Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
  • Access
    Clear
  • Type
  • Year range
  • Field of Science
  • Funder
  • SDG [Beta]
  • Country
  • Language
  • Source
  • Research community
    Clear
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
5,761 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • Closed Access
  • Embargo
  • Neuroscience

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Gábor Maksay; Heinrich Betz; Bodo Laube;

    Abstract : Some serotonin 5‐HT3 receptor ligands of tropeine structure have been recently shown to modulate ionophore function and binding of glycine receptors. This led us to study the effects of the tropeines tropisetron and atropine on recombinant human glycine receptors transiently expressed in Xenopus oocytes by using whole‐cell voltage‐clamp electrophysiology. Glycine currents were inhibited by atropine in an apparently competitive manner and with considerable selectivity of the tropeines for α2 versus α1 subunits. Coexpression of β with α subunits and replacement of the N‐terminal region of the α1 subunits by the corresponding β segment resulted in similar increases in the inhibitory potencies. Our data suggest common sites of the tropeines for inhibition on the N‐terminal region of glycine receptors. The point mutations R271K and R271L of the α1 subunit decreased, whereas a T112A substitution increased, the inhibition constants (Ki) of the tropeines. These changes in the Ki values of the tropeines were associated with opposite changes in the EC50 of glycine. Selectivities for the tropeines versus glycine (EC50/Ki) varied within three orders of magnitude. These results, when expressed in terms of free energy changes, can be interpreted according to a two‐state receptor model.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Neurochem...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Neurochemistry
    Article . 1999 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    34
    citations34
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Neurochem...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Neurochemistry
      Article . 1999 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Chunyan Yang; Zhongzhen Yang; Siqi Wang; Jinxia Chen; +5 Authors

    Chemotherapy is a conventional treatment for glioma, but its efficacy is greatly limited due to low blood-brain barrier (BBB) permeability and lack of specificity. Herein, intelligent and tumor microenvironment (TME)-responsive folic acid (FA) derivatives and mitochondria-targeting berberine (BBR) derivatives co-modified liposome coated with Tween 80 loading paclitaxel (PTX-Tween 80-BBR + FA-Lip) was constructed. Specifically speaking, liposomes modified by FA can be effectively target ed to glioma cells. BBR, due to its delocalized positive electricity and lipophilicity, can be attracted by mitochondrial membrane potential and concentrate on mitochondria to achieve mitochondrial targeting and induce cell apoptosis. By simultaneously modifying the liposome with FA and BBR to deliver drugs, leads to a good therapeutic effect of glioma through FA-based glioma targeting and BBR-based mitochondrial targeting. In addition, the surface of the liposome was coated with Tween 80 to further improve BBB penetration. All results exhibited that PTX-Tween 80-BBR + FA-Lip can observably improve the chemotherapy therapeutic efficacy through the highly specific tumor targeting and mitochondrial targeting, which can provide new ideas and methods for the targeted therapy of glioma.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioorganic & Medicin...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Bioorganic & Medicinal Chemistry
    Article . 2022 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    19
    citations19
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioorganic & Medicin...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Bioorganic & Medicinal Chemistry
      Article . 2022 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Albert Adell; R.D. Myers;

    1. The effect of 10 g 5,7-dihydroxytryptamine (5,7-DHT) micro-injected into both the dorsal (DRN) and the median raphe nuclei (MRN) on the intake of ethanol in the low alcohol drinking (LAD) rat was measured using a standard 3-30% ethanol preference test. 2. The combined lesion of both midbrain structures depleted the levels of serotonin (5-HT) and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) significantly in each of eight major regions of the brain. The levels of norepinephrine, dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) remained unchanged after the lesion. 3. The effects of the neurotoxin lesions on the intakes of ethanol, food, water and total amount of fluid consumed were not significant. 4. The results corroborate our previous findings with the Sprague-Dawley strain of rat and suggest that although brain 5-HT may play a role in the maintenance of basal patterns of ethanol drinking, this monoamine may not be able to modify further the consumption of this fluid after lesioning with 5,7-DHT.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Progress in Neuro-Ps...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Progress in Neuro-Psychopharmacology and Biological Psychiatry
    Article . 1996 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    4
    citations4
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Progress in Neuro-Ps...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Progress in Neuro-Psychopharmacology and Biological Psychiatry
      Article . 1996 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: William A. Banks; Abba J. Kastin;

