and MedicineArticle . 2010 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10517-010-0909-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Bulletin of Experime... arrow_drop_down Bulletin of Experimental Biology and MedicineArticle . 2010 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10517-010-0909-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2009 CanadaPublisher:Springer Science and Business Media LLC Funded by:CIHR, NSERCCIHR ,NSERCAuthors: Naing, Veronica; Donelan, J. M; Li, Qingguo;Biomechanical energy harvesting-generating electricity from people during daily activities-is a promising alternative to batteries for powering increasingly sophisticated portable devices. We recently developed a wearable knee-mounted energy harvesting device that generated electricity during human walking. In this methods-focused paper, we explain the physiological principles that guided our design process and present a detailed description of our device design with an emphasis on new analyses.Effectively harvesting energy from walking requires a small lightweight device that efficiently converts intermittent, bi-directional, low speed and high torque mechanical power to electricity, and selectively engages power generation to assist muscles in performing negative mechanical work. To achieve this, our device used a one-way clutch to transmit only knee extension motions, a spur gear transmission to amplify the angular speed, a brushless DC rotary magnetic generator to convert the mechanical power into electrical power, a control system to determine when to open and close the power generation circuit based on measurements of knee angle, and a customized orthopaedic knee brace to distribute the device reaction torque over a large leg surface area.The device selectively engaged power generation towards the end of swing extension, assisting knee flexor muscles by producing substantial flexion torque (6.4 Nm), and efficiently converted the input mechanical power into electricity (54.6%). Consequently, six subjects walking at 1.5 m/s generated 4.8 +/- 0.8 W of electrical power with only a 5.0 +/- 21 W increase in metabolic cost.Biomechanical energy harvesting is capable of generating substantial amounts of electrical power from walking with little additional user effort making future versions of this technology particularly promising for charging portable medical devices.
Journal of NeuroEngi... arrow_drop_down Journal of NeuroEngineering and RehabilitationArticle . 2009 . Peer-reviewedLicense: CC BYData sources: CrossrefSimon Fraser University Institutional RepositoryArticle . 2009Data sources: Simon Fraser University Institutional RepositorySimon Fraser University Institutional RepositoryArticle . 2009Data sources: Simon Fraser University Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/1743-0003-6-22&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 103 citations 103 popularity Top 1% influence Top 1% impulse Top 10% Powered by BIP!
more_vert Journal of NeuroEngi... arrow_drop_down Journal of NeuroEngineering and RehabilitationArticle . 2009 . Peer-reviewedLicense: CC BYData sources: CrossrefSimon Fraser University Institutional RepositoryArticle . 2009Data sources: Simon Fraser University Institutional RepositorySimon Fraser University Institutional RepositoryArticle . 2009Data sources: Simon Fraser University Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/1743-0003-6-22&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 ItalyPublisher:Springer Science and Business Media LLC Buoite Stella, Alex; Morelli, Maria Elisa; Giudici, Fabiola; Sartori, Arianna; Manganotti, Paolo; di Prampero, Pietro Enrico;Comfortable walking speed and energy cost of walking are physiological markers of metabolic activity during gait. People with multiple sclerosis are characterized by altered gait biomechanics and energetics, related to the degree of disability and spasticity, which lead to an increased energy cost of walking. Several studies concerning the energy cost of walking in multiple sclerosis have been published. Nevertheless, differences in protocols and characteristics of the sample have led to different outcomes. The aim of the present meta-analysis is to summarize results from studies with specific inclusion characteristics, and to present data about the comfortable walking speed and the energy cost of walking at that speed. Moreover, a detailed discussion of the potential mechanisms involved in the altered metabolic activity during exercise was included. A total of 19 studies were considered, 12 of which were also part of the quantitative analysis. Despite the strict selection process, high between-group heterogeneity was found for both outcomes. Nevertheless, the overall results suggest a pooled mean comfortable walking speed of 1.12 m/s (95% CI 1.05-1.18) and energy cost of 0.19 mLO2/kg/m (95% CI 0.17-0.21). These findings support the results of previous studies suggesting that energy cost of walking may be increased by 2-3 times compared to healthy controls (HC), and encourage the use of this marker in association with other parameters of the disease.
Archivio istituziona... arrow_drop_down European Journal of Applied PhysiologyArticle . 2020 . Peer-reviewedLicense: Springer TDMData sources: CrossrefEuropean Journal of Applied Physiology and Occupational PhysiologyArticle . 2020Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00421-019-04295-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down European Journal of Applied PhysiologyArticle . 2020 . Peer-reviewedLicense: Springer TDMData sources: CrossrefEuropean Journal of Applied Physiology and Occupational PhysiologyArticle . 2020Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00421-019-04295-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Computers, Materials and Continua (Tech Science Press) Ashish Das; Kan Hor; Rupak K. Banerjee; Michael D. Taylor; Namheon Lee;doi: 10.1111/chd.12034
pmid: 23331703
With the success of early repair, continued functional assessment of repaired congenital heart disease is critical for improved long-term outcome. Pulmonary regurgitation, which is one of the main postoperative sequelae of congenital heart disease involved with the right ventricle (RV) such as tetralogy of Fallot and transposition of the great arteries, results in progressive RV dilatation coupled with pulmonary artery (PA) obstruction causing elevated RV pressures. The appropriate timing of intervention to correct these postoperative lesions remains largely subjective. In the present study, we evaluated an energy-based end point, namely energy transfer ratio (eMPA ), to assess the degree of RV and PA inefficiency in a group of congenital heart disease patients with abnormal RV-PA physiology.Eight patients with abnormal RV-PA physiology and six controls with normal RV-PA physiology were investigated using a previously validated technique that couples cardiac magnetic resonance imaging and invasive pressure measurements.The mean eMPA of the patient group (0.56 ± 0.33) was significantly lower (P <.04) than that of the control group (1.56 ± 0.85), despite the fact that the patient group had a significantly higher RV stroke work indexed to body surface area (RV SWI ) than the control group (0.205 ± 0.095 J/m(2) vs. 0.090 ± 0.038 J/m(2) ; P <.02).We determined that the patients had inefficient RV-PA physiology due to a combination of RV dilatation with pulmonary regurgitation and RV outflow obstruction leading to an elevated end-systolic pressure. Using coupled magnetic resonance imaging and invasive pressure measurements, eMPA is determined to be a sensitive energy-based end point for measuring RV-PA efficiency. It may serve as a diagnostic end point to optimize timing of intervention.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/chd.12034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/chd.12034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV M.D. Grima Murcia; Francisco Sánchez Ferrer; Jennifer Sorinas; J.M. Ferrandez; Eduardo Fernandez;pmid: 28622651
Much is currently being studied on the negative visual impact associated to the installation of large wind turbines or photovoltaic farms. However, methodologies for quantitatively assessing landscape impact are scarce. In this work we used electroencephalographic (EEG) recordings to investigate the brain activity of 14 human volunteers when looking at the same landscapes with and without wind turbines, solar panels and nuclear power plants. Our results showed no significant differences for landscapes with solar power systems or without them, and the same happened for wind turbines, what was in agreement with their subjective scores. However, there were clear and significant differences when looking at landscapes with and without nuclear power plants. These differences were more pronounced around a time window of 376-407 msec and showed a clear right lateralization for the pictures containing nuclear power plants. Although more studies are still needed, these results suggest that EEG recordings can be a useful procedure for measuring visual impact.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTAJournal of Environmental ManagementArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2017.05.096&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTAJournal of Environmental ManagementArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2017.05.096&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015Publisher:eLife Sciences Publications, Ltd E. Edmund Kim; E. Edmund Kim; Do Won Hwang; Do Won Hwang; Yoori Choi; Hongyoon Choi; Hongyoon Choi; June-Key Chung; Kyu Wan Kim; Dong Soo Lee; Dong Soo Lee; Hye Jin Kang;Neuroimaging has been used to examine developmental changes of the brain. While PET studies revealed maturation-related changes, maturation of metabolic connectivity of the brain is not yet understood. Here, we show that rat brain metabolism is reconfigured to achieve long-distance connections with higher energy efficiency during maturation. Metabolism increased in anterior cerebrum and decreased in thalamus and cerebellum during maturation. When functional covariance patterns of PET images were examined, metabolic networks including default mode network (DMN) were extracted. Connectivity increased between the anterior and posterior parts of DMN and sensory-motor cortices during maturation. Energy efficiency, a ratio of connectivity strength to metabolism of a region, increased in medial prefrontal and retrosplenial cortices. Our data revealed that metabolic networks mature to increase metabolic connections and establish its efficiency between large-scale spatial components from childhood to early adulthood. Neurodevelopmental diseases might be understood by abnormal reconfiguration of metabolic connectivity and efficiency.