    Brain-to-blood transport, or efflux, systems play important roles in brain functions and can affect the CNS uptake and activity of endogenous and exogenous blood-borne substances. Several efflux systems have been described for peptides. These efflux systems may play important roles in communication between the CNS and peripheral tissues and may be important in conditions such as alcoholism.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Annals of the New Yo...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Annals of the New York Academy of Sciences
    Article . 1994 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    11
    citations11
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Annals of the New Yo...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Annals of the New York Academy of Sciences
      Article . 1994 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: BASSAREO, VALENTINA; DE LUCA, MARIA ANTONIETTA; ARESU M; ASTE A; +2 Authors

    AbstractNon‐adaptive activation of dopamine transmission in the nucleus accumbens shell by drugs of abuse has been attributed a fundamental role in the mechanism of drug addiction. In order to test this hypothesis, we compared in the same subject the effect of an addictive drug (ethanol) and of taste stimuli, including ethanol's own taste, on dialysate dopamine in the nucleus accumbens shell as an estimate of dopamine transmission and on taste reactivity as an expression of motivational valence. Ethanol was also monitored in the dialysates. In naive rats, intraoral infusion of a 20% sucrose + chocolate solution elicited a monophasic increase of dialysate dopamine immediately after the intraoral infusion. In contrast, intraoral infusion of 10% ethanol, 10% ethanol + 20% sucrose or 10% ethanol + 20% sucrose + chocolate solutions elicited a biphasic increase of nucleus accumbens dopamine with an early taste‐related rise and a late rise related to dialysate ethanol. Pre‐exposure to the ethanol solutions 24 h before resulted in the absence of the early dopamine rise and permanence of the late dopamine rise. This late dopamine rise was actually increased as compared with that of the nonpre‐exposed group when sucrose‐containing ethanol solutions were tested. The results indicate that single trial pre‐exposure to the ethanol solutions differentially affects the responsiveness of nucleus accumbens shell dopamine to the direct intracerebral action of ethanol and to the effect of its taste with potentiation, or no change of the first and abolition of the second. These observations point to the existence of major differences in the adaptive regulation of nucleus accumbens dopamine transmission in the shell after drug as compared with taste reward. These differences, in turn, are consistent with a role of nucleus accumbens shell dopamine in the mechanism of the behavioural effects of addictive drugs.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao European Journal of ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    European Journal of Neuroscience
    Article . 2003 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    52
    citations52
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao European Journal of ...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      European Journal of Neuroscience
      Article . 2003 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Donna M. Jakowec; Jack Neiman; Margaret L. Rand; Marian A. Packham;

    Platelet aggregation, secretion of serotonin, and formation of thromboxane B2 induced by platelet-activating factor (1-O-alkyl-2-acetyl-sn-glyceryl-3-phosphorylcholine) were studied in plasma containing physiological concentrations of ionized calcium in eight alcoholics after cessation of heavy drinking. Responses of platelets of four nonalcoholic volunteers, matched with a subgroup of the alcoholics by age and sex, were also investigated. Aggregation of platelets from alcoholics was significantly less throughout the 6-day detoxification period compared with controls. Secretion of serotonin (5-hydroxy-tryptamine) was negligible and the production of thromboxane B2 was not detectable. Decreased platelet aggregability in response to aggregating agents, including platelet-activating factor, may be important in the development of hemorrhagic complications in alcoholics.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Thrombosis Researcharrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Thrombosis Research
    Article . 1989 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    13
    citations13
    popularityAverage
    influenceTop 10%
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Thrombosis Researcharrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Thrombosis Research
      Article . 1989 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: R A, Gonzales; C, Theiss; F T, Crews;

    The effect of ethanol in vitro on inositol lipid metabolism in brain slices was investigated under nonstimulating and stimulating conditions. In cerebral cortical slices 100 microM norepinephrie (NE), 1 mM carbachol, 100 microM serotonin, 20 mM KCl, 1 mM glutamate and 30 microM A23187 stimulated inositide hydrolysis as measured by the release of [3H]inositol phosphates from [3H]myoinositol labeled slices. Ethanol (500 mM) inhibited nonstimulated inositide hydrolysis but had variable effects on stimulated inositide breakdown. NE-, KCl- and glutamate-stimulated [3H]inositol phosphate release was inhibited by 500 mM ethanol in the cortex. The inhibitory effect of ethanol on NE-stimulated inositide hydrolysis was concentration dependent and significant at concentrations as low as 100 mM. Inhibition by ethanol appeared to be noncompetitive. A similar pattern of inhibition by ethanol was observed when KCl was the stimulant. In hippocampal and hypothalamic slices, similar to cortical slices. NE- and KCl-stimulated inositide breakdown was significantly inhibited by ethanol. However, in brain stem slices, only KCl-stimulated [3H]inositol phosphate release was inhibited. Striatal slices stimulated by carbachol, NE and KCl were sensitive to the inhibitory effects of ethanol on inositol lipid breakdown. These results suggest that ethanol in vitro has specific effects on inositol lipid metabolism depending on the brain region studied and the type of stimulation. Moreover, the differential sensitivity to ethanol of stimulated inositide hydrolysis in the brain may contribute, at least in part, to some of the pharmacological effects of ethanol in vivo.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Pharmacol...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Pharmacology and Experimental Therapeutics
    Article . 1986 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    65
    citations65
    popularityAverage
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Pharmacol...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Pharmacology and Experimental Therapeutics
      Article . 1986 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Sharada D. Vangipuram; William D. Lyman; Graham C. Parker; William E. Grever;

    Background:  Ethanol (ETOH) consumption by pregnant women can result in Fetal Alcohol Spectrum Disorder (FASD). To date, the cellular targets and mechanisms responsible for FASD are not fully characterized. Our aim was to determine if ETOH can affect fetal human brain‐derived neural progenitor cells (NPC).Methods:  Neural progenitor cells were isolated by positive selection from normal second trimester fetal human brains (n = 4) and cultured, for up to 72 hours, in mitogenic media containing 0, 1, 10, or 100 mM ETOH. From 48 to 72 hours in culture, neurospheres generated in these conditions were filmed using time‐lapse video microscopy. At the end of 72 hours, neurosphere diameter and roundness were measured using videographic software. Mitotic phase analysis of cell‐cycle activity and apoptotic cell count were also performed at this time, by flow cytometry using propidium iodide (PI) staining. Real‐time PCR was used to estimate expression of genes associated with cell adhesion pathways.Results:  Neurosphere diameter correlated positively (r = 0.87) with increasing ETOH concentrations. There was no significant difference in cell‐cycle activity and no significant increase in apoptosis with increasing ETOH concentrations. Time‐lapse video microscopy showed that ETOH (100 mM) reduced the time for neurosphere coalescence. Real‐time PCR analysis showed that ETOH significantly altered the expression of genes involved in cell adhesion. There was an increase in the expression of α and β Laminins 1, β Integrins 3 and 5, Secreted phosphoprotein1 and Sarcoglycan ε. No change in the expression of β Actin was observed while the expression of β Integrin 2 was significantly suppressed.Conclusions:  ETOH had no effect on NPC apoptosis but, resulted in more rapid coalescence and increased volume of neurospheres. Additionally, the expression of genes associated with cell adhesion was significantly altered. ETOH induced changes in NPC surface adhesion interactions may underlie aspects of neurodevelopmental abnormalities in FASD.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Alcoholism Clinical ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Alcoholism Clinical and Experimental Research
    Article . 2007 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    58
    citations58
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Alcoholism Clinical ...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Alcoholism Clinical and Experimental Research
      Article . 2007 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Peter Kuhn; Michael W. Miller; Michael W. Miller; Michael W. Miller;