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7554/elife.11571&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 28 citations 28 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7554/elife.11571&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Wiley Authors: Pan Wang; Yangyang Zhong; Zhenan Yao;Since China’s reform and opening up, the social economy has achieved rapid development, followed by a sharp increase in carbon dioxide (CO2) emissions. Therefore, at the 75th United Nations General Assembly, China proposed to achieve carbon peaking by 2030 and carbon neutrality by 2060. The research work on advance forecasting of CO2 emissions is essential to achieve the above-mentioned carbon peaking and carbon neutrality goals in China. In order to achieve accurate prediction of CO2 emissions, this study establishes a hybrid intelligent algorithm model suitable for CO2 emissions prediction based on China’s CO2 emissions and related socioeconomic indicator data from 1971 to 2017. The hyperparameters of Least Squares Support Vector Regression (LSSVR) are optimized by the Adaptive Artificial Bee Colony (AABC) algorithm to build a high-performance hybrid intelligence model. The research results show that the hybrid intelligent algorithm model designed in this paper has stronger robustness and accuracy with relative error almost within ±5% in the advance prediction of CO2 emissions. The modeling scheme proposed in this study can not only provide strong support for the Chinese government and industry departments to formulate policies related to the carbon peaking and carbon neutrality goals, but also can be extended to the research of other socioeconomic-related issues.
Computational Intell... arrow_drop_down Computational Intelligence and NeuroscienceArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/2022/6822467&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Computational Intell... arrow_drop_down Computational Intelligence and NeuroscienceArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/2022/6822467&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2016Publisher:Institute of Electrical and Electronics Engineers (IEEE) Melanie G. Urbanchek; Karen E. Schroeder; William C. Stacey; Derek M. Tat; David E. Thompson; Parag G. Patil; Cynthia A. Chestek; Adam Sachs; Autumn J Bullard; Ali Hassani; Zachary T. Irwin; Shoshana L. Woo; Paul S. Cederna;pmid: 26600160
Brain-Machine Interfaces (BMIs) have shown great potential for generating prosthetic control signals. Translating BMIs into the clinic requires fully implantable, wireless systems; however, current solutions have high power requirements which limit their usability. Lowering this power consumption typically limits the system to a single neural modality, or signal type, and thus to a relatively small clinical market. Here, we address both of these issues by investigating the use of signal power in a single narrow frequency band as a decoding feature for extracting information from electrocorticographic (ECoG), electromyographic (EMG), and intracortical neural data. We have designed and tested the Multi-modal Implantable Neural Interface (MINI), a wireless recording system which extracts and transmits signal power in a single, configurable frequency band. In prerecorded datasets, we used the MINI to explore low frequency signal features and any resulting tradeoff between power savings and decoding performance losses. When processing intracortical data, the MINI achieved a power consumption 89.7% less than a more typical system designed to extract action potential waveforms. When processing ECoG and EMG data, the MINI achieved similar power reductions of 62.7% and 78.8%. At the same time, using the single signal feature extracted by the MINI, we were able to decode all three modalities with less than a 9% drop in accuracy relative to using high-bandwidth, modality-specific signal features. We believe this system architecture can be used to produce a viable, cost-effective, clinical BMI.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Neural Systems and Rehabilitation EngineeringArticle . 2016 . Peer-reviewedLicense: IEEE CopyrightData sources: CrossrefIEEE Transactions on Neural Systems and Rehabilitation EngineeringArticle . 