    Neuronal death is an active process that results in the upregulation of antigens recognized by ALZ-50 and p53. Since prenatal exposure to ethanol can induce the postnatal death of cortical neurons, we examined the effects of ethanol on the in vivo expression of both the ALZ-50-positive antigen and p53. Pregnant rats were fed one of three diets, a liquid diet containing ethanol (Et), an isocaloric and isonutritive diet (Ct), or chow and water (Ch). Segments of frontoparietal cortex from fetuses and pups were examined for ethanol-induced changes (a) in the expression of ALZ-50 and p53 immunoreactivity using a quantitative immunoblotting assay and (b) in the distribution of ALZ-50- and p53-positive cells using immunohistochemistry. In control rats, ALZ-50 identified a 56-kDa peptide that was transiently expressed postnatally and peak expression occurred on postnatal day (P) 6 to P12. In Et-treated rats, peak expression was attained earlier (on P3) and was about three times of that achieved in the controls. The anti-p53 antibody identified three proteins (28, 56, and 58 kDa). Peak expression in control rats occurred during the second postnatal week and only the 58-kDa protein was expressed in appreciable amounts in adult cortex. Each p53-positive protein was affected by ethanol exposure. The 28- and 56-kDa p53-positive proteins were affected by ethanol much in the same way as was the ALZ-50-positive antigen. That is, the timing and amount of peak expression were earlier and lower, respectively, in the Et-treated rats. The postnatal expression of the 58-kDa protein was halved following prenatal exposure to ethanol. Both ALZ-50 and anti-p53 immunoprecipitated proteins are p53- and ALZ-50-positive, respectively. Thus, ethanol alters the expression of the ALZ-50- and p53-positive proteins and presumably the timing of neuronal death in the developing cortex. The parallel effects of prenatal ethanol exposure on the 56-kDa ALZ-50-positive antigen and the 28- and 56-kDa p53-positive proteins and the coprecipitation of the proteins are consistent with the notion that ALZ-50 recognizes a form of p53.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Experimental Neurolo...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Experimental Neurology
    Article . 1998 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    33
    citations33
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Experimental Neurolo...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Experimental Neurology
      Article . 1998 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Donna Brown; David Pierson; Mariko Saito; Andrea Balla; +6 Authors

    Ethanol preference, a component of alcoholism, has been known for four decades to differ greatly between C57BL/6 and BALB/c inbred mouse strains. For mapping quantitative trait loci (QTLs) that affect ethanol preference, we used a set of B6.C Recombinant QTL Introgression (RQI) strains, which carry about 5% of the donor BALB/cJ (C) genome on a C57BL/6ByJ (B6) background. After characterizing males of the progenitor and RQI strains for variations in ethanol preference, we scanned their genome for polymorphisms at 244 dinucleotide-repeat marker loci known to differ between B6 and C. Because of the introgression of BALB/c-type QTLs onto the B6 background, some strains showed ethanol preference significantly lower or higher than that of the background strain, suggesting that genetic interaction between ethanol preference QTLs and the background can be operative. The genomic region showing the strongest influence on ethanol preference was on mouse chromosome 15, and corresponds to human chr.12q11-q13.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Alcoholarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Alcohol
    Article . 2000 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    Alcohol
    Article . 2000
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    29
    citations29
    popularityAverage
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Alcoholarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Alcohol
      Article . 2000 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      Alcohol
      Article . 2000
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
5,761 Research products
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Gábor Maksay; Heinrich Betz; Bodo Laube;

    Abstract : Some serotonin 5‐HT3 receptor ligands of tropeine structure have been recently shown to modulate ionophore function and binding of glycine receptors. This led us to study the effects of the tropeines tropisetron and atropine on recombinant human glycine receptors transiently expressed in Xenopus oocytes by using whole‐cell voltage‐clamp electrophysiology. Glycine currents were inhibited by atropine in an apparently competitive manner and with considerable selectivity of the tropeines for α2 versus α1 subunits. Coexpression of β with α subunits and replacement of the N‐terminal region of the α1 subunits by the corresponding β segment resulted in similar increases in the inhibitory potencies. Our data suggest common sites of the tropeines for inhibition on the N‐terminal region of glycine receptors. The point mutations R271K and R271L of the α1 subunit decreased, whereas a T112A substitution increased, the inhibition constants (Ki) of the tropeines. These changes in the Ki values of the tropeines were associated with opposite changes in the EC50 of glycine. Selectivities for the tropeines versus glycine (EC50/Ki) varied within three orders of magnitude. These results, when expressed in terms of free energy changes, can be interpreted according to a two‐state receptor model.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Neurochem...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Neurochemistry
    Article . 1999 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    34
    citations34
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Neurochem...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Neurochemistry
      Article . 1999 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Chunyan Yang; Zhongzhen Yang; Siqi Wang; Jinxia Chen; +5 Authors

    Chemotherapy is a conventional treatment for glioma, but its efficacy is greatly limited due to low blood-brain barrier (BBB) permeability and lack of specificity. Herein, intelligent and tumor microenvironment (TME)-responsive folic acid (FA) derivatives and mitochondria-targeting berberine (BBR) derivatives co-modified liposome coated with Tween 80 loading paclitaxel (PTX-Tween 80-BBR + FA-Lip) was constructed. Specifically speaking, liposomes modified by FA can be effectively target ed to glioma cells. BBR, due to its delocalized positive electricity and lipophilicity, can be attracted by mitochondrial membrane potential and concentrate on mitochondria to achieve mitochondrial targeting and induce cell apoptosis. By simultaneously modifying the liposome with FA and BBR to deliver drugs, leads to a good therapeutic effect of glioma through FA-based glioma targeting and BBR-based mitochondrial targeting. In addition, the surface of the liposome was coated with Tween 80 to further improve BBB penetration. All results exhibited that PTX-Tween 80-BBR + FA-Lip can observably improve the chemotherapy therapeutic efficacy through the highly specific tumor targeting and mitochondrial targeting, which can provide new ideas and methods for the targeted therapy of glioma.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioorganic & Medicin...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Bioorganic & Medicinal Chemistry
    Article . 2022 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    19
    citations19
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioorganic & Medicin...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Bioorganic & Medicinal Chemistry
      Article . 2022 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Albert Adell; R.D. Myers;

    1. The effect of 10 g 5,7-dihydroxytryptamine (5,7-DHT) micro-injected into both the dorsal (DRN) and the median raphe nuclei (MRN) on the intake of ethanol in the low alcohol drinking (LAD) rat was measured using a standard 3-30% ethanol preference test. 2. The combined lesion of both midbrain structures depleted the levels of serotonin (5-HT) and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) significantly in each of eight major regions of the brain. The levels of norepinephrine, dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) remained unchanged after the lesion. 3. The effects of the neurotoxin lesions on the intakes of ethanol, food, water and total amount of fluid consumed were not significant. 4. The results corroborate our previous findings with the Sprague-Dawley strain of rat and suggest that although brain 5-HT may play a role in the maintenance of basal patterns of ethanol drinking, this monoamine may not be able to modify further the consumption of this fluid after lesioning with 5,7-DHT.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Progress in Neuro-Ps...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Progress in Neuro-Psychopharmacology and Biological Psychiatry
    Article . 1996 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    4
    citations4
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Progress in Neuro-Ps...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Progress in Neuro-Psychopharmacology and Biological Psychiatry
      Article . 1996 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: William A. Banks; Abba J. Kastin;

    Brain-to-blood transport, or efflux, systems play important roles in brain functions and can affect the CNS uptake and activity of endogenous and exogenous blood-borne substances. Several efflux systems have been described for peptides. These efflux systems may play important roles in communication between the CNS and peripheral tissues and may be important in conditions such as alcoholism.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Annals of the New Yo...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Annals of the New York Academy of Sciences
    Article . 1994 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    11
    citations11
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Annals of the New Yo...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Annals of the New York Academy of Sciences
      Article . 1994 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: BASSAREO, VALENTINA; DE LUCA, MARIA ANTONIETTA; ARESU M; ASTE A; +2 Authors

    AbstractNon‐adaptive activation of dopamine transmission in the nucleus accumbens shell by drugs of abuse has been attributed a fundamental role in the mechanism of drug addiction. In order to test this hypothesis, we compared in the same subject the effect of an addictive drug (ethanol) and of taste stimuli, including ethanol's own taste, on dialysate dopamine in the nucleus accumbens shell as an estimate of dopamine transmission and on taste reactivity as an expression of motivational valence. Ethanol was also monitored in the dialysates. In naive rats, intraoral infusion of a 20% sucrose + chocolate solution elicited a monophasic increase of dialysate dopamine immediately after the intraoral infusion. In contrast, intraoral infusion of 10% ethanol, 10% ethanol + 20% sucrose or 10% ethanol + 20% sucrose + chocolate solutions elicited a biphasic increase of nucleus accumbens dopamine with an early taste‐related rise and a late rise related to dialysate ethanol. Pre‐exposure to the ethanol solutions 24 h before resulted in the absence of the early dopamine rise and permanence of the late dopamine rise. This late dopamine rise was actually increased as compared with that of the nonpre‐exposed group when sucrose‐containing ethanol solutions were tested. The results indicate that single trial pre‐exposure to the ethanol solutions differentially affects the responsiveness of nucleus accumbens shell dopamine to the direct intracerebral action of ethanol and to the effect of its taste with potentiation, or no change of the first and abolition of the second. These observations point to the existence of major differences in the adaptive regulation of nucleus accumbens dopamine transmission in the shell after drug as compared with taste reward. These differences, in turn, are consistent with a role of nucleus accumbens shell dopamine in the mechanism of the behavioural effects of addictive drugs.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao European Journal of ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    European Journal of Neuroscience
    Article . 2003 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    52
    citations52
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao European Journal of ...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      European Journal of Neuroscience
      Article . 2003 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Donna M. Jakowec; Jack Neiman; Margaret L. Rand; Marian A. Packham;