2017Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tnsre.2015.2501752&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Neural Systems and Rehabilitation EngineeringArticle . 2016 . Peer-reviewedLicense: IEEE CopyrightData sources: CrossrefIEEE Transactions on Neural Systems and Rehabilitation EngineeringArticle . 2017Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tnsre.2015.2501752&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 SpainPublisher:Frontiers Media SA Authors: Michaud, Florian; Mouzo, Francisco; Lugrís-Armesto, Urbano; Cuadrado, Javier;Determination of muscle energy expenditure by computer modeling and analysis is of great interest to estimate the whole body energy consumption, while avoiding the complex character of in vivo experimental measurements for some subjects or activities. In previous papers, the authors presented optimization methods for estimating muscle forces in spinal-cord-injured (SCI) subjects performing crutch-assisted gait. Starting from those results, this work addresses the estimation of the whole body energy consumption of a SCI subject during crutch-assisted gait using the models of human muscle energy expenditure proposed by Umberger and Bhargava. First, the two methods were applied to the gait of a healthy subject, and experimentally validated by means of a portable gas analyzer in several 5-min tests. Then, both methods were used for a SCI subject during crutch-assisted gait wearing either a passive or an active knee-ankle foot orthosis (KAFO), in order to compare the energetic efficiency of both gait-assistive devices. Improved gait pattern and reduced energy consumption were the results of using the actuated gait device. Computer modeling and analysis can provide valuable indicators, as energy consumption, to assess the impact of assistive devices in patients without the need for long and uncomfortable experimental tests.
Frontiers in Neuroro... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTARepositorio da Universidade da CoruñaArticle . 2019Data sources: Repositorio da Universidade da Coruñaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fnbot.2019.00055&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Frontiers in Neuroro... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTARepositorio da Universidade da CoruñaArticle . 2019Data sources: Repositorio da Universidade da Coruñaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fnbot.2019.00055&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008Publisher:Springer Science and Business Media LLC Claes Lindh; André Wennersten; Fabian Arnberg; Staffan Holmin; Tiit Mathiesen;pmid: 19015811
Traumatic brain damage is dependent on energy transfer to the brain at impact. Different injury mechanisms may cause different types of brain injury. It is, however, unknown if the relative distribution between apoptotic cell-death and necrotic cell- death in different populations of brain cells varies depending on energy transfer.Experimental contusions were produced with a modified weight drop onto the exposed dura of rats. Animals were divided into two groups. They received a weight drop from two different heights to vary energy transfer to be higher or lower. Animals were sacrificed at 24 hours post injury (1 DPI) or 6 days (6 DPI); brains were frozen and processed for TUNEL (TdT mediated dUTP nick end labelling), light microscopy and immunochemistry.The total number of TUNEL positive cells was higher in the higher energy group on the first day after the injury. At the same time point, relatively fewer cells were apoptotic than necrotic, while relatively more glial cells than neurons were TUNEL-positive in higher energy trauma. At 6 day after the injury fewer cells were TUNEL positive and there were no longer significant differences between the high and low energy groups.Increasing energy transfer in a model for brain contusion demonstrated qualitative and quantitative changes in the pattern of cell death. This complexity must be considered when evaluating brain-protection as treatment results may vary depending on which cellular population and which mechanism of cell death is treated under the exact experimental and clinical conditions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00701-008-0147-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00701-008-0147-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Springer Science and Business Media LLC Z. V. Petrova; E. A. Yanovskaya; V. V. Udut; Yu. G. Zyuz’kova; D. A. Korshunov; G. A. Stykon; V. A. Slepichev;pmid: 21113493
We studied the effects of ethanol on the energy production system in the brain and liver in acute and chronic intoxications. Ethanol was found to inhibit mitochondrial respiratory chain in the liver. Acute ethanol intoxication results in uncoupling of oxidative phosphorylation. NAD-dependent respiration prevails in chronic intoxication. In the brain, ethanol exposure induces a compensated low-energy shift with activation of fast mitochondrial metabolic cluster and uncoupling of oxidative phosphorylation.