    Platelet aggregation, secretion of serotonin, and formation of thromboxane B2 induced by platelet-activating factor (1-O-alkyl-2-acetyl-sn-glyceryl-3-phosphorylcholine) were studied in plasma containing physiological concentrations of ionized calcium in eight alcoholics after cessation of heavy drinking. Responses of platelets of four nonalcoholic volunteers, matched with a subgroup of the alcoholics by age and sex, were also investigated. Aggregation of platelets from alcoholics was significantly less throughout the 6-day detoxification period compared with controls. Secretion of serotonin (5-hydroxy-tryptamine) was negligible and the production of thromboxane B2 was not detectable. Decreased platelet aggregability in response to aggregating agents, including platelet-activating factor, may be important in the development of hemorrhagic complications in alcoholics.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Thrombosis Researcharrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Thrombosis Research
    Article . 1989 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    13
    citations13
    popularityAverage
    influenceTop 10%
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Thrombosis Researcharrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Thrombosis Research
      Article . 1989 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: R A, Gonzales; C, Theiss; F T, Crews;

    The effect of ethanol in vitro on inositol lipid metabolism in brain slices was investigated under nonstimulating and stimulating conditions. In cerebral cortical slices 100 microM norepinephrie (NE), 1 mM carbachol, 100 microM serotonin, 20 mM KCl, 1 mM glutamate and 30 microM A23187 stimulated inositide hydrolysis as measured by the release of [3H]inositol phosphates from [3H]myoinositol labeled slices. Ethanol (500 mM) inhibited nonstimulated inositide hydrolysis but had variable effects on stimulated inositide breakdown. NE-, KCl- and glutamate-stimulated [3H]inositol phosphate release was inhibited by 500 mM ethanol in the cortex. The inhibitory effect of ethanol on NE-stimulated inositide hydrolysis was concentration dependent and significant at concentrations as low as 100 mM. Inhibition by ethanol appeared to be noncompetitive. A similar pattern of inhibition by ethanol was observed when KCl was the stimulant. In hippocampal and hypothalamic slices, similar to cortical slices. NE- and KCl-stimulated inositide breakdown was significantly inhibited by ethanol. However, in brain stem slices, only KCl-stimulated [3H]inositol phosphate release was inhibited. Striatal slices stimulated by carbachol, NE and KCl were sensitive to the inhibitory effects of ethanol on inositol lipid breakdown. These results suggest that ethanol in vitro has specific effects on inositol lipid metabolism depending on the brain region studied and the type of stimulation. Moreover, the differential sensitivity to ethanol of stimulated inositide hydrolysis in the brain may contribute, at least in part, to some of the pharmacological effects of ethanol in vivo.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Pharmacol...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Pharmacology and Experimental Therapeutics
    Article . 1986 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    65
    citations65
    popularityAverage
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Pharmacol...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Pharmacology and Experimental Therapeutics
      Article . 1986 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Sharada D. Vangipuram; William D. Lyman; Graham C. Parker; William E. Grever;

    Background:  Ethanol (ETOH) consumption by pregnant women can result in Fetal Alcohol Spectrum Disorder (FASD). To date, the cellular targets and mechanisms responsible for FASD are not fully characterized. Our aim was to determine if ETOH can affect fetal human brain‐derived neural progenitor cells (NPC).Methods:  Neural progenitor cells were isolated by positive selection from normal second trimester fetal human brains (n = 4) and cultured, for up to 72 hours, in mitogenic media containing 0, 1, 10, or 100 mM ETOH. From 48 to 72 hours in culture, neurospheres generated in these conditions were filmed using time‐lapse video microscopy. At the end of 72 hours, neurosphere diameter and roundness were measured using videographic software. Mitotic phase analysis of cell‐cycle activity and apoptotic cell count were also performed at this time, by flow cytometry using propidium iodide (PI) staining. Real‐time PCR was used to estimate expression of genes associated with cell adhesion pathways.Results:  Neurosphere diameter correlated positively (r = 0.87) with increasing ETOH concentrations. There was no significant difference in cell‐cycle activity and no significant increase in apoptosis with increasing ETOH concentrations. Time‐lapse video microscopy showed that ETOH (100 mM) reduced the time for neurosphere coalescence. Real‐time PCR analysis showed that ETOH significantly altered the expression of genes involved in cell adhesion. There was an increase in the expression of α and β Laminins 1, β Integrins 3 and 5, Secreted phosphoprotein1 and Sarcoglycan ε. No change in the expression of β Actin was observed while the expression of β Integrin 2 was significantly suppressed.Conclusions:  ETOH had no effect on NPC apoptosis but, resulted in more rapid coalescence and increased volume of neurospheres. Additionally, the expression of genes associated with cell adhesion was significantly altered. ETOH induced changes in NPC surface adhesion interactions may underlie aspects of neurodevelopmental abnormalities in FASD.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Alcoholism Clinical ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Alcoholism Clinical and Experimental Research
    Article . 2007 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    58
    citations58
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Alcoholism Clinical ...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Alcoholism Clinical and Experimental Research
      Article . 2007 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Peter Kuhn; Michael W. Miller; Michael W. Miller; Michael W. Miller;