Bulletin of Experime... arrow_drop_down Bulletin of Experimental Biology and MedicineArticle . 2010 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10517-010-0909-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Bulletin of Experime... arrow_drop_down Bulletin of Experimental Biology and MedicineArticle . 2010 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10517-010-0909-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2009 CanadaPublisher:Springer Science and Business Media LLC Funded by:CIHR, NSERCCIHR ,NSERCAuthors: Naing, Veronica; Donelan, J. M; Li, Qingguo;Biomechanical energy harvesting-generating electricity from people during daily activities-is a promising alternative to batteries for powering increasingly sophisticated portable devices. We recently developed a wearable knee-mounted energy harvesting device that generated electricity during human walking. In this methods-focused paper, we explain the physiological principles that guided our design process and present a detailed description of our device design with an emphasis on new analyses.Effectively harvesting energy from walking requires a small lightweight device that efficiently converts intermittent, bi-directional, low speed and high torque mechanical power to electricity, and selectively engages power generation to assist muscles in performing negative mechanical work. To achieve this, our device used a one-way clutch to transmit only knee extension motions, a spur gear transmission to amplify the angular speed, a brushless DC rotary magnetic generator to convert the mechanical power into electrical power, a control system to determine when to open and close the power generation circuit based on measurements of knee angle, and a customized orthopaedic knee brace to distribute the device reaction torque over a large leg surface area.The device selectively engaged power generation towards the end of swing extension, assisting knee flexor muscles by producing substantial flexion torque (6.4 Nm), and efficiently converted the input mechanical power into electricity (54.6%). Consequently, six subjects walking at 1.5 m/s generated 4.8 +/- 0.8 W of electrical power with only a 5.0 +/- 21 W increase in metabolic cost.Biomechanical energy harvesting is capable of generating substantial amounts of electrical power from walking with little additional user effort making future versions of this technology particularly promising for charging portable medical devices.
Journal of NeuroEngi... arrow_drop_down Journal of NeuroEngineering and RehabilitationArticle . 2009 . Peer-reviewedLicense: CC BYData sources: CrossrefSimon Fraser University Institutional RepositoryArticle . 2009Data sources: Simon Fraser University Institutional RepositorySimon Fraser University Institutional RepositoryArticle . 2009Data sources: Simon Fraser University Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/1743-0003-6-22&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 103 citations 103 popularity Top 1% influence Top 1% impulse Top 10% Powered by BIP!
more_vert Journal of NeuroEngi... arrow_drop_down Journal of NeuroEngineering and RehabilitationArticle . 2009 . Peer-reviewedLicense: CC BYData sources: CrossrefSimon Fraser University Institutional RepositoryArticle . 2009Data sources: Simon Fraser University Institutional RepositorySimon Fraser University Institutional RepositoryArticle . 2009Data sources: Simon Fraser University Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/1743-0003-6-22&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 ItalyPublisher:Springer Science and Business Media LLC Buoite Stella, Alex; Morelli, Maria Elisa; Giudici, Fabiola; Sartori, Arianna; Manganotti, Paolo; di Prampero, Pietro Enrico;Comfortable walking speed and energy cost of walking are physiological markers of metabolic activity during gait. People with multiple sclerosis are characterized by altered gait biomechanics and energetics, related to the degree of disability and spasticity, which lead to an increased energy cost of walking. Several studies concerning the energy cost of walking in multiple sclerosis have been published. Nevertheless, differences in protocols and characteristics of the sample have led to different outcomes. The aim of the present meta-analysis is to summarize results from studies with specific inclusion characteristics, and to present data about the comfortable walking speed and the energy cost of walking at that speed. Moreover, a detailed discussion of the potential mechanisms involved in the altered metabolic activity during exercise was included. A total of 19 studies were considered, 12 of which were also part of the quantitative analysis. Despite the strict selection process, high between-group heterogeneity was found for both outcomes. Nevertheless, the overall results suggest a pooled mean comfortable walking speed of 1.12 m/s (95% CI 1.05-1.18) and energy cost of 0.19 mLO2/kg/m (95% CI 0.17-0.21). These findings support the results of previous studies suggesting that energy cost of walking may be increased by 2-3 times compared to healthy controls (HC), and encourage the use of this marker in association with other parameters of the disease.