    Neuronal death is an active process that results in the upregulation of antigens recognized by ALZ-50 and p53. Since prenatal exposure to ethanol can induce the postnatal death of cortical neurons, we examined the effects of ethanol on the in vivo expression of both the ALZ-50-positive antigen and p53. Pregnant rats were fed one of three diets, a liquid diet containing ethanol (Et), an isocaloric and isonutritive diet (Ct), or chow and water (Ch). Segments of frontoparietal cortex from fetuses and pups were examined for ethanol-induced changes (a) in the expression of ALZ-50 and p53 immunoreactivity using a quantitative immunoblotting assay and (b) in the distribution of ALZ-50- and p53-positive cells using immunohistochemistry. In control rats, ALZ-50 identified a 56-kDa peptide that was transiently expressed postnatally and peak expression occurred on postnatal day (P) 6 to P12. In Et-treated rats, peak expression was attained earlier (on P3) and was about three times of that achieved in the controls. The anti-p53 antibody identified three proteins (28, 56, and 58 kDa). Peak expression in control rats occurred during the second postnatal week and only the 58-kDa protein was expressed in appreciable amounts in adult cortex. Each p53-positive protein was affected by ethanol exposure. The 28- and 56-kDa p53-positive proteins were affected by ethanol much in the same way as was the ALZ-50-positive antigen. That is, the timing and amount of peak expression were earlier and lower, respectively, in the Et-treated rats. The postnatal expression of the 58-kDa protein was halved following prenatal exposure to ethanol. Both ALZ-50 and anti-p53 immunoprecipitated proteins are p53- and ALZ-50-positive, respectively. Thus, ethanol alters the expression of the ALZ-50- and p53-positive proteins and presumably the timing of neuronal death in the developing cortex. The parallel effects of prenatal ethanol exposure on the 56-kDa ALZ-50-positive antigen and the 28- and 56-kDa p53-positive proteins and the coprecipitation of the proteins are consistent with the notion that ALZ-50 recognizes a form of p53.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Experimental Neurolo...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Experimental Neurology
    Article . 1998 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    33
    citations33
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Experimental Neurolo...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Experimental Neurology
      Article . 1998 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Donna Brown; David Pierson; Mariko Saito; Andrea Balla; +6 Authors

    Ethanol preference, a component of alcoholism, has been known for four decades to differ greatly between C57BL/6 and BALB/c inbred mouse strains. For mapping quantitative trait loci (QTLs) that affect ethanol preference, we used a set of B6.C Recombinant QTL Introgression (RQI) strains, which carry about 5% of the donor BALB/cJ (C) genome on a C57BL/6ByJ (B6) background. After characterizing males of the progenitor and RQI strains for variations in ethanol preference, we scanned their genome for polymorphisms at 244 dinucleotide-repeat marker loci known to differ between B6 and C. Because of the introgression of BALB/c-type QTLs onto the B6 background, some strains showed ethanol preference significantly lower or higher than that of the background strain, suggesting that genetic interaction between ethanol preference QTLs and the background can be operative. The genomic region showing the strongest influence on ethanol preference was on mouse chromosome 15, and corresponds to human chr.12q11-q13.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Alcoholarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Alcohol
    Article . 2000 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    Alcohol
    Article . 2000
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    29
    citations29
    popularityAverage
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Alcoholarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Alcohol
      Article . 2000 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      Alcohol
      Article . 2000
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right
Powered by OpenAIRE graph