Archivio istituziona... arrow_drop_down European Journal of Applied PhysiologyArticle . 2020 . Peer-reviewedLicense: Springer TDMData sources: CrossrefEuropean Journal of Applied Physiology and Occupational PhysiologyArticle . 2020Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00421-019-04295-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down European Journal of Applied PhysiologyArticle . 2020 . Peer-reviewedLicense: Springer TDMData sources: CrossrefEuropean Journal of Applied Physiology and Occupational PhysiologyArticle . 2020Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00421-019-04295-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Computers, Materials and Continua (Tech Science Press) Ashish Das; Kan Hor; Rupak K. Banerjee; Michael D. Taylor; Namheon Lee;doi: 10.1111/chd.12034
pmid: 23331703
With the success of early repair, continued functional assessment of repaired congenital heart disease is critical for improved long-term outcome. Pulmonary regurgitation, which is one of the main postoperative sequelae of congenital heart disease involved with the right ventricle (RV) such as tetralogy of Fallot and transposition of the great arteries, results in progressive RV dilatation coupled with pulmonary artery (PA) obstruction causing elevated RV pressures. The appropriate timing of intervention to correct these postoperative lesions remains largely subjective. In the present study, we evaluated an energy-based end point, namely energy transfer ratio (eMPA ), to assess the degree of RV and PA inefficiency in a group of congenital heart disease patients with abnormal RV-PA physiology.Eight patients with abnormal RV-PA physiology and six controls with normal RV-PA physiology were investigated using a previously validated technique that couples cardiac magnetic resonance imaging and invasive pressure measurements.The mean eMPA of the patient group (0.56 ± 0.33) was significantly lower (P <.04) than that of the control group (1.56 ± 0.85), despite the fact that the patient group had a significantly higher RV stroke work indexed to body surface area (RV SWI ) than the control group (0.205 ± 0.095 J/m(2) vs. 0.090 ± 0.038 J/m(2) ; P <.02).We determined that the patients had inefficient RV-PA physiology due to a combination of RV dilatation with pulmonary regurgitation and RV outflow obstruction leading to an elevated end-systolic pressure. Using coupled magnetic resonance imaging and invasive pressure measurements, eMPA is determined to be a sensitive energy-based end point for measuring RV-PA efficiency. It may serve as a diagnostic end point to optimize timing of intervention.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/chd.12034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/chd.12034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV M.D. Grima Murcia; Francisco Sánchez Ferrer; Jennifer Sorinas; J.M. Ferrandez; Eduardo Fernandez;pmid: 28622651
Much is currently being studied on the negative visual impact associated to the installation of large wind turbines or photovoltaic farms. However, methodologies for quantitatively assessing landscape impact are scarce. In this work we used electroencephalographic (EEG) recordings to investigate the brain activity of 14 human volunteers when looking at the same landscapes with and without wind turbines, solar panels and nuclear power plants. Our results showed no significant differences for landscapes with solar power systems or without them, and the same happened for wind turbines, what was in agreement with their subjective scores. However, there were clear and significant differences when looking at landscapes with and without nuclear power plants. These differences were more pronounced around a time window of 376-407 msec and showed a clear right lateralization for the pictures containing nuclear power plants. Although more studies are still needed, these results suggest that EEG recordings can be a useful procedure for measuring visual impact.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTAJournal of Environmental ManagementArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2017.05.096&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTAJournal of Environmental ManagementArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2017.05.096&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015Publisher:eLife Sciences Publications, Ltd E. Edmund Kim; E. Edmund Kim; Do Won Hwang; Do Won Hwang; Yoori Choi; Hongyoon Choi; Hongyoon Choi; June-Key Chung; Kyu Wan Kim; Dong Soo Lee; Dong Soo Lee; Hye Jin Kang;Neuroimaging has been used to examine developmental changes of the brain. While PET studies revealed maturation-related changes, maturation of metabolic connectivity of the brain is not yet understood. Here, we show that rat brain metabolism is reconfigured to achieve long-distance connections with higher energy efficiency during maturation. Metabolism increased in anterior cerebrum and decreased in thalamus and cerebellum during maturation. When functional covariance patterns of PET images were examined, metabolic networks including default mode network (DMN) were extracted. Connectivity increased between the anterior and posterior parts of DMN and sensory-motor cortices during maturation. Energy efficiency, a ratio of connectivity strength to metabolism of a region, increased in medial prefrontal and retrosplenial cortices. Our data revealed that metabolic networks mature to increase metabolic connections and establish its efficiency between large-scale spatial components from childhood to early adulthood. Neurodevelopmental diseases might be understood by abnormal reconfiguration of metabolic connectivity and efficiency.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7554/elife.11571&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 28 citations 28 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7554/elife.11571&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Wiley Authors: Pan Wang; Yangyang Zhong; Zhenan Yao;Since China’s reform and opening up, the social economy has achieved rapid development, followed by a sharp increase in carbon dioxide (CO2) emissions. Therefore, at the 75th United Nations General Assembly, China proposed to achieve carbon peaking by 2030 and carbon neutrality by 2060. The research work on advance forecasting of CO2 emissions is essential to achieve the above-mentioned carbon peaking and carbon neutrality goals in China. In order to achieve accurate prediction of CO2 emissions, this study establishes a hybrid intelligent algorithm model suitable for CO2 emissions prediction based on China’s CO2 emissions and related socioeconomic indicator data from 1971 to 2017. The hyperparameters of Least Squares Support Vector Regression (LSSVR) are optimized by the Adaptive Artificial Bee Colony (AABC) algorithm to build a high-performance hybrid intelligence model. The research results show that the hybrid intelligent algorithm model designed in this paper has stronger robustness and accuracy with relative error almost within ±5% in the advance prediction of CO2 emissions. The modeling scheme proposed in this study can not only provide strong support for the Chinese government and industry departments to formulate policies related to the carbon peaking and carbon neutrality goals, but also can be extended to the research of other socioeconomic-related issues.
Computational Intell... arrow_drop_down Computational Intelligence and NeuroscienceArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/2022/6822467&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Computational Intell... arrow_drop_down Computational Intelligence and NeuroscienceArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/2022/6822467&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2016Publisher:Institute of Electrical and Electronics Engineers (IEEE) Melanie G. Urbanchek; Karen E. Schroeder; William C. Stacey; Derek M. Tat; David E. Thompson; Parag G. Patil; Cynthia A. Chestek; Adam Sachs; Autumn J Bullard; Ali Hassani; Zachary T. Irwin; Shoshana L. Woo; Paul S. Cederna;pmid: 26600160
Brain-Machine Interfaces (BMIs) have shown great potential for generating prosthetic control signals. Translating BMIs into the clinic requires fully implantable, wireless systems; however, current solutions have high power requirements which limit their usability. Lowering this power consumption typically limits the system to a single neural modality, or signal type, and thus to a relatively small clinical market. Here, we address both of these issues by investigating the use of signal power in a single narrow frequency band as a decoding feature for extracting information from electrocorticographic (ECoG), electromyographic (EMG), and intracortical neural data. We have designed and tested the Multi-modal Implantable Neural Interface (MINI), a wireless recording system which extracts and transmits signal power in a single, configurable frequency band. In prerecorded datasets, we used the MINI to explore low frequency signal features and any resulting tradeoff between power savings and decoding performance losses. When processing intracortical data, the MINI achieved a power consumption 89.7% less than a more typical system designed to extract action potential waveforms. When processing ECoG and EMG data, the MINI achieved similar power reductions of 62.7% and 78.8%. At the same time, using the single signal feature extracted by the MINI, we were able to decode all three modalities with less than a 9% drop in accuracy relative to using high-bandwidth, modality-specific signal features. We believe this system architecture can be used to produce a viable, cost-effective, clinical BMI.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Neural Systems and Rehabilitation EngineeringArticle . 2016 . Peer-reviewedLicense: IEEE CopyrightData sources: CrossrefIEEE Transactions on Neural Systems and Rehabilitation EngineeringArticle . 2017Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tnsre.2015.2501752&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Neural Systems and Rehabilitation EngineeringArticle . 2016 . Peer-reviewedLicense: IEEE CopyrightData sources: CrossrefIEEE Transactions on Neural Systems and Rehabilitation EngineeringArticle . 2017Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tnsre.2015.2501752&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu